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The Patient Admission Scheduling Problem (PASP) involves scheduling patient admissions, hospital time 

locations, to achieve certain quality of service and cost objectives, making it a multi-objective 

combinatorial optimization problem and NP-hard in nature. In addition, PASP is used in dynamic 

scenarios where patients are expected to arrive at the hospital sequentially, which requires dynamic 

optimization handling. Taking both aspects, optimization and dynamic utilization, we propose a 

simulation for dynamic patient scheduling based on multi-objective optimization, window, and 

coordinator. The role of multi-objective optimization deals with many soft constraints and providing a set 

of non-dominated solution coordinators. The role of the counter is to collect newly arrived patients and 

previously unconfirmed patients with the aim of passing them on to the coordinator. Finally, the role of 

the coordinator is to select a subset of patients from the window and pass them to the optimization 

algorithm. On the other hand, the coordinator is also responsible for those selected from the non-dominant 

solutions to activate it in the hospital and decide on unconfirmed employees to place them in the window 

for the next round. Simulator evaluation and comparison between several optimization algorithms show 

the superiority of NSGA-III in terms of set criticality and soft constraint values. Therefore, it treats PASP 

as a multi-objective dynamic optimization of a useful solution. NSGA-II is guaranteed 0.96 percent 

dominance over NSGA-II and 100 percent dominance of all other algorithms. 

Povzetek: Gre za dinamično razporejanje pacientov z uporabo večciljne optimizacije, ki obravnava 

kompleksni problem razporejanja sprejema pacientov v bolnišnico, izboljšuje kakovost storitev in 

učinkovitost z uporabo NSGA-II algoritma za optimizacijo. 

 

1 Introduction  
In the 21st century, life expectancy doubled globally, 

and new health delivery models and technologies are 

predicted to considerably extend healthy life expectancy 

[1]. The demand for healthcare services has risen in recent 

decades because of an ageing population and 

advancements in preventative care [2], yet the healthcare 

sector is still under pressure. to reduce costs and raise 

standards of treatment. The healthcare industry has mainly 

shifted its focus to a value-based strategy to offset a 

potential increase in clinical medicine expenditures that 

are not accompanied by appreciable improvements in 

health outcomes [3]. In this situation, achieving the 

greatest results at the lowest cost is the main objective, 

making effective resource management and patient 

happiness crucial but competing goals that health care 

administrators must meet. Practical concerns including 

admissions control, process design, aggregate planning, 

capacity distribution, and appointment scheduling must be 

taken care of in order to address this obstacle. The Patient 

Admission Scheduling Problem is one of these issues 

(PASP). Patients’ admission scheduling problem (PASP) 

is how to plan patient’s admission and their location and  

 

time in the hospital in order to meet certain quality of  

service and cost objectives [4]. It is considered as complex  

combinatorial optimization process with many constraints 

[5]. This is because it involves allocating resources for 

patients according to the condition of the hospital and the 

condition of the patient in order to meet the satisfactory 

level of the patient within the time limit for scheduling.  

Choosing an appropriate room to allocate to patients while 

taking into account medical needs, patient demands, and 

hospital resource availability is the focus of the patient bed 

assignment problem (PBAP), a PASP sub-task [6]. It is 

considered as a paramount problem for hospitals and 

medical centers. PBAP is an NP-hard problem [7]. For 

solving PBAP, it is needed to create an autonomous 

system that receives patients requests online or through 

phone and automatically assign them to beds without the 

need of human intervention. A conceptual representation 

of this process is depicted in Figure 1 and the result is 

mapping patients to the best beds inside the rooms for 

meeting both the health and satisfaction requirements.  

Patient Scheduling is regarded as constrained 

combinatorial optimization problem with NP-hard nature. 

Adding the dynamic in terms of patient’s arrival and 

change of preference to the problem makes more complex. 
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In addition, the problem has a limitation in terms of 

capacity of the room which leads to a condition of over-

crowding that needs to be minimized. Another added 

complexity to the problem is the need to identify various 

information of the patients’ conditions, their special need 

and the criticality of their cases before performing the 

mapping. The process should be automated in order to 

facilitate the management of the hospitals and to increase 

the quality of service within the allocated cost.  

 
Figure 1: Conceptual representation of the process of 

automatic PBAP in hospitals. 

 
Meta-heuristic searching optimization algorithms are 

set of optimization algorithms with capability of solving 

complex optimization problem based on generating 

candidate solutions randomly and enabling an evolving of 

them based on heuristics [8]. The literature contains wide 

range of meta-heuristic optimization algorithms, some of 

them are inspired from biological phenomena such as 

genetic algorithm [9], others are inspired from physical 

phenomena such as simulation annealing [10]. In addition, 

there is numerous metaphors used for deriving meta-

heuristic algorithm such as ant colony [11], artificial bee 

colony [12], particle swarm optimization [13]…etc. 

Despite the type of the metaphor, we can classify the meta-

heuristic optimization algorithms into two main 

categories: single objective and multi-objective [14]. In 

the single objective, the algorithm aims at optimizing a 

formulated a single objective function from the problem 

definition while in the multi-objective, the algorithm aims 

at optimizing simultaneously multi-objective functions 

using the concept of Pareto domination. The latter type can 

be utilised to solve PBAP by treating soft-constraint 

violations as multi-objective functions that must be 

minimised during optimization [15]. A strategy for 

enabling the algorithm to take into account the dynamical 

nature of the problem must be developed before a multi-

objective meta-heuristic optimization algorithm may be 

used directly. In this article, we propose a simulation that 

extends the optimization with additional steps in order to 

enable dynamic scheduling for PBAP using multi-

objective optimization. In addition, we provide an 

algorithm for selecting one solution of the pareto front to 

use it for providing the allocation decision under two sets: 

confirmed allocated patients and non-confirmed allocated 

patients.  

The rest of the article is divided into the following 

sections. We present the contribution in section 2. Next, 

the literature survey is presented in section 3. Afterwards, 

a background is provided in section 4. In addition, we 

present the methodology in section 5. Next, experimental 

works and evaluation are provided. Lastly, the conclusion 

and future work are provided in section 7.  

2 Contribution  
The development of dynamic patient scheduling that 

supports many patient objectives is the ultimate purpose 

of this study. The contributions listed below are presented 

in this article.  

1. To the best of our knowledge, this article 

provides the first in terms of simulating 

arrival of patients to hospital and an 

algorithm for scheduling using multi-

objective optimization, solutions selection, 

and scheduler. 

2. The scheduling in this article avoids implicit 

constraint that causes greedy behavior by 

using the concept of non-confirmed patients. 

More specifically, it provides list of non-

confirmed patients which automatically 

feeds another list of confirmed patients when 

their scheduling day is within less than D 

days on one side and provides the remaining 

patients inside list of non-confirmed patients 

to a new call of optimization on the other 

side.  

3. This article enables dynamic multi-objective 

optimization through solution selection. 

More specifically, considering that multi-

objective optimization algorithm provides 

Pareto front which represents set of non-

dominated solutions, one solution is to be 

selected for enabling or scheduling. In order 

to do so, the algorithm performs solution 

selection using weighted summation of the 

objectives with respect to their 

corresponding preference.   

4. In order to distinguish between patients that 

are allowed for rescheduling from new 

arrived patients, we use variable length 

optimization (VLO). In VLO, different 

lengths of solutions are used where each 

solution allow for rescheduling of different 

sub-sets of the non-confirmed patients. 

3 Literature survey  
There are two subsections in the literature. The first is 

the patient admission scheduling literature, which is 

discussed in sub-section 2.1. The second is discussed in 

sub-section 2.2 and is about the application of multi-

objective optimization methods to scheduling problems. 

3.1 Patient admission scheduling  

In the work of [16] which has aimed at solving the 

problem of PAS based on offline perspective. His 

proposed combinatorial formulation of the optimization 

problem of PAS using integer linear programming and 
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proposed Tabu search algorithm for solving it. They aimed 

at finding the optimal bed assignments for elective 

patients based on pre-knowledge of the hospital 

departments, rooms capacity, beds availability, 

equipment, technical issues, and qualitative elements like 

the patient's choice for gender, age, and room 

compatibility. Their work has drawn criticism from a 

number of angles, including the impracticality of an 

offline solution given the dynamic nature of the issue, and 

considering optimizing a weighted average of the soft-

constraints which can cause sub-optimality due to the non-

convexity of the model or limit the choices to the decision 

maker due to providing only single optimal solution. In the 

work of [17], Fix-and-Relax (F&R) and Fix-and-Optimize 

(F&O) are techniques based on Mixed Integer 

Programming (MIP) that break down PAS problem 

instances into smaller chunks before optimising the 

smaller chunks. More specifically, iteratively improved 

Quick solutions produced by the F&R heuristic are fed 

into the F&O heuristic. Patient length of stay (LoS), room 

preference, admission date, specialty preference, age, as 

well as time decomposition taking different optimization 

window sizes, are the factors that have employed 

decompositions. Ceschia and Schaerf (2016) suggested a 

different formulation for the demester problem known as 

a dynamic patient-to-room assignment problem that 

helped reduce the number of decision variables, compute 

different lower bound values by omitting some 

constraints, and adapt simulated annealing to find the best 

solution. The work of [16] has also been improved by [18] 

by including local search moves into two tiers of heuristics 

or hyper-heuristics. The great deluge algorithm was used 

in this work as a component of the hyper-heuristic, but it 

was criticised in the work of [19] due to the linear decay 

rate of its deluge algorithm, which was improved to non-

linear adaptive decay rate using the same soft and hard 

constraints of demester [16] . The scheduling goals in the 

work  [20] were divided into short- and long-term goals, 

and periodic re-optimization was employed. Using 

column generation and Dantzig-Wolfe decomposition, the 

lower bounds are computed. A scheduling algorithm is 

used in the research of  [21] to schedule tourist travel to 

destination medical centres. The goals are to keep patients' 

preferred commencement days and flow times as close to 

real time as possible. They scheduled everything using a 

flow-shop system. Simulated annealing and tabu search 

were used with simulation for optimization. The 

simulation is based on discrete event simulation, which 

assesses the solution considering the admission day, 

admission time, and patient sequence as decision factors 

on each day. The current deterministic model created by 

[16] was modified in the work of [22] to become 

stochastic. To represent the arrivals and departures, they 

employed discrete phase type distribution and a Poisson 

distribution, respectively. Hence, their model has evolved 

from the previous deterministic one into a stochastic one. 

The work of [9] involved the modelling of appointment 

times that depend on both the needs of the patients and the 

speed factor of the doctors' performance. Their model is 

solved utilising a genetic algorithm for large-scale 

problems and a single solver for small-scale problems. 

Overall, the literature has addressed the PAS issue from a 

variety of angles and levels of practicality, including the 

addition of soft limits, the unpredictability of LoS, and the 

acceptance of urgent patients. However, the non-

domination component of the issue has not been addressed 

by any of the prior solutions. When dealing with the soft 

restrictions as separate objectives, the PAS problem is a 

multi-objective optimization problem. In this manner, By 

using the penalty concept, we give the decision-maker 

more options and reduce the disadvantage of the linear 

combination of soft constraints under the weighted 

average formula, taking into account that the latter has no 

application in the problem and the linear combination of 

constraints does not correspond to the real-world model. 

Table 1 presents an overview of the existing approaches 

of PAS in the literature with the key features and criticism 

and improvements.  Table 2 provides a summary of the 

various methods for patient bed scheduling. 

 

 

Table 1: Summary of patient admission scheduling (PAS) approaches in literature 
Reference Approach/Technique Key Features Criticisms/Improvements 

[9] Genetic Algorithm 
Appointment times based on patient 

needs and doctor performance 
Provides single solution  

[16] 
Integer Linear 
Programming & Tabu 

Search 

Offline solution, optimal bed 
assignments considering various 

constraints 

Criticized for impracticality in 
dynamic settings; limited by single 

optimal solution 

[17] 
Fix-and-Relax (F&R), 
Fix-and-Optimize (F&O) 

Decomposition of PAS problem, Mixed 
Integer Programming 

Subject to local minima because of 
decomposition  

[18] 
Hyper-heuristics & Great 

Deluge Algorithm 
Improved [16] by local search moves 

Criticized for linear decay rate in 

deluge algorithm 

[19] 
Non-linear Adaptive 
Decay Rate 

Improved [18] using non-linear adaptive 
decay rate 

Not handling dynamic environment  

[20] 

Column Generation & 

Dantzig-Wolfe 

Decomposition 

Short- and long-term scheduling goals, 
periodic re-optimization 

Not handling dynamic environment 

[21] 

Flow-shop System, 

Simulated Annealing & 

Tabu Search 

Scheduling for tourist travel to medical 
centres 

Local search capability only  

[22] Stochastic Model 
Discrete phase type distribution, Poisson 
distribution 

Evolution from deterministic to 
stochastic model 

[23] 
Dynamic patient-to-room 

assignment 

Reduced decision variables, simulated 

annealing 

It does not have global search 

capability  
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Table 1: Overview of the various approaches for patient, bed scheduling. 

Author  
Hard 

constraints  

Soft-

constraint  

Objective 

function  
Algorithm  Limitation  

[16] 8  5  Weighted average  Tabu Search  
Sub-optimality due to weighted average and non-

convexity  

[24] 2 4  Weighted average Simulated annealing  Weighted average causes sub-optimal result  

[25] 3 6  Weighted sum  Hyper-heuristic  Weighted average causes sub-optimal result  

[26] 5 3  Weighted sum  deluge algorithm  Weighted average causes sub-optimal result  

[27] - 8 Weighted sum  
Mixed Integer Programming 

(MIP)  
more computational time  

[28] 12 2 Weighted sum  

tabu search (TS) and 

simulated annealing (SA) 

with simulation  

 Not including resource utilization, age and 
gender  

[9] 15  4 Weighted sum  Genetic algorithm  
Concern about convergence, sub-optimality due 
to weighted sum 

3.2  Multi-objective optimization for 

scheduling 

Various scheduling issues and applications have been 

solved using the multi-objective particle swarm 

optimization technique. Modified multiple-objective 

particle swarm optimization (MMOPSO), which was 

proposed by Ghasemi, Khalili-Damghani, et al. in 2019, 

was used to solve a mixed-integer mathematical 

programming model for the earthquake reaction phase.  

Two local search operations are included in the improved 

multi objective particle swarm optimization. The model 

considers two target functions: lowering the total cost of 

facility location and allocation, as well as decreasing the 

amount of supply deficit. This method beat out the two 

well-known non-dominated sorting genetic algorithms, 

NSGA-II and epsilon constraint method, in tests. In the 

study of Adhikari and Srirama (2019), a modified 

variation of multi-objective particle swarm optimization 

was used to optimise the problem of container-based 

scheduling for the Internet of Things in a cloud context. 

Energy usage and computing time are the two 

optimization goals that the writers have considered. To 

assess the quality of the solution, the weighted sum 

approach-based fitness function is used to cope with the 

multi-objective elements. 

The acceleration component of multi-objective 

particle swarm optimization changed the convergence 

speed. Considering that the typical PSO looks for the best 

possible solution by combining the individual and current 

global bests of the particles the acceleration PSO (APSO) 

approach, which is a modification of the PSO algorithm 

based on its velocity and displacement, was developed in 

(Yang, Deb et al. 2011) due to the limits of convergence 

speed and accuracy. The APSO approach lowers 

unpredictability as iterations continue by using the 

individuals that perform best globally. In the study by 

Fang and Popole (2019), which generated neighborhoods 

for each particle and used the self-organizing mapping 

(SOM) approach to select the neighborhood best solution, 

the particle swarm optimization was modified once again 

to enhance its searching performance. Analytical research 

of the convergence of self-adaptive PSO (APSO) with the 

purpose of presenting a parameter selection method that 

ensures the convergence was carried out in the work of 

[29]. Using the suggested SAPSO, they created the 

SAMOPSO MOO framework, which is based on SAPSO. 

They also create an external repository that stores the non-

dominated solutions in order to obtain a well-distributed 

Pareto front. The proposed MOO system then uses a cyclic 

sorting mechanism to update the external repository while 

integrating elitist-preserving principles. Particle swarm 

optimization has been modified in the work of [30] to 

tackle large dimensional discrete variables. To enhance 

the performance, the method included stretching and 

changing neighborhood search techniques. Jumping PSO, 

variable neighborhood search, and the stretching approach 

are all included in their whole integrated model. Non-

dominated sorting genetic algorithm was slightly adjusted 

and used to solve the scheduling of surgeries in operating 

rooms in the work of [31]. This work shows that the 

modification of the searching algorithm is not limited to 

particle swarm optimization method. The resolved model 

is a resource allocation methodology that primarily 

concentrates on allocating operating rooms (ORs) for each 

surgical specialty (SS). The initialization of the population 

and the selection using the tournament comprised the first 

part of the change to NSGA-II. An idea for a multi-patent 

crossover genetic algorithm appeared in the publication 

[32]. When it functions for n parents, their definition of 

the multi-parent operator is to define the cross operator 

with n string division points. Overall, scheduling problems 

with a multi-objective nature may be solved well using 

meta-heuristic search optimization techniques. However, 

the bulk of methods for resolving issues with a limited 

number of objectives employed algorithms. Given that 

changing the PAS problem to a mulz3ti-objective problem 

entails a large number of objectives derived from soft 

constraints, in order to ensure convergence behavior, the 

addition of a large number of objectives necessitates 

particular adjustment to the searching criteria. Aside from 

that We can observe that the scheduling programme made 

use of a meta-heuristic multi-objective optimization 

approach that included particle and genetic based 

searches. Additionally, the bulk of them require special 

operator designs depending on the application's nature and 

cannot be used directly. Table 2 lists all of the papers that 

addressed the PAS/NRP dilemma. It is observed from 

Table 1 that the literature contains many multi-objective 

metaheuristic algorithms, however, all of them have dealt 

with the multi-objective as single objective based on 
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weighted average of the objectives which subject to local 

minima. To handle this, it is needed to propose non-

dominated sorting based multi-objective optimization. On 

the other side, we observe from Table 2 that the number 

of soft-constraints ranges between 5 to 10 which makes 

the problem as candidate many objective optimizations 

instead of traditional multi-objective optimization when 

we consider the soft-constraints as objectives of the 

problem.  

 

Table 2: Pseudocode of the process of selecting non-

dominated solutions based on the process of NSGA-III. 
Input: 
- H structured reference points Zs or supplied aspiration 
- points Za, 
- parent population Pt 
Output: 
- P(t+1) 
Start 
1: St=∅,i=1 
2: Qt = Recombination+Mutation(Pt) 

3: Rt = Pt ∪ Qt 
4: (F1,F2,...)=Non-dominated-sort(Rt) 
5: repeat 
6:     (St = St ∪ Fi and i = i + 1 
7: until|St|≥N) 
8: Last front to be included: Fl = Fi 
9: if|St|=N    then 
10:    P(t+1) = St, break; 
11: else 
12:    P = all previous fronts 
13:    Points to be chosen from Fl: K = N − |Pt+1| 
14:    Normalize objectives and create reference set Zr: 

Normalize(fn,St,Zr,Zs,Za) 
15:    Associate each member s of St with a reference point: 
[π(s),d(s)] =Associate(St,Zr) % π(s): closest reference point, d: 
distance between s and π(s) 

16:   Compute niche count of reference point 
17:   Choose K members one at a time from Fl to construct P(t+1): 
Niching(K, ρj, π, d, Zr, Fl, P(t+1)) 

18: End If 
End 

 

 

Table 3: Review of articles worked on solving PAS problem 

Author  Application  Hard constraints  
Soft 

constraints  
Optimization method  Type  

Demester 

[16] 
PBAS  8 5 Hybrid Tabu search with heuristics  Static  

Sara [33] PBAS  2 10 Tabu local search  Dynamic  

Saif [19] PBAS  5 6 Adaptive deluge algorithm  Static  

 
Table 2: Overview of multi-objective optimization in scheduling problems 

Reference Method/Technique Key Features Application Limitations/Improvements 

Ghasemi, 

Khalili-

Damghani, et 

al. (2019) 

MMOPSO Mixed-integer model, 

focus on cost and 

supply deficit 

Earthquake 

response 

Superior to NSGA-II and 

epsilon constraint method 

Adhikari and 

Srirama (2019) 

Modified PSO Optimizes energy use 

and computing time 

IoT scheduling 

in cloud 

Weighted sum approach for 

multi-objective handling 

Yang, Deb et 

al. (2011) 

APSO Improved 

convergence through 

individual and global 

bests 

General 

optimization 

Reduces unpredictability, 

addresses speed and accuracy 

limits 

Fang and 

Popole (2019) 

Modified PSO with 

SOM 

Neighborhood 

generation, 

neighborhood best 

solution selection 

PSO 

performance 

enhancement 

Provides only single solution  

[23] SAPSO & 

SAMOPSO 

Self-adaptive PSO, 

external repository 

for Pareto front 

Multi-objective 

optimization 

framework 

Cyclic sorting, elitist-

preserving principles 

[24] Modified PSO Addresses large 

dimensional discrete 

variables 

General 

optimization 

Uses stretching, neighborhood 

search techniques 

[25] Modified NSGA-II Resource allocation 

in operating room 

scheduling 

Surgery 

scheduling 

Focuses on allocating ORs to 

surgical specialties 

[26] Multi-parent 

crossover genetic 

algorithm 

Multi-parent operator 

for n parents 

Genetic 

algorithm 

variation 

Does not have non-domination 

sorting perspective  
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4 Research gap  
It is observed that in the domain of Patient Admission 

Scheduling (PAS) and similar scheduling challenges, most 

studies predominantly utilize techniques that manage 

multiple objectives through a weighted average approach. 

While this method is widely accepted, it is often prone to 

leading to local minima, thereby potentially yielding 

suboptimal solutions. 

Furthermore, the literature demonstrates a significant 

absence of non-dominated sorting approaches in multi-

objective optimization for scheduling problems. Non-

dominated sorting plays a crucial role in identifying truly 

optimal solutions across a range of objectives, without 

unfairly favoring any single one. This aspect of 

optimization is particularly important in scenarios where a 

balanced consideration of multiple factors is essential. 

Additionally, the current methodologies in the field 

largely concentrate on traditional multi-objective 

optimization. However, in scenarios such as PAS, where 

the number of soft constraints is considerable, ranging 

between 5 to 10, the issue becomes more aligned with 

many-objective optimization. This transition from multi-

objective to many-objective optimization is not 

sufficiently addressed in the existing research, indicating 

a gap in the approach to handling complex scheduling 

problems with a multitude of objectives. 

5 Methodology   
This section presents the developed methodology for 

our dynamic patient’s admission scheduling. It starts with 

presenting the pre-processing in sub-section 6.1. Next, the 

window- based NSGA-III in sub-section 6.2. Next, we 

present the selection of confirmed and non-confirmed 

patients in sub-section 6.3. Afterwards, the variable length 

optimization of window- based NSGA-III is given in sub-

section 6.4. Lastly, the evaluation metrics are provided in 

sub-section 6.5.  

1.1 Problem formulation  

Assuming that we have a hospital combined of set of 

departments 𝐷 under various specialisms 𝑆 and each 

department contains set of rooms under the department 𝑅. 

In addition, we assume that we have an arrival rate of 

patients to the hospital where each patient requires serving 

it within certain number of nights inside a preferred 

department and by type of specialism. In addition, each 

room has certain capacity for accommodating pre-defined 

number patients at once. Our problem is about allocating 

the patients inside the rooms within period of time 

(number of nights) using solution vector 𝑥 with 

minimizing the violation of soft-constraints (𝑓1, 𝑓2, … 𝑓𝑛) 

and preventing the violation of hard-constraint 

(ℎ1, ℎ2, … ℎ𝑚, 𝑔1, 𝑔2, … 𝑔𝑘).  

 

 

 

 

 

The solution is combined of set of components that 

defines the allocation of each patient at each night for the 

selected room. In other words, the solutions length equals 

to the number of patients, and each component inside the 

solutions is a tuple of tree values, namely, the index of the 

bed that is assigned to the patient, the starting night, and 

the ending night. This problem is formulated as multi-

objective optimization problem as:  

𝑥 = 𝑎𝑟𝑔𝑚𝑖𝑛 (𝑓1, 𝑓2, … 𝑓𝑛) (1) 

𝑠. 𝑡.  𝑔1 = 0, 𝑔2 = 0, …,𝑔𝑘 = 0  

ℎ1 ≥ 0 ,ℎ2 ≥ 0, …ℎ𝑚 ≥ 0  

 

Hence, the problem is formulated mathematically as 

multi-objective optimization problem with many objective 

functions, many hard and soft-constraint. According to 

[17], this is regarded as NP-hard problem.  

Assuming that the outcome of the optimization after 

running at time 𝑡 it is 𝑃𝐹𝑡. We use the penalties of the soft-

constraint to provide ranking of the solutions based on the 

overall cost in a descending manner. This is done using 

this Equation (2)  

 

𝑦𝑗 = ∑ 𝑤𝑖𝑓𝑖(𝑥𝑗)
𝑁𝑆𝐶
𝑖=1   (2) 

 

Where: 

𝑥𝑗 is a solution selected from the Pareto Front  

𝑤𝑖  is the penalty that is associated with the soft-

constraint 𝑖  
𝑦𝑗 is the overall cost of the solution 𝑥𝑗  

Next, we select the solution that has the lowest cost as 

the activated solution. From the activated solution, the 

algorithm selects the patients that are scheduled within 

three days as confirmed patients and the patients that are 

scheduled later than three days as non-confirmed patients.  

The optimization problem is repeated in different days 

with different number of patients. The changing of the 

number of patients implies changing the length of the 

solution space. The algorithm will work on allocating 

selected patients of the non-confirmed list of patients. 

1.2 Simulator  

The simulator is presented in Figure 2. The newly 

arrived patients are fed into the scheduler which is 

responsible on receiving a solution from the solution 

selection block, and providing it to the list of non-

confirmed patients. The list of non-confirmed patients 

provides its non-confirmed patients to a new call of the 

optimization algorithm and provides the patients that have 

their scheduled day within less than D days to the 

confirmed patients list through sub-block named confirm. 

The optimization algorithm operates on different lengths 

of solutions because of the change number of patients, 

consequently, the algorithm is named as variable length 

non-dominated sorting genetic algorithm.  
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Figure 2: Simulation of dynamic patients scheduling 

using multi-objective optimization. 
 

The following assumptions are inherent in the 

simulation model for the dynamic scheduling of patients 

in a hospital environment: 

1. Hospital Structure: The hospital is composed of a 

set of departments  𝐷 each specializing in various 

fields 𝑆, and containing a set of rooms 𝑅.  

2. Room Capacity: Each room within a department 

can accommodate a pre-defined number of patients 

simultaneously. 

3. Patient Arrival Rate: There is a specific rate at 

which patients arrive at the hospital, and each 

patient requires a certain number of nights within a 

preferred department and specialization. 

4. Service Duration: Each patient is to be served 

within a specified number of nights. 

5. Dynamic Solution Space: The optimization 

problem is dynamic, with the solution space 

changing in length due to the varying number of 

patients on different days, affecting the allocation 

of patients from the non-confirmed list. 

6. Time-Dependent Optimization Outcome: The 

outcome of the optimization process at time 𝑡 is 

denoted as 𝑃𝐹𝑡 indicating a time-dependent Pareto 

Front. 

1.3 General algorithm  

The algorithm of the scheduling combines the 

optimization with additional steps in order to enable 

dynamic scheduling. Firstly, there is a pre-processing step 

with the goal of preparing prior calculation of the various 

soft-constraints values. This enables shorter execution 

time of the optimization throughout the time interval of 

scheduling. Secondly, the new arrived patients are entered 

to queue according to their arriving time and the queue has 

a certain length so when the queue if full again the 

optimization is conducted and the new patients are located 

and the non-confirmed patients are allowed to be re-

located. Thirdly, an algorithm for selecting one solution 

from the pareto front is enabled after running the 

optimization. This algorithm uses a weighted average 

formula of the soft-constraint according to a penalty 

entered from the user. Fourthly, the solution is activated 

and patients from the queue are decomposed into two sets: 

the first one is the confirmed patients and the second one 

is the non-confirmed patients. The difference between the 

two sets is that the confirmed patients are the patients that 

are scheduled with three days from the current date while 

the non-confirmed patients are the patients that are 

scheduled later than three days as long as their scheduling 

does not exceed the permitted period. A pseudocode of the 

general algorithm is given in Table 4.  

 

 
Table 4: Pseudocode of the general scheduling algorithm 

using queue, multi-objective optimization and solution 

selection algorithm. 
Input: 
- w: Weights of the soft-constraints penalties 
- Q: Queue used for storing new patients before re-running the 

MOO optimization 
- timeInterval: Time interval for scheduling 
- It: Number of iterations for the MOO optimization 
- popSize: Size of the population in the optimization 
- Rooms: Room matrix with information about supported 

departments, specialisms, and capacities 
Output: 
- schDecision: Scheduling decision, assigning each patient to a 

room 
Start: 
1: Pre-calculate soft-constraints using preProcessing (Rooms, w) 
2: For each time interval in timeInterval 
3:    While Q is not full 
4:       Add new patient to Q 
5:    End while 
6:       Run MOO optimization using Optimization (popSize, It) 
7:       Select solution using selectSolution (paretoFront, w, soft-

constraints) 
8:        Divide patients into confirmed and non-confirmed using 

assignFrom (Q, solution) 
9:        Remove confirmed patients from Q and add them to 

schDecision 
10:        Add non-confirmed patients to Q 
11: End for 
12: Return schDecision 
End 

 

1.4    Pre-processing  

The goal of the pre-processing is to execute pre-

calculation of the possible values of soft-constraints 

penalties in advanced according to all possible values of 

violations. As an example, For the gender constraint 

violation, assuming that we have 𝑛 patients inside a room, 

it is possible to have mixed gender violation. This 

violation takes certain value if the majority are female and 

different value if the majority are males. Another example 

is the violation of the room capacity constraint, which 

takes different value according to the number of patients 

that exceed the room capacity. Assuming that the set of 

patients is denoted as 𝑃 = {𝑝𝑖}, 𝑖 = 1, …𝑛 and the set of 

rooms is denoted as 𝑅 = {𝑟𝑗}, 𝑗 = 1,… 𝑚 where 𝑛 ≫ 𝑚. 

However, the patients arrive based on an arrival rate 𝜆. 

Instead of calculating the soft-constraint based on the 

patient using function 𝑓(𝑝𝑖 , 𝑟𝑗), we map the patient to a 

class or category according to his gender, needs or 

preference 𝐶𝑝(𝑝𝑖), and the room to a class or category 

according to its occupied patients, department and 

supported specialism 𝐶𝑟(𝑟𝑖) and we apply pre-calculated 

function for providing the soft-constraint or violation 

𝑓(𝐶𝑝(𝑝𝑖), 𝐶𝑟(𝑟𝑖)). Considering that the number of values 

of  𝐶𝑝(𝑝𝑖) and 𝐶𝑟(𝑟𝑖)is limited then the generating the of 
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the corresponding soft-constraint is more efficient by 

using 𝑓(𝐶𝑝(𝑝𝑖), 𝐶𝑟(𝑟𝑖)) instead of 𝑓(𝑝𝑖 , 𝑟𝑗). 

1.5 Initialization algorithm  

The initialization algorithm is in charge of creating 

the primary arrangement interior the window, which 

signifies the number of days which will handle a specific 

number of unused understanding candidates. S_pre, which 

stands for the arrangement decided based on the past 

window, and Information, which stands for the 

information that comprises numerous sorts of data, 

essentially a list of rooms, an overhauled list of patients, 

and the fittingness of the patients for the rooms, are the 

inputs for this strategy. The arrangement after 

optimization based on the current window and upgraded 

persistent list is demonstrated by the yield, S current. The 

strategy cycles through the List-new-patients and begins a 

variable called Room with the esteem of -1, showing that 

a appropriate room has not however been found for this 

quiet. A deferred persistent or a patient who wasn't 

deferred is the persistent in address. Within the previous 

situation, it decides whether or not the room from the 

earlier arrangement is suitable by checking it. The quiet is 

put in this room since it is appropriate and open. 

Something else, in case there are any open rooms, a 

irregular room is chosen for this persistent. The 

understanding is designated to his room from a earlier 

arrangement or at arbitrary within the occasion that no 

open rooms are accessible, and it receives a delay, giving 

the hail delay a esteem of 1. 

 

Table 5: The generation of the initial solution. 
Input 

- 𝑆𝑝𝑟𝑒  // previous solution  

- 𝐷𝑎𝑡𝑎   //includes rooms and patients and Room-Patient-Suitability 

- 𝑊 // the current window of performing the new optimization  

Output  

- 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡   // initial solution for current window 

Start Algorithm 

1: for patient in List of patients from solution 

2:    Room  -1 //initialization  

3:    if the patient is delayed (not new) 
4:       if initial room still has space AND this room is suited for 

this patient 

5:           𝑅𝑜𝑜𝑚  𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑑𝑎𝑦 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑟𝑜𝑜𝑚 

6:      end if  

7:    end if 
8:    while not (Room is suited and has space) and there is more 

Rooms 

9:        𝑅𝑜𝑜𝑚  𝑟𝑎𝑛𝑑𝑜𝑚 (𝑅𝑜𝑜𝑚𝑠) 

10:  end while 

11:  if Room not equal to −1  
12:      Assign patient to Room. 

13:      Set his delay value to zero. 

14:  else    // the case the room is still −1  
15:      assign patient to Room     // if it's delayed, we can use a not 

suited room. 
16:     set his delay value to one. 

17:  end if 

18: end for 
End Algorithm 

1.6  Crossover  

Crossover's function is to create a new generation 

from an existing one, which promotes exploitation, while 

mutation's function is to tweak an existing solution in 

some way, which promotes exploration. In genetics, both 

crossover and mutation exist. The algorithm for the 

crossover is shown in Table 6. The input consists of the 

entire population and IN, which denotes the proportion of 

the population where crossover is carried out. The elites, 

who stand for the generation's best answers, are typically 

subject to the crossover. 

The population after crossover is the output. The 

algorithm chooses two random crossover solutions for 

each crossover iteration and creates a random fraction of 

patients to shift their rooms and assign them to 

DeltaRooms from each crossover solution. Additionally, 

it creates a random sample of patients and sends them to 

DeltaDelay in order to adjust their delay. Then it makes 

the necessary changes to the initially chosen two parents 

and includes the off-springs in the new generation. 

 
Table 6: The crossover operation for the genetic design. 

Input: 

- current generation,  
Output:  

- new generation 
Start Algorithm 

1: Choose a random portion of the generation to apply crossover to. 

2: for counter IN portion size 
3:    Choose two parents x,y from the current generation 

4:    DeltaRooms  random portion of patients to change their rooms from 

solution x to solution y. 
5:    DeltaDelay  random portion of patients to change their delay from 

solution x to solution y. 

6:     Child 1=change (x, y, DeltaRooms, DeltaDelay) 
7:     Child 2=change (y, x, DeltaRooms, DeltaDelay) 

8:     Add child 1 and child 2 to new the generation  

end for. 
End Algorithm 

1.7  Mutation  

For the mutation, the pseudocode is presented in 

Table 7. The input of the algorithm is the individual or 

solution that will be selected for mutation, the mutation 

rate which indicates to how many patients in the 

Individual receptivity to change and acceptance rate ap 

determine whether or not we adopt the dominating 

solution following mutation. This step is taken to make it 

possible to avoid local minima. 

After mutation, the output is altered individually. As 

can be seen from the pseudocode, the algorithm chooses 

at random either the type 1 or type 2 neighborhood type 

before performing the mutation on the chosen person. The 

algorithm then verifies domination and accepts the 

solution if it is the dominant one. It accepts non-

dominance with a probability known as the acceptance 

rate. The objective is to make the algorithm more 

explorable. 

 

Table 7: The mutation operation for the genetic design. 
Input:  

- Solution  
- Mutation rate: how many patients in the individual to change. 

- ap: acceptance rate 

Output:  
- new Solution with mutated individuals  

Start Algorithm 

1: select random neighborhood  

2:  𝑛𝑒𝑤 −  𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛  𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 (Solution, Mutation rate) 

3: If new- Solution Dominates the current Solution  
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4:    𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛  𝑛𝑒𝑤 − 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛  
5: Else 

6: Generate a probability to allow bad Solutions  

7: if 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 >  𝑎𝑝  

8:    current Solution  new- Solution  

9: End for 

End Algorithm 

 

Neighborhood 1 or Neighborhood 2—shown in 

Tables 8 and 9 respectively—are the bases for the 

neighborhood operation. While neighborhood 2 focuses 

on changing the delay of random patients randomly, 

neighborhood 1 focuses on changing the location or room 

of random patients at random. In order to provide the 

searching method more latitude, both of them must be 

employed in the mutation. 

In Table 8, the mutation rate and the current solution.   

 

Table 8: Pseudocode of neighborhood 1 operator used in 

the mutation. 
Input:  
- Mutation rate   

- Current Solution  
Output:  

- new Solution after the change  

Start Algorithm 

1: While Mutation rate   

2:    patient  random (current Solution patients)  

3:    new-room  random (current Solution rooms) 
4:    if the new-room is suited for this patient  

5:       set the patients room to the new-room. 

6:    end if 
7: end while 

End Algorithm 

 

Table 9: Pseudocode of neighborhood 2 operator used in 

the mutation. 
Input:  
- Mutation rate   

- Current Solution  

- Window  
Output:  

- new Solution after the change  

Start Algorithm 
1: while Mutation rate   

2:    patient  random (current individual patients)  
3:    new-delay  random (1  0)  

4:    if the new-delay + day is in the patients staying range 

5:       set the patients delay to the new-delay. 
6:    end if 

7: end while 

End Algorithm 

1.8 Solution sorting  

For sorting solutions, we use domination operators. The 

only domination operator is non-dominated sorting which 

has the role of sorting the solutions into ranks, the first 

rank includes the non-dominated solutions over the entire 

population. The second rank includes the solutions that are 

dominated by the first rank and dominating other ranks 

and so on. The algorithm is divided into a main. The 

algorithm of solutions ranking is tasked with orchestrating 

the entire sorting process, where fronts are initialized, and 

each solution in the population is systematically evaluated 

and ranked. The algorithm commences by initializing 

separate fronts, each intended to group solutions of 

equivalent non-domination levels. The core of the 

algorithm involves a thorough evaluation of each solution 

in the population to determine its dominance relationships. 

Solutions are compared pairwise, leading to the 

identification of those dominated by and dominating each 

solution. The first front is populated with solutions that are 

not dominated by any other, representing the optimal 

trade-offs. Subsequent fronts are iteratively constructed, 

where each front consists of solutions only dominated by 

those in the preceding front. This iterative process 

continues until all solutions are assigned to a rank, 

effectively segregating the population into distinct layers 

of non-dominated sets. The outcome is a hierarchically 

structured set of solutions, providing a clear perspective 

on their relative quality and guiding the selection process 

in the evolutionary algorithm. 

 

Table 10: Pseudocode of solutions ranking  
Inputs: 

• Population P: A set of N solutions. 

Outputs: 

• Ranked Fronts: Sets of solutions sorted into different ranks based on 

non-domination. 

Start Algorithm 

1. Initialize Fronts: 
      Create empty lists for each front (Front 1, Front 2, ...). 

2. Evaluate and Rank Each Solution: 

      for each solution p in Population P: 
         Initialize dominatedByP (list of solutions dominated by p) as an 

empty list. 

         Initialize dominatesP (count of solutions that dominate p) as zero. 
         for each solution q in Population P: 

            if p dominates q, add q to dominatedByP. 

               if q dominates p, increment dominatesP. 
                  if dominatesP is zero (i.e., p is not dominated by any other 

solution): 
                     Assign p to Front 1. 

3. Construct Subsequent Fronts: 

         Initialize Current Front as Front 1. 

         while Current Front is not empty: 

            Initialize Next Front as an empty list. 

            for each solution p in Current Front: 
               for each solution q in dominatedByP of p: 

                  Decrement dominatesP counter for q. 

                  if dominatesP for q becomes zero: 
                     Assign q to Next Front. 

                     Replace Current Front with Next Front. 

4. Return the Ranked Fronts: 

       The fronts are ranked such that Front 1 contains solutions not 

dominated by any other, and each subsequent front contains 

solutions only dominated by those in the previous front. 
End Algorithm 

procedure and two sub-procedures, each fulfilling distinct 

roles 

1.9 Selection of solution  

The result of the optimization when it is applied is a 

Pareto front which represents set of non-dominated 

solutions. Thus, we need an algorithm that selects solution 

out of the Pareto front for enabling it in the scheduling. 

Assuming that the weights of the soft-constraints or the 

objectives are represented by a vector 𝑤 = [𝑤1 𝑤2 … 𝑤𝑚] 
where 𝑤1 + 𝑤2 …+𝑤𝑚 = 1. The solutions will be ranked 

based on linear production between the weights and the 

values of the objective function. In other words, each 

solution 𝑥𝑖 from the pareto front will be mapped to one 

cost value based on the Equation (3) 

𝑥 = 𝑎𝑟𝑔𝑚𝑖𝑛 (𝑓1, 𝑓2, … 𝑓𝑛) (3) 

𝑓(𝑥𝑖) = 𝑤𝑦𝑖
𝑇  
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where  

𝑤 = [𝑤1 𝑤2 …𝑤𝑚]  

𝑦 =

[
 
 
 
 
𝑦𝑖,1

𝑦𝑖,2

𝑦𝑖,𝑚]
 
 
 
 

   

 

After that, the solutions are sorted in an ascending 

manner according to the cost values or 𝑓(𝑥𝑖) and the first 

solution or the solution that has the least cost value is 

selected and enabled. The result of enabling the solutions 

is two set of patients: the first one is confirmed set 𝑆𝑐𝑜𝑛𝑓  

and it includes patients that are scheduled within three 

days and the second one is the non-confirmed set 

𝑆𝑛𝑜𝑛−𝑐𝑜𝑛𝑓  and it includes patients that are scheduled later 

than three days. For 𝑆𝑐𝑜𝑛𝑓 , we remove them from the 

queue so they will not be used again for re-scheduling 

while for 𝑆𝑛𝑜𝑛−𝑐𝑜𝑛𝑓  we keep them in the queue so they are 

allowed for rescheduling in the next execution of the 

algorithm.  

1.10 Variable length optimization of 

Window Based NSGA-III  

In order to distinguish between patients that are allowed 

for rescheduling from new arrived patients, we use 

variable length optimization (VLO). In VLO, different 

lengths of solutions are used where each solution allow 

for rescheduling of different sub-sets of the non-

confirmed patients. The goal of this is to conduct 

optimization with giving more importance to 

rescheduling of later scheduled patients and less 

importance of earlier scheduling patients. 

The optimization in this case, will generate different 

number of solutions according to the number of patients 

where the solutions that contains earlier scheduled 

patients are less than the solutions of later scheduled 

patients. We call this algorithm variable length NSGA-III 

or VL-NSGA-III.  

1.11 Evaluation metrics  

The evaluation metrics that were employed to assess our 

created strategy are provided in this subsection. It has 

broken down. 

• Set coverage:  

This metric compares the Pareto sets 𝑃𝑠1 and 𝑃𝑠2 as 

follows  

𝑐(𝑃𝑠1, 𝑃𝑠2) =
|{𝑦 ∈ 𝑃𝑠2 ∣ ∃𝑥 ∈ 𝑃𝑠1: 𝑥 > 𝑦}|

|𝑃𝑠2|
 (4) 

C is equal to the number of solutions in Ps2 divided 

by the proportion of non-dominated solutions in Ps2 that 

are dominated by non-dominated solutions in P s1. 

Therefore, it is crucial to reduce the value of C (X, P s) for 

all pareto sets X while assessing a set Ps. 

 

 

 

• Hyper-Volume 

The HV-metric has been used widely in evolutionary 

multi- objective optimization to evaluate the performance 

of search algorithms. It computes the volume of the 

dominated portion of the objective space relative to a 

worst solution (reference point); this region is the union of 

the hypercube whose diagonal is the distance between the 

reference point and a solution x from the Pareto set PS. 

Higher values of this measure indicates to more desirable 

solutions. HV is given by the Equation (5).  

𝐻𝑉 =  volume (⋃  𝑥∈𝑃𝑠
 HyperCube (𝑥))  (5) 

6 Experimental works And 

evaluation 
The assessment is a simulator-based assessment. For 

this stage, we utilized the simulator's data, which covered 

a total of 36 days. The data has similar layout to the data 

provided in the work of [34]. We contrasted NSGA-3, 

which incorporates numerous objective optimizations 

based on our created operators, with the following 

benchmarks: particle swarm optimization (PSO), multi-

objective particle swarm optimization (MOPSO), and 

objective decomposition particle swarm optimization 

(ODPSO). The set coverage, hyper-volume, and 

convergence curves were produced. 

1.12 Set-Coverage  

The results of the set-coverage reveal the superiority 

of NSGA-III over the benchmarks. More specifically, 

NSGA-III has accomplished full domination over PSO 

which is single optimization algorithm, full domination 

over both MOPSO and ODPSO which are multi-objective 

algorithms, and 0.66 domination over NSGA-II. On the 

other side, non-of the algorithms of ODPSO, MOPSO, and 

PSO were capable of dominating NSGA-III. However, 

NSGA-II has provided 0.96 percentage of domination 

over NSGA-II.  

 
Figure 3: Set coverage of our developed WB approach 

and it is comparison with the benchmarks. 
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Hyper-volume 

The results of the hyper-volume are presented in 

Figure 4. We find that the hyper-volume generated from 

NSAG-III and NSGA-II were the highest compared with 

the other approaches 

 
Figure 4: Hyper-volume of our developed algorithm and 

its comparison with the benchmarks. 

1.13 Convergence curve 

Considering that the optimization is reapplied in every 

day, the convergence curve is plotted to show the 

effectiveness of the optimization. The convergence curve 

is plotted based on fitness value equals to the average of 

the objectives.  For plotting the convergence curve, we use 

calculate a fitness value as weighted average of the soft 

constraints based on the penalties of them. In Figure 5, we 

present the convergence of days 1, 2, 3 and the last day 36.  

 

 

 

 

 

Figure 5: The convergence curve of NSGA-III of some 

of the optimization days. 
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Figure 6:The boxplot of soft-constraints of NSGA-III of 

some of the optimization days. 

1.14 Soft-constraints-values 

In addition to the set-coverage, hyper-volume and 

convergence curve, we present the soft-constraints of each 

day Pareto front as boxplot diagram in Figure 6. The soft-

constraints are encoded according to the symbols provided 

in Table 10.  

 

Table 11: Coding for the soft-constraints used in the 

optimization. 

Code Meaning 

SC1 Missing Room Equipment 

SC2 Unsatisfied Room Preference 

SC3 Partial Specialty Level 

SC4 Unsatisfied Gender Policy 

SC5 Over -Crowd Risk 

SC6 Delay 

SC7 Transfer 

The visualization shows a similar performance 

between the various days in the relative relation between 

the soft-constraints with changing in the values obtained 

from one day to another. 

This is interpreted by the effect of the dynamic in the 

performance that changes from one day to another. 

However, associating this graph with the convergence 

graph given earlier shows that the algorithm was capable 

of handling the dynamics and brining the cost to a lower 

value.  

 

1.15 Robustness evaluation scenarios  

For evaluating our algorithm more comprehensively, 

we conducted a robustness evaluation by increasing the 

arrival rate of patients in the range of 15, 20, 25, and 30 

patients per day. For each scenario, we generated the 

values of set coverage and hyper-volume. Observing the 

results of the set coverage as depicted in figure – confirms 

our finding of the superiority of of NSGA-III over other 

benchmarks. This is concluded from the domination of 

NSGA-III compared with the other optimization 

algorithms. It is found that a full domination was obtained 

when the arrival rate was 15. This is associated with high 

values of hyper-volume and competitive to other methods. 

Hence, it is found that increasing the arrival rates of 

patients has not only maintained the superiority but also 

the diversity of decision making.   
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Figure 7:Set coverage and hyper-volume for different 

values of arrival rates ranging from 15 until 30 

7 Conclusion and future work 
Dynamic patient scheduling for hospital admission is 

challenging combinatorial problem with dynamical nature 

and many soft-constraints. An effective approach for 

solving it is using many-objective optimization MOO 

algorithms. However, direct application of them is not 

feasible due to the static nature of MOO algorithms. 

Hence, handling this application requires incorporation of 

other assisting blocks. 

In this article, we have developed a novel simulator 

for dynamic scheduling of patients with window and 

coordinator. The role of the window is to accumulate both 

newly arrived patients and non-o patients. 

The coordinator's duties include choosing a subset of 

patients from the window, placing them in the 

optimization block on one side, and choosing a non-

dominated solution, activating it in the hospital on the 

other. A rigorous 36-day evaluation using PSO, ODPSO, 

MOPSO, NSGA-II, and NSGA-III has shown that NSGA-

III is superior based on set-coverage and soft-constraints. 

The practical implications of the findings from this 

proposed solution have been deemed to hold significant 

promise for enhancing the efficiency of hospitals and 

healthcare systems. Improved resource utilization, 

reduced patient wait times, and elevated overall care 
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quality could be achieved through the implementation of 

a dynamic scheduling system based on multi-objective 

optimization. Despite these benefits, challenges such as 

the integration with existing healthcare systems, staff 

training, and the need for robust data privacy and security 

measures have been identified as potential obstacles. 

Furthermore, the scalability and customization required 

for the system to be successfully adopted across various 

healthcare settings present additional complexities. A 

gradual, phased approach to implementation, involving 

pilot testing and stakeholder engagement, can be 

suggested to mitigate these challenges and facilitate 

smoother adoption. 

Future research is to explore the adaptability of the 

methodology used in the healthcare scheduling system to 

other complex scheduling problems across different 

domains. The manufacturing sector, transportation and 

logistics, energy management, education, event 

management, and urban planning have been identified as 

areas where similar optimization techniques could be 

applied. Each domain presents its unique set of challenges 

and constraints, necessitating the customization of the 

optimization framework. The extension of this research 

into varied domains is expected to account for specific 

requirements and challenges while considering the effects 

on human behavior, regulatory standards, and economic 

considerations. 
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