Simulation for Dynamic Patients Scheduling based on Many Objective Optimization and Coordinator
DOI:
https://doi.org/10.31449/inf.v48i1.5256Abstract
Problem načrtovanja sprejema pacientov (PASP) vključuje načrtovanje pacientovega sprejema, lokacije in časa v bolnišnici, da se dosežejo določeni cilji glede kakovosti storitev in stroškov, zaradi česar je problem kombinatorične optimizacije z več cilji in NP-težke narave. Poleg tega se PASP uporablja v dinamičnih scenarijih, kjer se pričakuje, da bodo pacienti prispeli v bolnišnice zaporedno, kar zahteva dinamično ravnanje z optimizacijo. Ob upoštevanju obeh vidikov, optimizacije in dinamičnega upoštevanja, predlagamo simulacijo za dinamično razporejanje pacientov, ki temelji na optimizaciji z več cilji, oknu in koordinatorju. Vloga optimizacije z več cilji je obravnavanje številnih mehkih omejitev in zagotavljanje nabora nedominiranih rešitev koordinatorju. Vloga okenca je zbiranje novoprispelih pacientov in predhodno nepotrjenih pacientov z namenom posredovanja koordinatorju. Nazadnje, vloga koordinatorja je, da iz okna izloči podmnožico pacientov in jih posreduje algoritmu za optimizacijo. Po drugi strani pa je koordinator odgovoren tudi za izbiro ene od neprevladujočih rešitev, da jo aktivira v bolnišnici in odloča o nepotrjenih bolnikih, da jih vstavi v okno za naslednji krog. Vrednotenje simulatorja in primerjava med več optimizacijskimi algoritmi kažeta superiornost NSGA-III glede na pokritost nabora in vrednosti mehkih omejitev. Zato je obravnavanje PASP kot dinamične optimizacije z več cilji koristna rešitev. NSGA-II je zagotovil 0,96 odstotka prevlade nad NSGA-II in 100-odstotni odstotek prevlade vseh drugih algoritmovReferences
References
I. Papanicolas, L. R. Woskie, and A. K. Jha, "Health care spending in the United States and other high-income countries," Jama, vol. 319, no. 10, pp. 1024-1039, 2018.
N. Fares, R. S. Sherratt, and I. H. Elhajj, "Directing and orienting ICT healthcare solutions to address the needs of the aging population," in Healthcare, 2021, vol. 9, no. 2, p. 147: MDPI.
J. Meehan, L. Menzies, and R. Michaelides, "The long shadow of public policy; Barriers to a value-based approach in healthcare procurement," Journal of Purchasing Supply Management, vol. 23, no. 4, pp. 229-241, 2017.
R. Guido, V. Solina, and D. Conforti, "Offline patient admission scheduling problems," in International Conference on Optimization and Decision Science, 2017, pp. 129-137: Springer.
A. N. Mahmed and M. Kahar, "Window-Based Multi-Objective Optimization for Dynamic Patient Scheduling with Problem-Specific Operators," Computers, vol. 11, no. 5, p. 63, 2022.
C. Taramasco, B. Crawford, R. Soto, E. M. Cortés-Toro, and R. Olivares, "A new metaheuristic based on vapor-liquid equilibrium for solving a new patient bed assignment problem," Expert Systems with Applications, vol. 158, p. 113506, 2020.
R. Guido, M. C. Groccia, and D. Conforti, "An efficient matheuristic for offline patient-to-bed assignment problems," European Journal of Operational Research, vol. 268, no. 2, pp. 486-503, 2018.
K. Hussain, M. N. M. Salleh, S. Cheng, and Y. Shi, "Metaheuristic research: a comprehensive survey," Artificial Intelligence Review, vol. 52, no. 4, pp. 2191-2233, 2019.
R. Alizadeh, J. Rezaeian, M. Abedi, and R. Chiong, "A modified genetic algorithm for non-emergency outpatient appointment scheduling with highly demanded medical services considering patient priorities," Computers Industrial Engineering, vol. 139, p. 106106, 2020.
K. Dorgham, I. Nouaouri, H. Ben-Romdhane, and S. Krichen, "A hybrid simulated annealing approach for the patient bed assignment problem," Procedia Computer Science, vol. 159, pp. 408-417, 2019.
A. Hammouri, "A modified biogeography-based optimization algorithm with guided bed selection mechanism for patient admission scheduling problems," Journal of King Saud University-Computer Information Sciences, 2020.
J. Luo, Q. Liu, Y. Yang, X. Li, M.-r. Chen, and W. Cao, "An artificial bee colony algorithm for multi-objective optimisation," Applied Soft Computing, vol. 50, pp. 235-251, 2017.
D. Wang, D. Tan, and L. Liu, "Particle swarm optimization algorithm: an overview," Soft Computing, vol. 22, no. 2, pp. 387-408, 2018.
R. Tanabe and H. Ishibuchi, "An easy-to-use real-world multi-objective optimization problem suite," Applied Soft Computing, vol. 89, p. 106078, 2020.
H. R. Maier, S. Razavi, Z. Kapelan, L. S. Matott, J. Kasprzyk, and B. A. Tolson, "Introductory overview: Optimization using evolutionary algorithms and other metaheuristics," Environmental modelling
software, vol. 114, pp. 195-213, 2019.
P. Demeester, W. Souffriau, P. De Causmaecker, and G. V. Berghe, "A hybrid tabu search algorithm for automatically assigning patients to beds," Artificial Intelligence in Medicine, vol. 48, no. 1, pp. 61-70, 2010.
A. M. Turhan and B. Bilgen, "Mixed integer programming based heuristics for the Patient Admission Scheduling problem," Computers Operations Research, vol. 80, pp. 38-49, 2017.
B. Bilgin, P. Demeester, M. Misir, W. Vancroonenburg, and G. V. Berghe, "One hyper-heuristic approach to two timetabling problems in health care," Journal of Heuristics, vol. 18, no. 3, pp. 401-434, 2012.
S. Kifah and S. Abdullah, "An adaptive non-linear great deluge algorithm for the patient-admission problem," Information Sciences, vol. 295, pp. 573-585, 2015.
Y.-H. Zhu, T. A. Toffolo, W. Vancroonenburg, and G. V. Berghe, "Compatibility of short and long term objectives for dynamic patient admission scheduling," Computers Operations Research, vol. 104, pp. 98-112, 2019.
M. Rezaeiahari and M. T. Khasawneh, "Simulation optimization approach for patient scheduling at destination medical centers," Expert Systems with Applications, vol. 140, p. 112881, 2020.
A. K. Abera, M. M. O’Reilly, M. Fackrell, B. R. Holland, and M. Heydar, "On the decision support model for the patient admission scheduling problem with random arrivals and departures: A solution approach," Stochastic Models, vol. 36, no. 2, pp. 312-336, 2020.
B. Tang, Z. Zhu, H.-S. Shin, A. Tsourdos, and J. Luo, "A framework for multi-objective optimisation based on a new self-adaptive particle swarm optimisation algorithm," Information Sciences, vol. 420, pp. 364-385, 2017.
C. Seren, "A hybrid jumping particle swarm optimization method for high dimensional unconstrained discrete problems," in 2011 IEEE Congress of Evolutionary Computation (CEC), 2011, pp. 1649-1656: IEEE.
Q. Lu, X. Zhu, D. Wei, K. Bai, J. Gao, and R. Zhang, "Multi-phase and integrated multi-objective cyclic operating room scheduling based on an improved NSGA-II approach," Symmetry, vol. 11, no. 5, p. 599, 2019.
A. Arram and M. Ayob, "A novel multi-parent order crossover in genetic algorithm for combinatorial optimization problems," Computers Industrial Engineering, vol. 133, pp. 267-274, 2019.
S. Ceschia and A. Schaerf, "Dynamic patient admission scheduling with operating room constraints, flexible horizons, and patient delays," Journal of Scheduling, vol. 19, no. 4, pp. 377-389, 2016.
B. Bilgin, P. Demeester, M. Misir, W. Vancroonenburg, and G. V. Berghe, "One hyper-heuristic approach to two timetabling problems in health care," Journal of Heuristics, vol. 18, no. 3, pp. 401-434, 2012.
S. Kifah and S. Abdullah, "An adaptive non-linear great deluge algorithm for the patient-admission problem," Information Sciences, vol. 295, pp. 573-585, 2015.
Y.-H. Zhu, T. A. Toffolo, W. Vancroonenburg, and G. V. Berghe, "Compatibility of short and long term objectives for dynamic patient admission scheduling," Computers Operations Research for Health Care, vol. 104, pp. 98-112, 2019.
M. Rezaeiahari and M. T. Khasawneh, "Simulation optimization approach for patient scheduling at destination medical centers," Expert Systems with Applications, vol. 140, p. 112881, 2020.
S. Ceschia and A. Schaerf, "Local search and lower bounds for the patient admission scheduling problem," Computers Operations Research for Health Care, vol. 38, no. 10, pp. 1452-1463, 2011.
S. Ceschia and A. Schaerf, "Modeling and solving the dynamic patient admission scheduling problem under uncertainty," Artificial intelligence in medicine, vol. 56, no. 3, pp. 199-205, 2012.
Downloads
Published
How to Cite
Issue
Section
License
I assign to Informatica, An International Journal of Computing and Informatics ("Journal") the copyright in the manuscript identified above and any additional material (figures, tables, illustrations, software or other information intended for publication) submitted as part of or as a supplement to the manuscript ("Paper") in all forms and media throughout the world, in all languages, for the full term of copyright, effective when and if the article is accepted for publication. This transfer includes the right to reproduce and/or to distribute the Paper to other journals or digital libraries in electronic and online forms and systems.
I understand that I retain the rights to use the pre-prints, off-prints, accepted manuscript and published journal Paper for personal use, scholarly purposes and internal institutional use.
In certain cases, I can ask for retaining the publishing rights of the Paper. The Journal can permit or deny the request for publishing rights, to which I fully agree.
I declare that the submitted Paper is original, has been written by the stated authors and has not been published elsewhere nor is currently being considered for publication by any other journal and will not be submitted for such review while under review by this Journal. The Paper contains no material that violates proprietary rights of any other person or entity. I have obtained written permission from copyright owners for any excerpts from copyrighted works that are included and have credited the sources in my article. I have informed the co-author(s) of the terms of this publishing agreement.
Copyright © Slovenian Society Informatika