K-CAE: Image Classification Using Convolutional AutoEncoder Pre-Training and K-means Clustering
DOI:
https://doi.org/10.31449/inf.v47i7.4499Abstract
The work presented in this paper is in the general framework of classification using deep learning and, more precisely, that of convolutional Autoencoder. In particular, this last proposes an alternative for the processing of high-dimensional data, to facilitate their classification. In this paper, we propose the incorporation of convolutional autoencoders as a general unsupervised learning data dimension reduction method for creating robust and compressed feature representations for better storage and transmission to the classification process to improve K-means performance on image classification tasks. The experimental results on three image databases, MNIST, Fashion-MNIST, and CIFAR-10, show that the proposed method significantly outperforms deep clustering models in terms of clustering quality.Downloads
Published
How to Cite
Issue
Section
License
I assign to Informatica, An International Journal of Computing and Informatics ("Journal") the copyright in the manuscript identified above and any additional material (figures, tables, illustrations, software or other information intended for publication) submitted as part of or as a supplement to the manuscript ("Paper") in all forms and media throughout the world, in all languages, for the full term of copyright, effective when and if the article is accepted for publication. This transfer includes the right to reproduce and/or to distribute the Paper to other journals or digital libraries in electronic and online forms and systems.
I understand that I retain the rights to use the pre-prints, off-prints, accepted manuscript and published journal Paper for personal use, scholarly purposes and internal institutional use.
In certain cases, I can ask for retaining the publishing rights of the Paper. The Journal can permit or deny the request for publishing rights, to which I fully agree.
I declare that the submitted Paper is original, has been written by the stated authors and has not been published elsewhere nor is currently being considered for publication by any other journal and will not be submitted for such review while under review by this Journal. The Paper contains no material that violates proprietary rights of any other person or entity. I have obtained written permission from copyright owners for any excerpts from copyrighted works that are included and have credited the sources in my article. I have informed the co-author(s) of the terms of this publishing agreement.
Copyright © Slovenian Society Informatika