Towards Finding Active Number of S-Boxes in Block Ciphers using Mixed Integer Linear Programming

Authors

  • Vikas Tiwari Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh - 522510, India
  • Neelima Jampala C.R. Rao Advanced Institute of Mathematics, Statistics and Computer Science University of Hyderabad Campus, Prof. CR Rao Road, Hyderabad, Telangana - 500046, India
  • Appala Naidu Tentu C.R. Rao Advanced Institute of Mathematics, Statistics and Computer Science University of Hyderabad Campus, Prof. CR Rao Road, Hyderabad, Telangana - 500046, India
  • Ashutosh Saxena C.R. Rao Advanced Institute of Mathematics, Statistics and Computer Science University of Hyderabad Campus, Prof. CR Rao Road, Hyderabad, Telangana - 500046, India

DOI:

https://doi.org/10.31449/inf.v45i6.3427

Abstract

Secure lightweight block ciphers have become an important aspect due to the fact that they are a popular choice for providing security in ubiquitous devices. Two of the most important attacks on block ciphers are differential cryptanalysis [1] and linear cryptanalysis [2]. Calculating the number of active S-boxes is one of the method to examine the security of block ciphers against differential attack. In this paper, we count the minimum number of active S-boxes for several rounds of the lightweight ciphers namely KLEIN, LED and AES. We utilized the method proposed in [9], where calculation of the minimum number of active S-boxes is formulated as a Mixed Integer Linear Programming (MILP) problem. The objective function is to minimize the number of active S-boxes, subject to the constraints imposed by the differential propagation of the cipher. The experimental results are presented in this paper and found to be encouraging.

Author Biography

  • Vikas Tiwari, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh - 522510, India

    C.R. Rao Advanced Institute of Mathematics, Statistics and Computer Science
    University of Hyderabad Campus, Prof. CR Rao Road, Hyderabad, (Telangana) - 500046, India

References

Biham E., Shamir A. (1991) Differential Cryptanalysis of DES-like Cryptosystems.Advances in Cryptology-CRYPTO 90.CRYPTO 1990. Lecture Notes in ComputerScience, vol 537. Springer, Berlin, Heidel-berg.

https://doi.org/10.1007/3-540-38424-3_1

Matsui M. Linear Cryptanalysis Methodfor DES Cipher. Advances in Cryptology- EUROCRYPT 93. EUROCRYPT 1993.Lecture Notes in Computer Science, vol 765.Springer, Berlin, Heidelberg, 1994.

https://doi.org/10.1007/3-540-48285-7_33

Daemen J., Clapp C. Fast Hashing andStream Encryption with Panama. Fast Soft-ware Encryption. FSE 1998. Lecture Notesin Computer Science, vol 1372. Springer,Berlin, Heidelberg, 1998.

https://doi.org/10.1007/3-540-69710-1_5

Daemen, J., Rijmen, V.: The Design ofRijndael: AES - The Advanced EncryptionStandard. Springer, 2002.

https://doi.org/10.1007/978-3-662-60769-5_3

Das, M.L., Saxena, A., Gulati, V.P. An efficient proxy signature scheme with re-vocation, Informatica, Vol. 15 Issue 4,pp.455-464, 2004.

https://doi.org/10.15388/Informatica.2004.072

C. S. Ma and R. H. Miller, MILP opti-mal path planning for real-time applications,2006 American Control Conference, Min-neapolis, MN, , pp. 6 pp.-, 2006.

https://10.1109/ACC.2006.1657504

Bogdanov A. et al. PRESENT: An Ultra-Lightweight Block Cipher. CryptographicHardware and Embedded Systems - CHES2007. CHES 2007. Lecture Notes in Com-puter Science, vol 4727. Springer, Berlin,Heidelberg 2007.

https://doi.org/10.1007/978-3-540-74735-2_31

Borghoff J., Knudsen L.R., Stolpe M.Bivium as a Mixed-Integer Linear Program-ming Problem. Cryptography and Coding.IMACC 2009. Lecture Notes in ComputerScience, vol 5921. Springer, Berlin, Heidel-berg 2009.

https://doi.org/10.1007/978-3-642-10868-6_9

Mouha N., Wang Q., Gu D., Preneel B.Differential and Linear Cryptanalysis UsingMixed-Integer Linear Programming. Infor-mation Security and Cryptology. Inscrypt2011. Lecture Notes in Computer Science,vol 7537. Springer, Berlin, Heidelberg, 2011.

https://doi.org/10.1007/978-3-642-34704-7_5

Guo J., Peyrin T., Poschmann A., RobshawM. The LED Block Cipher. CryptographicHardware and Embedded Systems CHES2011. CHES 2011. Lecture Notes in Com-puter Science, vol 6917. Springer, Berlin,Heidelberg, 2011.

https://doi.org/10.1007/978-3-642-23951-9_22

Moradi A., Poschmann A., Ling S., PaarC., Wang H. Pushing the Limits: A VeryCompact and a Threshold Implementationof AES. Advances in Cryptology EURO-CRYPT 2011. EUROCRYPT 2011. LectureNotes in Computer Science, vol 6632.Springer, Berlin, Heidelberg, 2011.

https://doi.org/10.1007/978-3-642-20465-4_6

https://www.ibm.com/in-en/analytics/cplex-optimizer

Gong Z., Nikova S., Law Y.W. KLEIN: ANew Family of Lightweight Block Ciphers.Security and Privacy. RFIDSec 2011. Lec-ture Notes in Computer Science, vol 7055.Springer, Berlin, Heidelberg, 2012.

https://doi.org/10.1007/978-3-642-25286-0_1

Fathy A., Tarrad I.F., Hamed H.F.A., AwadA.I. Advanced Encryption Standard Algo-rithm: Issues and Implementation Aspects.Advanced Machine Learning Technologiesand Applications. AMLTA 2012. Commu-nications in Computer and InformationScience, vol 322. Springer, Berlin, Heidel-berg, 2012.

https://doi.org/10.1007/978-3-642-35326-0_51

Sun S., Hu L., Wang P., Qiao K., Ma X.,Song L. Automatic Security Evaluation and(Related-key) Differential CharacteristicSearch: Application to SIMON, PRESENT,LBlock, DES(L) and Other Bit-OrientedBlock Ciphers. Advances in Cryptology -ASIACRYPT 2014. ASIACRYPT 2014.Lecture Notes in Computer Science, vol8873. Springer, Berlin, Heidelberg, 2014.

https://doi.org/10.1007/978-3-662-45611-8_9

Banik S. et al. Midori: A Block Cipherfor Low Energy. Advances in CryptologyASIACRYPT 2015. ASIACRYPT 2015.Lecture Notes in Computer Science, vol9453. Springer, Berlin, Heidelberg, 2015.

https://doi.org/10.1007/978-3-662-48800-3_17

Bhattacharya, Rajeev, Linear Programming.Palgrave Encyclopedia of Strategic Man-agement, ISBN 978-1-137-49190-9, PalgraveMacmillan UK, 2014.

https://ssrn.com/abstract=2981081

Xiang Z., Zhang W., Bao Z., Lin D. ApplyingMILP Method to Searching Integral Distin-guishers Based on Division Property for 6Lightweight Block Ciphers. ASIACRYPT2016. ASIACRYPT 2016. Lecture Notesin Computer Science, vol 10031. Springer,Berlin, Heidelberg, 2016.

https://doi.org/10.1007/978-3-662-53887-6_24

Ping Yang, Chuankun Wu, Wentao Zhang,Automatic Security Analysis of EPCBCagainst Differential Attacks, Procedia Com-puter Science, Volume 107, 2017, Pages176-182, ISSN 1877-0509, 2017.

https://doi.org/10.1016/j.procs.2017.03.075

Pei Zhang, Wenying Zhang. DifferentialCryptanalysis on Block Cipher Skinny withMILP Program. Hindawi Security and Com-munication Networks Volume 2018.

https://doi.org/10.1155/2018/3780407

Zhou, C., Zhang, W., Ding, T., & Xiang, Z.Improving the MILP-based Security Evalu-ation Algorithm against Differential/LinearCryptanalysis Using A Divide-and-ConquerApproach. IACR Transactions on SymmetricCryptology, 438469, 2020.

https://doi.org/10.13154/tosc.v2019.i4.438-469

E. Bagherzadeh and Z. Ahmadian, MILP-based automatic differential search for LEAand HIGHT block ciphers, in IET Informa-tion Security, vol. 14, no. 5, pp. 595-603,2020.

https://doi.org/10.1049/iet-ifs.2018.5539

H. Zhao, G. Han, L. Wang and W. Wang,MILP-Based Differential Cryptanalysis onRound-Reduced Midori64, in IEEE Access,vol. 8, pp. 95888-95896, 2020.

Downloads

Published

2021-10-05

How to Cite

Towards Finding Active Number of S-Boxes in Block Ciphers using Mixed Integer Linear Programming. (2021). Informatica, 45(6). https://doi.org/10.31449/inf.v45i6.3427