Research on financial risk prediction and prevention for small and medium-sized enterprises - based on a neural network
DOI:
https://doi.org/10.31449/inf.v47i8.4884Abstract
For companies, timely and accurate risk prediction plays an an essential role in sustaining business growth. In this paper, firstly, the financial risk of small and medium-sized enterprises (SMEs) was simply analyzed. Some financial indicators were selected, and then some of the indicators were eliminated by Mann-Whitney U test and Pearson test. For risk prediction, an improved sparrow search algorithm-back-propagation neural network (ISSA-BPNN) method was designed by optimizing the BPNN with the piecewise linear chaotic map (PWLCM)-improved SSA. Experiments were performed on 82 special treatment (ST) enterprises and 164 non-ST enterprises. The results showed that the BPNN had higher accuracy in risk prediction than methods such as Fisher discriminant analysis; the optimization of the ISSA for the BPNN was reliable as the accuracy and F1 value of the ISSA-BPNN method were 0.9834 and 0.9425, respectively; the prediction was wrong for only one sample out of 20 randomly selected samples. The results demonstrate the reliability and practical applicability of the ISSA-BPNN method.Downloads
Published
How to Cite
Issue
Section
License
I assign to Informatica, An International Journal of Computing and Informatics ("Journal") the copyright in the manuscript identified above and any additional material (figures, tables, illustrations, software or other information intended for publication) submitted as part of or as a supplement to the manuscript ("Paper") in all forms and media throughout the world, in all languages, for the full term of copyright, effective when and if the article is accepted for publication. This transfer includes the right to reproduce and/or to distribute the Paper to other journals or digital libraries in electronic and online forms and systems.
I understand that I retain the rights to use the pre-prints, off-prints, accepted manuscript and published journal Paper for personal use, scholarly purposes and internal institutional use.
In certain cases, I can ask for retaining the publishing rights of the Paper. The Journal can permit or deny the request for publishing rights, to which I fully agree.
I declare that the submitted Paper is original, has been written by the stated authors and has not been published elsewhere nor is currently being considered for publication by any other journal and will not be submitted for such review while under review by this Journal. The Paper contains no material that violates proprietary rights of any other person or entity. I have obtained written permission from copyright owners for any excerpts from copyrighted works that are included and have credited the sources in my article. I have informed the co-author(s) of the terms of this publishing agreement.
Copyright © Slovenian Society Informatika