Prediction and Estimation of Book Borrowing in the Library: Machine learning
DOI:
https://doi.org/10.31449/inf.v45i1.3431Abstract
In the library, the prediction and estimation of book borrowing plays an important role in library work. Based on the data mining method, this paper analyzed the prediction and estimation of book borrowing. Firstly, the radial basis function neural network (RBFNN) was analyzed. Then, the improved ant colony algorithm (IACO) was used to obtain the optimal parameters of RBFNN, and then the IACO-RBFNN model was established to realize the prediction and estimation of book borrowing. The results showed that the improved model had advantages in training time, iteration times, and error compared with BPNN and RBFNN. The results of book prediction and estimation showed that the results obtained by the IACO-RBFNN model were closer to the actual book borrowing situation, with smaller error and higher precision (97.09%), and its precision was 11.18% and 4.74% higher than BPNN and RBFNN respectively. The training time and testing time of the IACO-RBFNN model were 5.12 s and 1.03 s, respectively, which were significantly shorter than the other two methods. The results show that the IACO-RBFNN model has a good performance in the prediction and estimation of book borrowing and can be further promoted and applied in practice.Downloads
Published
How to Cite
Issue
Section
License
I assign to Informatica, An International Journal of Computing and Informatics ("Journal") the copyright in the manuscript identified above and any additional material (figures, tables, illustrations, software or other information intended for publication) submitted as part of or as a supplement to the manuscript ("Paper") in all forms and media throughout the world, in all languages, for the full term of copyright, effective when and if the article is accepted for publication. This transfer includes the right to reproduce and/or to distribute the Paper to other journals or digital libraries in electronic and online forms and systems.
I understand that I retain the rights to use the pre-prints, off-prints, accepted manuscript and published journal Paper for personal use, scholarly purposes and internal institutional use.
In certain cases, I can ask for retaining the publishing rights of the Paper. The Journal can permit or deny the request for publishing rights, to which I fully agree.
I declare that the submitted Paper is original, has been written by the stated authors and has not been published elsewhere nor is currently being considered for publication by any other journal and will not be submitted for such review while under review by this Journal. The Paper contains no material that violates proprietary rights of any other person or entity. I have obtained written permission from copyright owners for any excerpts from copyrighted works that are included and have credited the sources in my article. I have informed the co-author(s) of the terms of this publishing agreement.
Copyright © Slovenian Society Informatika