Incremental Hierarchical Fuzzy Model Generated from Multilevel Fuzzy Support Vector Regression Network
Abstract
Fuzzy rule-based systems are nowadays one of the most successful applications of fuzzy logic, but in complex applications with a large set of variables, the number of rules increases exponentially and the obtained fuzzy system is scarcely interpretable. Hierarchical fuzzy systems are one of the alternatives presented in the literature to overcome this problem. This paper presents a multilevel fuzzy support vector regression network (MFSVRN) model that learns incremental hierarchical structure based on the Takagi-Sugeno-Kang(TSK) fuzzy system with the aim of coping with the curse of dimensionality and generalization ability. From the input–output data pairs, the TS-type rules and its parameters are learned by a combination of fuzzy clustering and linear SVR in this paper. In addition, an efficient input variable selection method of the incremental multilevel network is proposed based on the FCM clustering and fuzzy association rules. To achieve high generalization ability, the consequence parameters of a rule are learned through linear SVR with a new TS-kernel. This paper demonstrates the capabilities of MFSVRN model by conducting simulations in function approximations and a chaotic time-series prediction. This paper also compares simulation results from the single-level counterparts- FSVRN and Jang's ANFIS model.Downloads
How to Cite
Issue
Section
License
I assign to Informatica, An International Journal of Computing and Informatics ("Journal") the copyright in the manuscript identified above and any additional material (figures, tables, illustrations, software or other information intended for publication) submitted as part of or as a supplement to the manuscript ("Paper") in all forms and media throughout the world, in all languages, for the full term of copyright, effective when and if the article is accepted for publication. This transfer includes the right to reproduce and/or to distribute the Paper to other journals or digital libraries in electronic and online forms and systems.
I understand that I retain the rights to use the pre-prints, off-prints, accepted manuscript and published journal Paper for personal use, scholarly purposes and internal institutional use.
In certain cases, I can ask for retaining the publishing rights of the Paper. The Journal can permit or deny the request for publishing rights, to which I fully agree.
I declare that the submitted Paper is original, has been written by the stated authors and has not been published elsewhere nor is currently being considered for publication by any other journal and will not be submitted for such review while under review by this Journal. The Paper contains no material that violates proprietary rights of any other person or entity. I have obtained written permission from copyright owners for any excerpts from copyrighted works that are included and have credited the sources in my article. I have informed the co-author(s) of the terms of this publishing agreement.
Copyright © Slovenian Society Informatika