An Empirical Study for Detecting Fake Facebook Profiles Using Supervised Mining Techniques
DOI:
https://doi.org/10.31449/inf.v43i1.2319Abstract
Our social life and the way of people communicate are greatly affected by the social media technologies. The variety of stand-alone and built-in social media services such as Facebook, Twitter, LinkedIn, and alike facilitate users to create highly interactive platforms. However, these overwhelming technologies made us sank in an enormous amount of information. Recently, Facebook exposed data on 50 million Facebook unaware users for analytical purposes. Fake profiles are also used by Scammers to infiltrate networks of friends to wreak all sorts of havoc as stealing valuable information, financial fraud, or entering other user's social graph. In this paper, we turn our focus to Facebook fake profiles, and proposed a smart system (FBChecker) that enables users to check if any Facebook profile is fake. To achieve that, FBChecker utilizes the data mining approach to analyze and classify a set of behavioral and informational attributes provided in the personal profiles. Specifically, we empirically examine these attributes using four supervised data mining algorithms (e.g., k-NN, decision tree, SVM, and naïve Bayes) to determine how successfully we can recognize the fake profiles. To demonstrate the validity of our conceptual work, the selected classifiers have been implemented using RapidMiner data science platform with a dataset of 200 profiles collected from the authors’ profile and a honeypot page. Two experiments are developed; in the first one, the k-NN schema is applied as an estimator model for imputation the missing data with substituted values, whereas in the second experiment a filtering operator is applied to exclude the profiles with missing values. Results showed high accuracy rate with the all classifiers, however, the SVM outperforms other classifiers with an accuracy rate of 98.0% followed by Naïve Bayes.Downloads
Published
How to Cite
Issue
Section
License
I assign to Informatica, An International Journal of Computing and Informatics ("Journal") the copyright in the manuscript identified above and any additional material (figures, tables, illustrations, software or other information intended for publication) submitted as part of or as a supplement to the manuscript ("Paper") in all forms and media throughout the world, in all languages, for the full term of copyright, effective when and if the article is accepted for publication. This transfer includes the right to reproduce and/or to distribute the Paper to other journals or digital libraries in electronic and online forms and systems.
I understand that I retain the rights to use the pre-prints, off-prints, accepted manuscript and published journal Paper for personal use, scholarly purposes and internal institutional use.
In certain cases, I can ask for retaining the publishing rights of the Paper. The Journal can permit or deny the request for publishing rights, to which I fully agree.
I declare that the submitted Paper is original, has been written by the stated authors and has not been published elsewhere nor is currently being considered for publication by any other journal and will not be submitted for such review while under review by this Journal. The Paper contains no material that violates proprietary rights of any other person or entity. I have obtained written permission from copyright owners for any excerpts from copyrighted works that are included and have credited the sources in my article. I have informed the co-author(s) of the terms of this publishing agreement.
Copyright © Slovenian Society Informatika