Malicious Application Traffic Detection and Identification for Mobile Android Devices
DOI:
https://doi.org/10.31449/inf.v46i8.4248Abstract
With the popularity of Android devices, the number of malicious applications has been increasing. This paper briefly introduced malicious applications for Android devices, used a sensitivity coefficient-based feature selection method to select traffic features, detected, and identified malicious application traffic with k-means, support vector machine (SVM) and multi-layer perceptron (MLP) methods, and conducted experiments at CIC-AndMal2017. It was found that the accuracy was high when 40 features were selected. The running time of the MLP method was the shortest, 0.02 s. The accuracy of the K-means algorithm was 86.75%, showing poor performance, and the accuracy of the MLP method was 99.87%, showing the best performance. The experimental results demonstrate the effectiveness of the MLP method for monitoring and identifying malicious application traffic. The MLP method can be applied to actual mobile Android devices.Downloads
Published
How to Cite
Issue
Section
License
I assign to Informatica, An International Journal of Computing and Informatics ("Journal") the copyright in the manuscript identified above and any additional material (figures, tables, illustrations, software or other information intended for publication) submitted as part of or as a supplement to the manuscript ("Paper") in all forms and media throughout the world, in all languages, for the full term of copyright, effective when and if the article is accepted for publication. This transfer includes the right to reproduce and/or to distribute the Paper to other journals or digital libraries in electronic and online forms and systems.
I understand that I retain the rights to use the pre-prints, off-prints, accepted manuscript and published journal Paper for personal use, scholarly purposes and internal institutional use.
In certain cases, I can ask for retaining the publishing rights of the Paper. The Journal can permit or deny the request for publishing rights, to which I fully agree.
I declare that the submitted Paper is original, has been written by the stated authors and has not been published elsewhere nor is currently being considered for publication by any other journal and will not be submitted for such review while under review by this Journal. The Paper contains no material that violates proprietary rights of any other person or entity. I have obtained written permission from copyright owners for any excerpts from copyrighted works that are included and have credited the sources in my article. I have informed the co-author(s) of the terms of this publishing agreement.
Copyright © Slovenian Society Informatika