A Study on Error Feature Analysis and Error Correction in English Translation Through Machine Translatio
DOI:
https://doi.org/10.31449/inf.v47i8.4862Abstract
English translation is the most frequently encountered problem in English learning, and fast, efficient and correct English translation has become the demand of many people. This paper studied the most frequently encountered English grammatical error problem in English translation by the Transformer grammatical error correction model in machine translation and explored whether machine translation could analyze the features of the errors that may occur in English translation and correct them. The results of the study showed that the precision of the Transformer model reached 93.64%, the recall rate reached 94.01%, the value was 2.35, and the value of Bilingual Evaluation Understudy was 0.94, which were better than those of the other three models. The Transformer model also showed stronger error correction performance than Seq2seq, convolutional neural network, and recurrent neural network models in analyzing error correction instances of English translation. This paper proves that it is feasible and practical to identify and correct English translation errors by machine translation based on the Transformer model.Downloads
Published
How to Cite
Issue
Section
License
I assign to Informatica, An International Journal of Computing and Informatics ("Journal") the copyright in the manuscript identified above and any additional material (figures, tables, illustrations, software or other information intended for publication) submitted as part of or as a supplement to the manuscript ("Paper") in all forms and media throughout the world, in all languages, for the full term of copyright, effective when and if the article is accepted for publication. This transfer includes the right to reproduce and/or to distribute the Paper to other journals or digital libraries in electronic and online forms and systems.
I understand that I retain the rights to use the pre-prints, off-prints, accepted manuscript and published journal Paper for personal use, scholarly purposes and internal institutional use.
In certain cases, I can ask for retaining the publishing rights of the Paper. The Journal can permit or deny the request for publishing rights, to which I fully agree.
I declare that the submitted Paper is original, has been written by the stated authors and has not been published elsewhere nor is currently being considered for publication by any other journal and will not be submitted for such review while under review by this Journal. The Paper contains no material that violates proprietary rights of any other person or entity. I have obtained written permission from copyright owners for any excerpts from copyrighted works that are included and have credited the sources in my article. I have informed the co-author(s) of the terms of this publishing agreement.
Copyright © Slovenian Society Informatika