Visualization and Concept Drift Detection Using Explanations of Incremental Models
Abstract
The temporal dimension that is ever more prevalent in data makes data stream mining (incremental learning) an important field of machine learning. In addition to accurate predictions, explanations of the models and examples are a crucial component as they provide insight into model's decision and lessen its black box nature, thus increasing the user's trust. Proper visual representation of data is also very relevant to user's understanding – visualization is often utilised in machine learning since it shifts the balance between perception and cognition to take fuller advantage of the brain's abilities. In this paper we review visualisation in incremental setting and devise an improved version of an existing visualisation of explanations of incremental models. Additionally, we discuss the detection of concept drift in data streams and experiment with a novel detection method that uses the stream of model's explanations to determine the places of change in the data domain.Downloads
How to Cite
Issue
Section
License
I assign to Informatica, An International Journal of Computing and Informatics ("Journal") the copyright in the manuscript identified above and any additional material (figures, tables, illustrations, software or other information intended for publication) submitted as part of or as a supplement to the manuscript ("Paper") in all forms and media throughout the world, in all languages, for the full term of copyright, effective when and if the article is accepted for publication. This transfer includes the right to reproduce and/or to distribute the Paper to other journals or digital libraries in electronic and online forms and systems.
I understand that I retain the rights to use the pre-prints, off-prints, accepted manuscript and published journal Paper for personal use, scholarly purposes and internal institutional use.
In certain cases, I can ask for retaining the publishing rights of the Paper. The Journal can permit or deny the request for publishing rights, to which I fully agree.
I declare that the submitted Paper is original, has been written by the stated authors and has not been published elsewhere nor is currently being considered for publication by any other journal and will not be submitted for such review while under review by this Journal. The Paper contains no material that violates proprietary rights of any other person or entity. I have obtained written permission from copyright owners for any excerpts from copyrighted works that are included and have credited the sources in my article. I have informed the co-author(s) of the terms of this publishing agreement.
Copyright © Slovenian Society Informatika