Early Prediction for At-Risk Students in an Introductory Programming Course Based on Student Self-Efficacy
DOI:
https://doi.org/10.31449/inf.v45i6.3528Abstract
Data Mining is a growing field, a strand of which is Educational data mining (EDM). EDM is currently used to help institutions and students through creating accurate predictions that are considered in decision making. One of EDM’s concerns is that of predicting students’ academic performance and fundamental learning difficulties in a particular course. In fact, EDM can help computer science (CS)-enrolled students to predict whether they can pass their courses without taking further action. An introductory programming course is usually the first challenging course faced by students in CS departments since a student’s performance in such a course is highly based on their intellectual skills. This paper presents a real case study from one of Saudi Arabia’s leading universities. This study used well-known prediction models— specifically, decision tree (DT), k-nearest neighbor (kNN), Naïve Bayes (NB), and support vector machine (SVM) models—to create a reliable prediction model for at-risk students in an introductory programming course using preliminary performance information showing their self-efficacy. The results of this study showed that the DT and SVM models yielded the best performance with the highest accuracy rate (99.18%). Furthermore, comparisons between the applied models were conducted with different evaluation metrics.Downloads
Published
How to Cite
Issue
Section
License
I assign to Informatica, An International Journal of Computing and Informatics ("Journal") the copyright in the manuscript identified above and any additional material (figures, tables, illustrations, software or other information intended for publication) submitted as part of or as a supplement to the manuscript ("Paper") in all forms and media throughout the world, in all languages, for the full term of copyright, effective when and if the article is accepted for publication. This transfer includes the right to reproduce and/or to distribute the Paper to other journals or digital libraries in electronic and online forms and systems.
I understand that I retain the rights to use the pre-prints, off-prints, accepted manuscript and published journal Paper for personal use, scholarly purposes and internal institutional use.
In certain cases, I can ask for retaining the publishing rights of the Paper. The Journal can permit or deny the request for publishing rights, to which I fully agree.
I declare that the submitted Paper is original, has been written by the stated authors and has not been published elsewhere nor is currently being considered for publication by any other journal and will not be submitted for such review while under review by this Journal. The Paper contains no material that violates proprietary rights of any other person or entity. I have obtained written permission from copyright owners for any excerpts from copyrighted works that are included and have credited the sources in my article. I have informed the co-author(s) of the terms of this publishing agreement.
Copyright © Slovenian Society Informatika