Indonesian Hoax News Classification with Multilingual Transformer Model and BERTopic

Authors

  • Leonnardo Benjamin Hutama Computer Science Department, BINUS Graduate Program, Master of Computer Science, Bina Nusantara University, Jakarta, Indonesia
  • Derwin Suhartono Computer Science Department, School of Computer Science, Bina Nusantara University, Jakarta, Indonesia

DOI:

https://doi.org/10.31449/inf.v46i8.4336

Abstract

Technology and information growth make all internet users can play a role in disseminating information, including hoax news. One way that can be done to avoid hoax news is to look for sources of information, but valid news is not always perceived as 'true' by individuals because human judgments can lead to bias. Several studies on automatic hoax news classification have been carried out using various deep learning approaches such as the pre-trained multilingual transformer model. This study focuses on classifying Indonesian hoax news using the pre-trained transformer multilingual model (XLM-R and mBERT) combined with a BERTopic model as a topic distribution model. The result shows that the proposed method outperforms the baseline model in classifying fake news in the low-resource language (Indonesian) with accuracy, precision, recall, and F1 results of 0.9051, 0.9515, 0.8233, and 0.8828 respectively.

Author Biography

Leonnardo Benjamin Hutama, Computer Science Department, BINUS Graduate Program, Master of Computer Science, Bina Nusantara University, Jakarta, Indonesia

Computer Science Department, BINUS Graduate Program, Master of Computer Science Student

Downloads

Published

2022-11-16

How to Cite

Hutama, L. B., & Suhartono, D. (2022). Indonesian Hoax News Classification with Multilingual Transformer Model and BERTopic. Informatica, 46(8). https://doi.org/10.31449/inf.v46i8.4336