Log Data Mining of User Purchase Behavior Based on Distributed Intelligent Optimization Algorithm
DOI:
https://doi.org/10.31449/inf.v48i20.6779Abstract
As the development of e-commerce becomes more and more intelligent, higher requirements have been put forward for the algorithms controlling e-commerce operations. However, the current e-commerce operation is not timely and accurate enough to update the purchase data and statistics, resulting in cost consumption and revenue is not proportional, and can not accurately meet the user favorite. To speed up the collection of user purchase behavior data and improve the revenue of e-commerce operations, the study introduces adaptive degree values based on a distributed computing framework combined with a topological structure. The computing framework is used to speed up the calculation and convergence of user data, and the topology is responsible for classifying the data in the dataset and calculating the optimal location. In the classification accuracy experiment, the accuracy of the improved algorithm was above 94% and up to 98%. In the stability experiment, compared with other algorithms, the stability of the improved algorithm was improved by 81.2%. In the simulation experiment, the overlap between the noise value of beauty search 2000-2700 and the noise value of clothing matching 2000-2500 in the shopping platform was large. Therefore, there was a correlation between the user's search for clothing collocation and the beauty search. In summary, the performance of the improved algorithm is superior in terms of stability, accuracy and application error. Therefore, the study of the improved algorithm has a better application for data mining of user purchase behavior.Downloads
Published
How to Cite
Issue
Section
License
I assign to Informatica, An International Journal of Computing and Informatics ("Journal") the copyright in the manuscript identified above and any additional material (figures, tables, illustrations, software or other information intended for publication) submitted as part of or as a supplement to the manuscript ("Paper") in all forms and media throughout the world, in all languages, for the full term of copyright, effective when and if the article is accepted for publication. This transfer includes the right to reproduce and/or to distribute the Paper to other journals or digital libraries in electronic and online forms and systems.
I understand that I retain the rights to use the pre-prints, off-prints, accepted manuscript and published journal Paper for personal use, scholarly purposes and internal institutional use.
In certain cases, I can ask for retaining the publishing rights of the Paper. The Journal can permit or deny the request for publishing rights, to which I fully agree.
I declare that the submitted Paper is original, has been written by the stated authors and has not been published elsewhere nor is currently being considered for publication by any other journal and will not be submitted for such review while under review by this Journal. The Paper contains no material that violates proprietary rights of any other person or entity. I have obtained written permission from copyright owners for any excerpts from copyrighted works that are included and have credited the sources in my article. I have informed the co-author(s) of the terms of this publishing agreement.
Copyright © Slovenian Society Informatika