Research on Recognition and Classification of Folk Music Based on Feature Extraction Algorithm
DOI:
https://doi.org/10.31449/inf.v44i4.3388Abstract
In this study, the feature extraction algorithm for folk music was analyzed. The features of folk music were extracted in aspects of time domain and frequency domain. Then, a support vector machine (SVM) was selected to identify and classify folk music. It was found that the performance of SVM was the best when was 26 and was 4; the recognition rate of using only one feature was inferior to that of using all features; the highest recognition rate of SVM was 92.76%; compared with back propagation neural network (BPNN) and decision tree classification method, SVM had a higher recognition rate. The experimental results show the effectiveness of SVM, which can be applied in practice.Downloads
Published
How to Cite
Issue
Section
License
I assign to Informatica, An International Journal of Computing and Informatics ("Journal") the copyright in the manuscript identified above and any additional material (figures, tables, illustrations, software or other information intended for publication) submitted as part of or as a supplement to the manuscript ("Paper") in all forms and media throughout the world, in all languages, for the full term of copyright, effective when and if the article is accepted for publication. This transfer includes the right to reproduce and/or to distribute the Paper to other journals or digital libraries in electronic and online forms and systems.
I understand that I retain the rights to use the pre-prints, off-prints, accepted manuscript and published journal Paper for personal use, scholarly purposes and internal institutional use.
In certain cases, I can ask for retaining the publishing rights of the Paper. The Journal can permit or deny the request for publishing rights, to which I fully agree.
I declare that the submitted Paper is original, has been written by the stated authors and has not been published elsewhere nor is currently being considered for publication by any other journal and will not be submitted for such review while under review by this Journal. The Paper contains no material that violates proprietary rights of any other person or entity. I have obtained written permission from copyright owners for any excerpts from copyrighted works that are included and have credited the sources in my article. I have informed the co-author(s) of the terms of this publishing agreement.
Copyright © Slovenian Society Informatika