Image Processing Procedures Based on Multi-Quadratic Dynamic Programming
Abstract
This paper summarizes the doctoral dissertation [1] of the author. The main subject of this thesis is the study and development of a method for edge preserving in image smoothing, which is developed based on multi-quadratic dynamic programming procedure for maximum a posteriori probability estimation. Additionally, a new non-convex type regularization is proposed, with ability to flexibly set a priori preferences, using different penalties for various ranges of differences between the values of adjacent image elements. Procedures of image processing, as presented here, consider heterogeneities and discontinuities in the source data, while retaining high computational efficiency of the dynamic programming procedure and Kalman filter-interpolator. Comparative study shows, that proposed algorithms has high accuracy to speed ratio, especially in the case of high-resolution images.References
Pham Cong Thang (2016). Parametric Image Processing Procedures Based on Multi-Quadratic Dynamic Programming. Ph.D. dissertation, Tula State University, Russia, 140 pages.
Mottl V., et al. (1998). Optimization techniques on pixel neighborhood graphs for image processing. Graph-Based Representations in Pattern Recognition. Computing, Supplement 12. Springer–Verlag/Wien, pp. 135-145.
Nikolova M., Michael K., and Tam C.P. (2010). Fast Nonconvex Nonsmooth Minimization Methods for Image Restoration and Reconstruction. IEEE Transactions on Image Processing, Vol. 19 (12), pp. 3073-3088.
Pham C. T. and Kopylov A. V. (2015). Multi-Quadratic Dynamic Programming Procedure of Edge–Preserving Denoising for Medical Images. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-5/W6, рр. 101-06.
Kopylov A., et al. (2010). A Signal Processing Algorithm Based on Parametric Dynamic Programming. Lecture Notes in Computer Science, Vol. 6134, pp. 280-86.
Kopylov A.V. (2005). Parametric dynamic programming procedures for edge preserving in smoothing of signals and images. Pattern recognition and image analysis, Vol. 15, pp. 227-229.
Dvoenko S. D. (2009). Clustering Sets Based on Distances and Proximities between Its Elements. Sib. Zh. Ind. Mat., Vol. 12 (1), pp. 61–73.
Downloads
Published
How to Cite
Issue
Section
License
I assign to Informatica, An International Journal of Computing and Informatics ("Journal") the copyright in the manuscript identified above and any additional material (figures, tables, illustrations, software or other information intended for publication) submitted as part of or as a supplement to the manuscript ("Paper") in all forms and media throughout the world, in all languages, for the full term of copyright, effective when and if the article is accepted for publication. This transfer includes the right to reproduce and/or to distribute the Paper to other journals or digital libraries in electronic and online forms and systems.
I understand that I retain the rights to use the pre-prints, off-prints, accepted manuscript and published journal Paper for personal use, scholarly purposes and internal institutional use.
In certain cases, I can ask for retaining the publishing rights of the Paper. The Journal can permit or deny the request for publishing rights, to which I fully agree.
I declare that the submitted Paper is original, has been written by the stated authors and has not been published elsewhere nor is currently being considered for publication by any other journal and will not be submitted for such review while under review by this Journal. The Paper contains no material that violates proprietary rights of any other person or entity. I have obtained written permission from copyright owners for any excerpts from copyrighted works that are included and have credited the sources in my article. I have informed the co-author(s) of the terms of this publishing agreement.
Copyright © Slovenian Society Informatika