Dynamic Unstructured Pruning Neural Network Image Super-resolution Reconstruction
DOI:
https://doi.org/10.31449/inf.v48i7.5332Abstract
Many deep learning-based image super-resolution reconstruction algorithms improve the overall feature expression ability of a network by extending the depth of the network. However, excessively extending the depth of the network causes the model to be over-parameterized and complicated. Furthermore, redundant parameters increase the instability of feature expression. To address this issue, based on the unstructured pruning algorithm, the weight parameters are changed and the balanced learning strategy is used, this paper proposes a neural network unstructured pruning algorithm which is suitable for image super-resolution reconstruction tasks, called the unstructured pruning algorithm. Without changing the network structure and increasing the computational complexity, the overall feature expression ability of the network is improved by searching for an optimal yet sparse sub-network of the original network, which excludes the influence of redundant parameters and maximizes the ability of capturing fine-grained and richer features with limited parameters. The experimental results based on Set5, Set14 and BSD100 test sets show that, compared with the original network model and unstructured pruning algorithm, the PSNR and SSIM of the reconstructed images obtained by Dynamic unstructured pruning algorithm are improved, and they have richer detail features and clearer overall and local contours.Downloads
Published
How to Cite
Issue
Section
License
I assign to Informatica, An International Journal of Computing and Informatics ("Journal") the copyright in the manuscript identified above and any additional material (figures, tables, illustrations, software or other information intended for publication) submitted as part of or as a supplement to the manuscript ("Paper") in all forms and media throughout the world, in all languages, for the full term of copyright, effective when and if the article is accepted for publication. This transfer includes the right to reproduce and/or to distribute the Paper to other journals or digital libraries in electronic and online forms and systems.
I understand that I retain the rights to use the pre-prints, off-prints, accepted manuscript and published journal Paper for personal use, scholarly purposes and internal institutional use.
In certain cases, I can ask for retaining the publishing rights of the Paper. The Journal can permit or deny the request for publishing rights, to which I fully agree.
I declare that the submitted Paper is original, has been written by the stated authors and has not been published elsewhere nor is currently being considered for publication by any other journal and will not be submitted for such review while under review by this Journal. The Paper contains no material that violates proprietary rights of any other person or entity. I have obtained written permission from copyright owners for any excerpts from copyrighted works that are included and have credited the sources in my article. I have informed the co-author(s) of the terms of this publishing agreement.
Copyright © Slovenian Society Informatika