Indonesian Hoax News Classification with Multilingual Transformer Model and BERTopic
DOI:
https://doi.org/10.31449/inf.v46i8.4336Abstract
Technology and information growth make all internet users can play a role in disseminating information, including hoax news. One way that can be done to avoid hoax news is to look for sources of information, but valid news is not always perceived as 'true' by individuals because human judgments can lead to bias. Several studies on automatic hoax news classification have been carried out using various deep learning approaches such as the pre-trained multilingual transformer model. This study focuses on classifying Indonesian hoax news using the pre-trained transformer multilingual model (XLM-R and mBERT) combined with a BERTopic model as a topic distribution model. The result shows that the proposed method outperforms the baseline model in classifying fake news in the low-resource language (Indonesian) with accuracy, precision, recall, and F1 results of 0.9051, 0.9515, 0.8233, and 0.8828 respectively.Downloads
Published
How to Cite
Issue
Section
License
I assign to Informatica, An International Journal of Computing and Informatics ("Journal") the copyright in the manuscript identified above and any additional material (figures, tables, illustrations, software or other information intended for publication) submitted as part of or as a supplement to the manuscript ("Paper") in all forms and media throughout the world, in all languages, for the full term of copyright, effective when and if the article is accepted for publication. This transfer includes the right to reproduce and/or to distribute the Paper to other journals or digital libraries in electronic and online forms and systems.
I understand that I retain the rights to use the pre-prints, off-prints, accepted manuscript and published journal Paper for personal use, scholarly purposes and internal institutional use.
In certain cases, I can ask for retaining the publishing rights of the Paper. The Journal can permit or deny the request for publishing rights, to which I fully agree.
I declare that the submitted Paper is original, has been written by the stated authors and has not been published elsewhere nor is currently being considered for publication by any other journal and will not be submitted for such review while under review by this Journal. The Paper contains no material that violates proprietary rights of any other person or entity. I have obtained written permission from copyright owners for any excerpts from copyrighted works that are included and have credited the sources in my article. I have informed the co-author(s) of the terms of this publishing agreement.
Copyright © Slovenian Society Informatika