Application of Gradient Boosting Regression Model in Intelligent Distribution of E-commerce
DOI:
https://doi.org/10.31449/inf.v48i5.5299Abstract
With the fast growth of e-commerce in the nation in the latest days, the quantity of e-commerce purchases has continued to increase, and people's methods of consuming have also transformed. Digital shopping has lately been more practical and effective due to advancements in Internet innovation, particularly wireless connections, and 5G mobile connectivity technologies. Digital shopping has brought about the peak of globalization and has grown to be an essential sector of economic globalization. On the other hand, since e-commerce has grown rapidly, several issues have occurred. One of those is logistics distribution, which has a significant impact on e-commerce growth and is a crucial link in the chain that determines consumer fulfillment. Distribution in e-commerce pertains to the procedure of sending goods or commodities to the final customer after an online transaction. With e-commerce, efficient distribution is essential to ensure that goods are delivered to consumers promptly and effectively. This fosters user retention and encourages repeat purchases. It is necessary to provide an efficient model for the efficient distribution of e-commerce. For the effective intelligent distribution of e-commerce platforms, we thus proposed the gradient boosting regression model (GBRM). The efficiency of the suggested system was assessed and contrasted with methods that were previously utilized. The results shows that the suggested GBRM model significantly enhanced the distribution of e-commerce.Downloads
Published
How to Cite
Issue
Section
License
I assign to Informatica, An International Journal of Computing and Informatics ("Journal") the copyright in the manuscript identified above and any additional material (figures, tables, illustrations, software or other information intended for publication) submitted as part of or as a supplement to the manuscript ("Paper") in all forms and media throughout the world, in all languages, for the full term of copyright, effective when and if the article is accepted for publication. This transfer includes the right to reproduce and/or to distribute the Paper to other journals or digital libraries in electronic and online forms and systems.
I understand that I retain the rights to use the pre-prints, off-prints, accepted manuscript and published journal Paper for personal use, scholarly purposes and internal institutional use.
In certain cases, I can ask for retaining the publishing rights of the Paper. The Journal can permit or deny the request for publishing rights, to which I fully agree.
I declare that the submitted Paper is original, has been written by the stated authors and has not been published elsewhere nor is currently being considered for publication by any other journal and will not be submitted for such review while under review by this Journal. The Paper contains no material that violates proprietary rights of any other person or entity. I have obtained written permission from copyright owners for any excerpts from copyrighted works that are included and have credited the sources in my article. I have informed the co-author(s) of the terms of this publishing agreement.
Copyright © Slovenian Society Informatika