Spectrum Utilization Efficiency of Elastic Optical Networks Utilizing Coarse Granular Routing
DOI:
https://doi.org/10.31449/inf.v42i3.2248Abstract
In this paper, we have investigated an elastic optical network that uses coarse granular routing based on our recently developed coarse granular node architecture. The developed coarse granular optical cross-connect (OXC) architecture that enables routing bandwidth-flexible lightpaths coarse-granularly is based on coarser granular selective spectrum switches. The network takes the advantages of both elastic optical networking and coarse granular routing technologies to cope with the trade-off between the link cost and the node cost in order to build a spectrum-and-cost efficient solution for future Internet backbone networks. We have evaluated the hardware scale requirement and the spectrum utilization efficiency of the network with typical modulation formats under various network and traffic conditions. We also compared the spectrum utilization of our network to that of corresponding traditional WDM network and conventional elastic optical network. Numerical results verified that, similar to conventional elastic optical network, the proposed network offers a substantial spectrum saving comparing to traditional WDM network.References
Cisco Visual Networking Index: Forecast and Methodology, Cisco system, 2014–2019. http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.pdf
E. B. Desurvire (2006). Capacity demand and technology challenges for lightwave systems in the next two decades. Journal of Lightwave Technology, IEEE, vol. 24, No. 12, pp. 4697-4710.
J. Berthold, A. Saleh, L. Blair, J. Simmons (2008). Optical networking: Past, present, and future. Journal of Lightwave Technology, IEEE, vol. 26, No. 9, pp. 1104-1118.
K. Sato, H. Hasegawa (2009). Optical Networking Technologies That Will Create Future Bandwidth-Abundant Networks. Journal of Optical Communications and Networking, IEEE/OSA, vol. 1, no. 2, pp.A81-A93.
A. Jukan and J. Mambretti (2012). Evolution of Optical Networking Toward Rich Digital Media Services. Proceedings of the IEEE, IEEE, vol. 100, no. 4, pp. 855-871.
G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri (2011). On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers. Journal of Lightwave Technology, IEEE, vol. 29, No.1, pp. 53–61.
G. Zhang, M. De Leenheer, A. Morea and B. Mukherjee (2013). A Survey on OFDM-Based Elastic Core Optical Networking. IEEE Communications Surveys & Tutorials, IEEE, vol. 15, no. 1, pp. 65-87.
M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka (2009). Spectrum-Efficient and Scalable Elastic Optical Path Network: Architecture, Benefits, and Enabling Technologies. IEEE Communications Magazine, IEEE, vol. 47, pp. 66-73.
O. Gerstel, M. Jinno, A. Lord and S. J. B. Yoo (2012). Elastic optical networking: a new dawn for the optical layer?. IEEE Communications Magazine, IEEE, vol. 50, no. 2, pp. s12-s20.
A. Lord, P. Wright and A. Mitra (2015). Core Networks in the Flexgrid Era. Journal of Lightwave Technology, IEEE, vol. 33, no. 5, pp.1126-1135.
M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka and A. Hirano (2010). Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network. IEEE Communications Magazine, IEEE, vol. 48, no. 8, pp.138-145.
B. Chatterjee, N. Sarma and E. Oki (2015). Routing and Spectrum Allocation in Elastic Optical Networks: A Tutorial. IEEE Communications Surveys & Tutorials, IEEE, vol. PP, no. 99, pp. 1.
T. Zami, D. Chiaroni (2012). Low contention and high resilience to partial failure for colorless and directionless OXC. Proceedings of Photonics in Switching, OSA, paper Fr-S25-O15.
I. Kim, P. Palacharla, X. Wang, D. Bihon, M. D. Feuer, S. L. Woodward (2012). Performance of Colorless, Non-directional ROADMs with Modular Client-side Fiber Cross-connects. Proceedings of Optical Fiber Communication Conference (OFC2012), OSA, paper NM3F.7.
Y. Li, L. Gao, G. Shen, L. Peng (2012). Impact of ROADM colorless, directionless and contentionless (CDC) features on optical network performance. Journal of Optical Communication and Networking, IEEE, vol. 4, No. 11, pp. B58-B67.
H.-C. Le, H. Hasegawa, K. Sato (2014). Performance evaluation of large-scale multi-stage hetero-granular optical cross-connects. Optics Express, OSA, vol. 22, no. 3, pp. 3157-3168.
Y. Taniguchi, Y. Yamada, H. Hasegawa, and K. Sato (2012). A novel optical networking scheme utilizing coarse granular optical routing and fine granular add/drop. Proceedings of OFC/NFOEC, OSA, pp. JW2A.2.
R. Hirako, K. Ishii, H. Hasegawa, K. Sato, H. Takahashi, M. Okuno (2011). Development of Single PLC-Chip Waveband Selective Switch that Has Extra Ports for Grooming and Termination. Proceedings of the 16th Opto-Electronics and Communications Conference, IEEE, pp. 492-493.
Hai-Chau Le, Thanh Long Mai, Ngoc T. Dang (2017). Spectrum Utilization of Coarse Granular Routing Elastic Optical Networks. Proceedings of SoICT’17: Eighth International Symposium on Information and Communication Technology, pp. 197-203.
Downloads
Published
How to Cite
Issue
Section
License
I assign to Informatica, An International Journal of Computing and Informatics ("Journal") the copyright in the manuscript identified above and any additional material (figures, tables, illustrations, software or other information intended for publication) submitted as part of or as a supplement to the manuscript ("Paper") in all forms and media throughout the world, in all languages, for the full term of copyright, effective when and if the article is accepted for publication. This transfer includes the right to reproduce and/or to distribute the Paper to other journals or digital libraries in electronic and online forms and systems.
I understand that I retain the rights to use the pre-prints, off-prints, accepted manuscript and published journal Paper for personal use, scholarly purposes and internal institutional use.
In certain cases, I can ask for retaining the publishing rights of the Paper. The Journal can permit or deny the request for publishing rights, to which I fully agree.
I declare that the submitted Paper is original, has been written by the stated authors and has not been published elsewhere nor is currently being considered for publication by any other journal and will not be submitted for such review while under review by this Journal. The Paper contains no material that violates proprietary rights of any other person or entity. I have obtained written permission from copyright owners for any excerpts from copyrighted works that are included and have credited the sources in my article. I have informed the co-author(s) of the terms of this publishing agreement.
Copyright © Slovenian Society Informatika