EEG Signal Feature Extraction and Classification for Epilepsy Detection
DOI:
https://doi.org/10.31449/inf.v46i4.3768Abstract
Epilepsy is a neurological disorder of the central nervous system, characterized by sudden seizures caused by abnormal electrical discharges in the brain. Electroencephalogram (EEG) is the most common technique used for Epilepsy diagnosis. Generally, it is done by the manual inspection of the EEG recordings of active seizure periods (ictal). Several techniques have been proposed throughout the years to automate this process. In this study, we have developed three different approaches to extract features from the filtered EEG signals. The first approach was to extract eight statistical features directly from the time-domain signal. In the second approach, we have used only the frequency domain information by applying the Discrete Cosine Transform (DCT) to the EEG signals then extracting two statistical features from the lower coefficients. In the last approach, we have used a tool that combines both time and frequency domain information, which is the Discrete Wavelet Transform (DWT). Six different wavelet families have been tested with their different orders resulting in 37 wavelets. The first three decomposition levels were tested with every wavelet. Instead of feeding the coefficients directly to the classifier, we summarized them in 16 statistical features. The extracted features are then fed to three different classifiers k-Nearest Neighbor (k-NN), Support Vector Machine (SVM), and Artificial Neural Network (ANN) to perform two binary classification scenarios: healthy versus epileptic(mainly from interictal activity),and seizure-free versus ictal. We have used a benchmark database, the Bonn database, which consists of five different sets. In the first scenario, we have taken six different combinations of the available data. While in the second scenario, we have taken five combinations. For Epilepsy detection (healthy vs epileptic), the first approach performed badly. Using the DCT improved the results, but the best accuracies were obtained with the DWT-based approach. For seizure detection, the three methods performed quite well. However, the third method had the best performance and was better than many state-of-the-art methods in terms of accuracy. After carrying out the experiments on the whole EEG signal, we separated the five rhythms and applied the DWT on them with the Daubechies7(db7) wavelet for feature extraction. We have observed that close accuracies to those recorded before can be achieved with only the Delta rhythm in the first scenario (Epilepsy detection) and the Beta rhythm in the second scenario (seizure detection).References
Mayo clinic (n.d.) Epilepsy.
Available at: https://www.mayoclinic.org/diseases-conditions/ epilepsy/diagnosis-treatment/drc-20350098 (Access date: 06-2020).
Gandhi, T., Panigrahi, B. K., & Anand, S. A comparative study of wavelet families for EEG signal classification. Neurocomputing, Vol 74(17), pp. 3051-3057, 2011.
Ullah, I., Hussain, M., Qazi, E. and Aboalsamh, H. An Automated System for Epilepsy Detection using EEG Brain Signals based on Deep Learning Approach. Expert Systems with Applications, Vol.107, pp.61–71, Octobre 2018.
Availableat: http://dx.doi.org/10.1016/j.eswa.2018.04.021.
Nicolaou, N. and Georgia, J. Detection of epileptic electroencephalogram based on permutation entropy and support vector machines. Expert Systems with Applications’, Vol. 39(1), pp. 202-209, 2012.
Available at: https://doi.org/10.1016%2Fj.eswa.2011.07.008
Parvez, M.Z. and Paul, M. Features Extraction and Classification for Ictal and Interictal EEG Signals using EMD and DCT. 15th International Conference on Computer and Information Technology (ICCIT), Chittagong, pp.132-137, Dec., 2012.
Available at: http://dx.doi.org/10.1109/iccitechn.2012.6509719
Bajaj, V. and Pachori, R.B. Epileptic seizure detection based on the instantaneous area of analytic intrinsic mode functions of EEG signals. Biomedical Engineering Letters, Vol.3(1), pp.17–21, 2013.
Sharaf, Ahmed I., Mohamed, A. and El-Henawy, Ibrahim M. An Automated Approach for Epilepsy Detection Based on Tunable Q-Wavelet and Firefly Feature Selection Algorithm. International Journal of Biomedical Imaging. Vol.2018, pp.1–12, Sep.2018.
Martis, R.J., Acharya, U.R., Tan, J.H. et al. Application of intrinsic time-scale decomposition (ITD) to EEG signals for automated seizure prediction. International Journal of Neural Systems. Vol.23(5), pp. 1557–1565, 2013.
Ahammad, N., Fathima, T., & Joseph, P. (2014). Detection of Epileptic Seizure Event and Onset Using EEG. BioMed Research International, pp.1–7, 2014.
Available at: http://dx.doi.org/10.1155/2014/450573
Juárez-Guerra, E., Alarcon-Aquino, V. & Gómez-Gil, P. Epilepsy Seizure Detection in EEG Signals Using Wavelet Transforms and Neural Networks. New Trends in Networking, Computing, E-learning, Systems Sciences, and Engineering, pp.261–269, 2014.
Available at: http://dx.doi.org/10.1007/978-3-319-06764-3_33.
Lasefr, Z., Ayyalasomayajula, S. and Elleithy, K. Epilepsy Seizure Detection Using EEG signals. At Department of Computer Science and Engineering, University of Bridgeport, Bridgeport, CT, USA, 2017.
Peachap, A.B. and Tchiotsop D. (2019). Epileptic seizures detection based on some new Laguerre polynomial wavelets, artificial neural networks and support vector machines. Informatics in Medicine Unlocked, Vol. 16, pp. 100209, 2019.
NEUROTECHEDU (n.d.). Preprocessing.
Available at: http://learn.neurotechedu.com/ preprocessing/ (Access date: 04-2020).
Salomon, D. Data Compression: The Complete Reference, 4th edn. California: Springer, pp. 298-299, 2007.
Sripathi, D. Efficient Implementations of Discrete Wavelet Transforms Using FPGAs, Master thesis, Florida State University, Florida, 2003.
Corinthios,M. Signals, Systems, Transforms, and Digital Signal Processing with MATLAB, USA: CRC Press, pp.1157-1158, 2009.
Expert System. What is Machine Learning? A definition. Available at: https://expert system.com/machine-learning-definition/ (Access date: 06-2020).
Alaliyat, S. Video -based Fall Detection in Elderly's Houses. Master thesis, Gjøvik University College, 2008.
Available at: https://www.researchgate.net/publication/267953942 (Access date: 06-2020).
Zhang, Z. Introduction to machine learning: k-nearest neighbors. Ann Transl Med, Vol. 4(11):218, 2016.
Kantardzic, M. DATA MINING: Concepts, Models, Methods, and Algorithms. 3rd edition. New Jersey : IEEE Press, John Wiley & Sons, Inc. 2020.
Pupale, R. Support Vector Machines(SVM)-An Overview. Available at: https://tow ardsdatascience.com/https-medium-com-pupalerushikesh-svm-f4b42800e989
(Access date: 06-2020).
Wikipedia, the free encyclopedia. Artificial neural network, Available at: https://en. wikipedia.org/wiki/Artificial_neural_network
(Access date: 04-2020).
Available at:
http://epileptologie-bonn.de/cms/front_content.php?idcat=193&lang=3&chang elang=3
(Access date: 10-2019).
Siuly S, Li Y, Zhang Y. EEG Signal Analysis and Classification, Techniques and Applications. Book Series Title: Health Information Science. Publisher Springer International Publishing; 2016.
Downloads
Published
How to Cite
Issue
Section
License
I assign to Informatica, An International Journal of Computing and Informatics ("Journal") the copyright in the manuscript identified above and any additional material (figures, tables, illustrations, software or other information intended for publication) submitted as part of or as a supplement to the manuscript ("Paper") in all forms and media throughout the world, in all languages, for the full term of copyright, effective when and if the article is accepted for publication. This transfer includes the right to reproduce and/or to distribute the Paper to other journals or digital libraries in electronic and online forms and systems.
I understand that I retain the rights to use the pre-prints, off-prints, accepted manuscript and published journal Paper for personal use, scholarly purposes and internal institutional use.
In certain cases, I can ask for retaining the publishing rights of the Paper. The Journal can permit or deny the request for publishing rights, to which I fully agree.
I declare that the submitted Paper is original, has been written by the stated authors and has not been published elsewhere nor is currently being considered for publication by any other journal and will not be submitted for such review while under review by this Journal. The Paper contains no material that violates proprietary rights of any other person or entity. I have obtained written permission from copyright owners for any excerpts from copyrighted works that are included and have credited the sources in my article. I have informed the co-author(s) of the terms of this publishing agreement.
Copyright © Slovenian Society Informatika