A Fast Chaos-Based Pseudo-Random Bit Generator Using Binary64 Floating-Point Arithmetic
Abstract
Chaos-based cryptography is widely investigated in recent years, especially in the field of random number generators. The paper describes a novel pseudo-random bit generator (PRBG) based on chaotic logistic maps. Three logistic maps are combined in the algorithmic process, and a block of 32 random bits is produced at each iteration. The binary64 double precision format is used according to the IEEE 754-2008 standard for floating-point arithmetic. This generator provides a considerable improvement of an existing generator in the literature. Rigorous statistical analyses are carefully conducted to evaluate the quality and the robustness of the PRBG. The obtained results showed the relevance of the proposed generator, which is suitable even for real-time applications.Downloads
Issue
Section
License
I assign to Informatica, An International Journal of Computing and Informatics ("Journal") the copyright in the manuscript identified above and any additional material (figures, tables, illustrations, software or other information intended for publication) submitted as part of or as a supplement to the manuscript ("Paper") in all forms and media throughout the world, in all languages, for the full term of copyright, effective when and if the article is accepted for publication. This transfer includes the right to reproduce and/or to distribute the Paper to other journals or digital libraries in electronic and online forms and systems.
I understand that I retain the rights to use the pre-prints, off-prints, accepted manuscript and published journal Paper for personal use, scholarly purposes and internal institutional use.
In certain cases, I can ask for retaining the publishing rights of the Paper. The Journal can permit or deny the request for publishing rights, to which I fully agree.
I declare that the submitted Paper is original, has been written by the stated authors and has not been published elsewhere nor is currently being considered for publication by any other journal and will not be submitted for such review while under review by this Journal. The Paper contains no material that violates proprietary rights of any other person or entity. I have obtained written permission from copyright owners for any excerpts from copyrighted works that are included and have credited the sources in my article. I have informed the co-author(s) of the terms of this publishing agreement.
Copyright © Slovenian Society Informatika



