A Study on the Recognition of Typical Movement Characteristics of Ethic Folk Dances Based on Movement Data
DOI:
https://doi.org/10.31449/inf.v48i5.5406Abstract
Ethnic folk dances possess significant cultural value and require documentation and preservation. This article begins by recognizing the distinctive movement characteristics found in ethnic folk dances. It then collects skeletal motion data of the human body while executing typical movements in ethnic folk dances using Kinect V2. Two primary features, namely angle and relative distance, were extracted. Deep learning was combined with the attention mechanism to design a three-layer BiLSTM-attention method. Experiments were conducted using the typical movement feature set of ethnic folk dance and the MSR-Action3D dataset. It was found that the three-layer BiLSTM method exhibited superior performance when compared to other configurations of BiLSTM layer. Additionally, the results derived from the BiLSTM model surpassed those achieved with RNN or LSTM models. Furthermore, the inclusion of the attention layer led to a noteworthy 0.0234 increase in the ACC value compared to models without it. The processed features demonstrated enhanced performance compared to the raw skeletal motion data. ACC values exceeding 0.95 were achieved for the recognition of typical movement features in various types of ethic folk dances. Notably, the ACC value of the three-layer BiLSTM method for the MSR-Action3D dataset was 0.9767, which was superior to the other methods.Downloads
Published
How to Cite
Issue
Section
License
I assign to Informatica, An International Journal of Computing and Informatics ("Journal") the copyright in the manuscript identified above and any additional material (figures, tables, illustrations, software or other information intended for publication) submitted as part of or as a supplement to the manuscript ("Paper") in all forms and media throughout the world, in all languages, for the full term of copyright, effective when and if the article is accepted for publication. This transfer includes the right to reproduce and/or to distribute the Paper to other journals or digital libraries in electronic and online forms and systems.
I understand that I retain the rights to use the pre-prints, off-prints, accepted manuscript and published journal Paper for personal use, scholarly purposes and internal institutional use.
In certain cases, I can ask for retaining the publishing rights of the Paper. The Journal can permit or deny the request for publishing rights, to which I fully agree.
I declare that the submitted Paper is original, has been written by the stated authors and has not been published elsewhere nor is currently being considered for publication by any other journal and will not be submitted for such review while under review by this Journal. The Paper contains no material that violates proprietary rights of any other person or entity. I have obtained written permission from copyright owners for any excerpts from copyrighted works that are included and have credited the sources in my article. I have informed the co-author(s) of the terms of this publishing agreement.
Copyright © Slovenian Society Informatika