Swarm Intelligence and its Application in Abnormal Data Detection
Abstract
This study addresses swarm intelligence-based approaches in data quality detection. First, three typical swarm intelligence models and their applications in abnormity detection are introduced, including Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), Bee Colony Optimization (BCO). Then, it presents three approaches based on ACO, PSO and BCO for detection of attribute outliers in datasets. These approaches use different search strategies on the data items; however, they choose the same fitness function (i.e. the O-measure) to evaluate the solutions, and they make use of swarms of the fittest agents and random moving agents to obtain superior solutions by changing the searching paths or positions of agents. Three algorithms are described and explained, which are efficient by heuristic principles.Downloads
How to Cite
Issue
Section
License
I assign to Informatica, An International Journal of Computing and Informatics ("Journal") the copyright in the manuscript identified above and any additional material (figures, tables, illustrations, software or other information intended for publication) submitted as part of or as a supplement to the manuscript ("Paper") in all forms and media throughout the world, in all languages, for the full term of copyright, effective when and if the article is accepted for publication. This transfer includes the right to reproduce and/or to distribute the Paper to other journals or digital libraries in electronic and online forms and systems.
I understand that I retain the rights to use the pre-prints, off-prints, accepted manuscript and published journal Paper for personal use, scholarly purposes and internal institutional use.
In certain cases, I can ask for retaining the publishing rights of the Paper. The Journal can permit or deny the request for publishing rights, to which I fully agree.
I declare that the submitted Paper is original, has been written by the stated authors and has not been published elsewhere nor is currently being considered for publication by any other journal and will not be submitted for such review while under review by this Journal. The Paper contains no material that violates proprietary rights of any other person or entity. I have obtained written permission from copyright owners for any excerpts from copyrighted works that are included and have credited the sources in my article. I have informed the co-author(s) of the terms of this publishing agreement.
Copyright © Slovenian Society Informatika