Decision Tree based Data Reconstruction for Privacy Preserving Classification Rule Mining
Abstract
Data sharing among the organizations is a general activity in several areas like business promotion and marketing. Useful and interesting patterns can be identified with data collaboration. But, some of the sensitive patterns that are supposed to be kept private may be disclosed and such disclosure of sensitive patterns may effects the profits of the organizations that own the data. Hence the rules which are sensitive must be concealed prior to sharing the data. Concealing of sensitive patterns can be handled by modifying or reconstructing the database before sharing with others. However, to make the reconstructed database usable for data analysts the utility or usability of the database is to be maximized. Hence, both privacy and usability are to be balanced. A novel method is proposed to conceal the classification rules which are sensitive by reconstructing a new database. Initially, classification rules identified from the database are made accessible to the owner of the data to spot out the sensitive rules that are to be concealed. In the next, from the non-sensitive rules of the database, a decision tree will be constructed based on the classifying capability of the rules, from which a new database will be reconstructed. Finally, the released reconstructed database to the analysts reveals only non-sensitive classification rules. Empirical studies proved that the proposed algorithm preserves the privacy effectively. In addition to that utility of the classification model on the reconstructed database was also be preserved.Downloads
Published
How to Cite
Issue
Section
License
I assign to Informatica, An International Journal of Computing and Informatics ("Journal") the copyright in the manuscript identified above and any additional material (figures, tables, illustrations, software or other information intended for publication) submitted as part of or as a supplement to the manuscript ("Paper") in all forms and media throughout the world, in all languages, for the full term of copyright, effective when and if the article is accepted for publication. This transfer includes the right to reproduce and/or to distribute the Paper to other journals or digital libraries in electronic and online forms and systems.
I understand that I retain the rights to use the pre-prints, off-prints, accepted manuscript and published journal Paper for personal use, scholarly purposes and internal institutional use.
In certain cases, I can ask for retaining the publishing rights of the Paper. The Journal can permit or deny the request for publishing rights, to which I fully agree.
I declare that the submitted Paper is original, has been written by the stated authors and has not been published elsewhere nor is currently being considered for publication by any other journal and will not be submitted for such review while under review by this Journal. The Paper contains no material that violates proprietary rights of any other person or entity. I have obtained written permission from copyright owners for any excerpts from copyrighted works that are included and have credited the sources in my article. I have informed the co-author(s) of the terms of this publishing agreement.
Copyright © Slovenian Society Informatika