News Dissemination Information Model and User Privacy Protection Method Based on BP Neural Network
DOI:
https://doi.org/10.31449/inf.v48i11.5997Abstract
Online social networks are widely used as the main way of news dissemination, but the dynamic information dissemination process in online social networks often requires more work to predict and control user privacy accurately. A novel dissemination information model and user privacy protection method based on BP neural network is proposed. First, in constructing a neural network, it is necessary to calculate the network weight vector for the training sample set. Secondly, to ensure that the private information of the neural network learning model is not leaked, this paper proposes to allocate the weight vector to all participants so that each participant has part of the private value of the weight vector. In addition, a secure multi-party computing protocol is used to ensure the safety of the intermediate and final weights of the neural network. Ensure the rationality of information dissemination and the security of user privacy. Experimental results show that the proposed algorithm has more advantages in execution time and accuracy error than traditional non-privacy protection algorithms.Downloads
Published
How to Cite
Issue
Section
License
I assign to Informatica, An International Journal of Computing and Informatics ("Journal") the copyright in the manuscript identified above and any additional material (figures, tables, illustrations, software or other information intended for publication) submitted as part of or as a supplement to the manuscript ("Paper") in all forms and media throughout the world, in all languages, for the full term of copyright, effective when and if the article is accepted for publication. This transfer includes the right to reproduce and/or to distribute the Paper to other journals or digital libraries in electronic and online forms and systems.
I understand that I retain the rights to use the pre-prints, off-prints, accepted manuscript and published journal Paper for personal use, scholarly purposes and internal institutional use.
In certain cases, I can ask for retaining the publishing rights of the Paper. The Journal can permit or deny the request for publishing rights, to which I fully agree.
I declare that the submitted Paper is original, has been written by the stated authors and has not been published elsewhere nor is currently being considered for publication by any other journal and will not be submitted for such review while under review by this Journal. The Paper contains no material that violates proprietary rights of any other person or entity. I have obtained written permission from copyright owners for any excerpts from copyrighted works that are included and have credited the sources in my article. I have informed the co-author(s) of the terms of this publishing agreement.
Copyright © Slovenian Society Informatika