AMF-IDBSCAN: Incremental Density Based Clustering Algorithm Using Adaptive Median Filtering Technique
DOI:
https://doi.org/10.31449/inf.v43i4.2629Abstract
Density-based spatial clustering of applications with noise (DBSCAN) is a fundament algorithm for density-based clustering. It can discover clusters of arbitrary shapes and sizes from a large amount of data, which is containing noise and outliers. However, it fails to treat large datasets, to attend to outperforming when new data objects are inserted into the existing database, to remove totally a noise points and outliers and to handle the local density variation that exists within the cluster. So, a good clustering method should allow a significant density modification within the cluster and should learn a dynamics and large databases. In this paper, an enhancement of the DBSCAN algorithm is proposed based on incremental clustering called AMF-IDBSCAN which builds incrementally the clusters of different shapes and sizes in large datasets and eliminates the presence of noise and outliers. The proposed AMF-IDBSCAN algorithm uses a canopy clustering algorithm to pre-clustering datasets to decrease the volume of data, applies an incremental DBSCAN for clustering the data points and Adaptive Median Filtering (AMF) technique for post-clustering to reduce the number of outliers by replacing noises by chosen medians. Experimental results are obtained from the University California Irvine (UCI) repository UCI data sets. The final results show that our algorithm get good results with respect to the famous DBSCAN, IDBSCAN, and DMDBSCANDownloads
Published
How to Cite
Issue
Section
License
I assign to Informatica, An International Journal of Computing and Informatics ("Journal") the copyright in the manuscript identified above and any additional material (figures, tables, illustrations, software or other information intended for publication) submitted as part of or as a supplement to the manuscript ("Paper") in all forms and media throughout the world, in all languages, for the full term of copyright, effective when and if the article is accepted for publication. This transfer includes the right to reproduce and/or to distribute the Paper to other journals or digital libraries in electronic and online forms and systems.
I understand that I retain the rights to use the pre-prints, off-prints, accepted manuscript and published journal Paper for personal use, scholarly purposes and internal institutional use.
In certain cases, I can ask for retaining the publishing rights of the Paper. The Journal can permit or deny the request for publishing rights, to which I fully agree.
I declare that the submitted Paper is original, has been written by the stated authors and has not been published elsewhere nor is currently being considered for publication by any other journal and will not be submitted for such review while under review by this Journal. The Paper contains no material that violates proprietary rights of any other person or entity. I have obtained written permission from copyright owners for any excerpts from copyrighted works that are included and have credited the sources in my article. I have informed the co-author(s) of the terms of this publishing agreement.
Copyright © Slovenian Society Informatika