Clarity Method of Low-illumination and Dusty Coal Mine Images Based on Improved Amef
DOI:
https://doi.org/10.31449/inf.v47i7.4799Abstract
The existing most image processing methods based on physical models can have a significant impact on defogging performance due to inaccurate estimation of the depth of field information. These methods often encounter problems such as low brightness, invisible color distortion, and loss of detail when processing images with poor lighting conditions, such as those taken in coal mines. To address these issues, this paper proposes a new algorithm based on artificial multi-exposure image fusion. The proposed method performs global exposure on images with uneven illumination by combining S-type functions and the Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm in the Hue-Saturation-Value (HSV) color space. This reduces the spatial dependence of brightness during processing and avoids color distortion problems that may arise in the Red-Green-Blue (RGB) color space. To mitigate the issue of detail loss, a gradient-domain guided filter is used to preserve fine structures in images, while an improved homomorphic filtering algorithm is introduced during the Laplacian pyramid decomposition process to reduce image content loss arising from large dark areas. This paper also conducted subjective, objective, and computational time comparisons to evaluate performance, providing reliable results regarding speed, quality, and reliability in processing hazy images.Downloads
Published
How to Cite
Issue
Section
License
I assign to Informatica, An International Journal of Computing and Informatics ("Journal") the copyright in the manuscript identified above and any additional material (figures, tables, illustrations, software or other information intended for publication) submitted as part of or as a supplement to the manuscript ("Paper") in all forms and media throughout the world, in all languages, for the full term of copyright, effective when and if the article is accepted for publication. This transfer includes the right to reproduce and/or to distribute the Paper to other journals or digital libraries in electronic and online forms and systems.
I understand that I retain the rights to use the pre-prints, off-prints, accepted manuscript and published journal Paper for personal use, scholarly purposes and internal institutional use.
In certain cases, I can ask for retaining the publishing rights of the Paper. The Journal can permit or deny the request for publishing rights, to which I fully agree.
I declare that the submitted Paper is original, has been written by the stated authors and has not been published elsewhere nor is currently being considered for publication by any other journal and will not be submitted for such review while under review by this Journal. The Paper contains no material that violates proprietary rights of any other person or entity. I have obtained written permission from copyright owners for any excerpts from copyrighted works that are included and have credited the sources in my article. I have informed the co-author(s) of the terms of this publishing agreement.
Copyright © Slovenian Society Informatika