Financial Investment Optimization by Integrating Multifactors and GA Improved UCB Algorithm
DOI:
https://doi.org/10.31449/inf.v48i13.6171Abstract
In complex financial markets, controlling risks while achieving high returns is a challenge for investors. Faced with market uncertainty and complexity, traditional investment strategies often struggle to meet the needs of modern investors. To address this issue, a new investment portfolio strategy was proposed by integrating the multifactor model with the upper confidence bound. Meanwhile, genetic algorithm was used to optimize and improve the weight allocation of the investment portfolio based on the upper confidence bound. These results confirmed that the cumulative return of GA-UCB was 187.4%, which was 68.3% higher than the cumulative return of 119.1% on the Shanghai and Shenzhen 300 indices, respectively. The maximum drawdown rate of GA-UCB was 13.5%, a decrease of 4.8% compared to the Shanghai and Shenzhen 300. In summary, the research on financial investment optimization by integrating multifactors and GA improved UCB effectively improves returns while controlling risks, providing a new perspective and tool for financial market investors.Downloads
Published
How to Cite
Issue
Section
License
I assign to Informatica, An International Journal of Computing and Informatics ("Journal") the copyright in the manuscript identified above and any additional material (figures, tables, illustrations, software or other information intended for publication) submitted as part of or as a supplement to the manuscript ("Paper") in all forms and media throughout the world, in all languages, for the full term of copyright, effective when and if the article is accepted for publication. This transfer includes the right to reproduce and/or to distribute the Paper to other journals or digital libraries in electronic and online forms and systems.
I understand that I retain the rights to use the pre-prints, off-prints, accepted manuscript and published journal Paper for personal use, scholarly purposes and internal institutional use.
In certain cases, I can ask for retaining the publishing rights of the Paper. The Journal can permit or deny the request for publishing rights, to which I fully agree.
I declare that the submitted Paper is original, has been written by the stated authors and has not been published elsewhere nor is currently being considered for publication by any other journal and will not be submitted for such review while under review by this Journal. The Paper contains no material that violates proprietary rights of any other person or entity. I have obtained written permission from copyright owners for any excerpts from copyrighted works that are included and have credited the sources in my article. I have informed the co-author(s) of the terms of this publishing agreement.
Copyright © Slovenian Society Informatika