The Random Hypergraph Assignment Problem
Abstract
Parisi’s famous (proven) conjecture states that the expected cost of an optimal assignment in a complete bipartite graph on n + n nodes with i. i. d. exponential edge costs with mean 1 is Sum (1/i2), which converges to an asymptotic limit of Pi2/6 as n tends to infinity. We consider a generalization of this question to complete “partitioned” bipartite hypergraphs G2;n that contain edges of size two and proper hyperedges of size four. We conjecture that for i. i. d. uniform hyperedge costs on [0; 1] and i. i. d. exponential hyperedge costs with mean 1, optimal assignments expectedly contain half of the maximum possible number of proper hyperedges. We prove that under the assumption of this number of proper hyperedges the asymptotic expected minimum cost of a hyperassignment lies between 0.3718 and 1.8310 if hyperedge costs are i. i. d. exponential random variables with mean 1. We also consider an application-inspired cost function which favors proper hyperedges over edges by means of an edge penalty parameter p. We show how results for an arbitrary p can be deduced from results for p = 0.Downloads
How to Cite
Issue
Section
License
I assign to Informatica, An International Journal of Computing and Informatics ("Journal") the copyright in the manuscript identified above and any additional material (figures, tables, illustrations, software or other information intended for publication) submitted as part of or as a supplement to the manuscript ("Paper") in all forms and media throughout the world, in all languages, for the full term of copyright, effective when and if the article is accepted for publication. This transfer includes the right to reproduce and/or to distribute the Paper to other journals or digital libraries in electronic and online forms and systems.
I understand that I retain the rights to use the pre-prints, off-prints, accepted manuscript and published journal Paper for personal use, scholarly purposes and internal institutional use.
In certain cases, I can ask for retaining the publishing rights of the Paper. The Journal can permit or deny the request for publishing rights, to which I fully agree.
I declare that the submitted Paper is original, has been written by the stated authors and has not been published elsewhere nor is currently being considered for publication by any other journal and will not be submitted for such review while under review by this Journal. The Paper contains no material that violates proprietary rights of any other person or entity. I have obtained written permission from copyright owners for any excerpts from copyrighted works that are included and have credited the sources in my article. I have informed the co-author(s) of the terms of this publishing agreement.
Copyright © Slovenian Society Informatika