Design and Implementation of Advanced Bayesian Networks with Comparative Probability
Abstract
This paper summarizes the major findings, methods, and background theories of the doctoral thesis in [1]. The aim of the thesis has been to enhance the current procedures of designing decision support systems (DSSs) used by decision-makers to comprehend the current situation better in cases where the available amount of information required to make an informed decision is limited. The research resulted in a new innovated theory that combines the philosophical comparative approach to probability, the frequency interpretation of probability, dynamic Bayesian networks and the expected utility theory. It enables engineers to write self-learning algorithms that use example of behaviours to model situations, evaluate and make decisions, diagnose problems, and/or find the most probable consequences in real-time. The new theory was particularly applied to the problems of validating equipment readings in an aircraft, flight data analysis, prediction of passengers behaviours, and real-time monitoring and prediction of patients’ states in intensive care units (ICU). The algorithm was able to pinpoint the faulty equipment from between a group of equipment giving false fault indications, an important improvement over the current fault detection procedures. On the ICU application side, the algorithm was able to predict those patients with high mortality risk about 24 hours before they actually deceased.References
Ali Hilal Ali, “Design and Implementation of Advanced Bayesian Networks with Comparative Probability” Ph.D. dissertation, Lancaster University, 2012.
Russel, S., and Norving, P. “Artificial Intelligence: A Modern Approach”. New Jersey: Pearson Education, Inc., 2010.
Downloads
Published
How to Cite
Issue
Section
License
I assign to Informatica, An International Journal of Computing and Informatics ("Journal") the copyright in the manuscript identified above and any additional material (figures, tables, illustrations, software or other information intended for publication) submitted as part of or as a supplement to the manuscript ("Paper") in all forms and media throughout the world, in all languages, for the full term of copyright, effective when and if the article is accepted for publication. This transfer includes the right to reproduce and/or to distribute the Paper to other journals or digital libraries in electronic and online forms and systems.
I understand that I retain the rights to use the pre-prints, off-prints, accepted manuscript and published journal Paper for personal use, scholarly purposes and internal institutional use.
In certain cases, I can ask for retaining the publishing rights of the Paper. The Journal can permit or deny the request for publishing rights, to which I fully agree.
I declare that the submitted Paper is original, has been written by the stated authors and has not been published elsewhere nor is currently being considered for publication by any other journal and will not be submitted for such review while under review by this Journal. The Paper contains no material that violates proprietary rights of any other person or entity. I have obtained written permission from copyright owners for any excerpts from copyrighted works that are included and have credited the sources in my article. I have informed the co-author(s) of the terms of this publishing agreement.
Copyright © Slovenian Society Informatika