Blur Invariant Features For Exposing Region Duplication Forgery Using ANMS And Local Phase Quantization
DOI:
https://doi.org/10.31449/inf.v42i4.1914Abstract
In digital image forensics, local interest points can be employed to faithfully detect region duplication forgery. Authentic images may be abused by copy-move forgery to fully contained duplicated regions such as objects. Recent existing local interest point forgery detection methods fail to detect this type of forgery in the retouched regions by some geometric transformations. To solve this challenge, local interest points should be detected which cover all the regions with high primitives like corners and edges. These primitives represent the internal structure of any object in the image which makes them have a discriminating property under geometric transformations such as scale and rotation operation. They can be exposed based on Scale-Invariant Features Transform (SIFT) algorithm. Here, we provide an image forgery detection technique by using local interest points. First, the image is segmented based on fuzzy C means to divide the image into homogenous regions that have the same texture. Second, local interest points are exposed by extracting Adaptive non-maximal suppression (ANMS) from dividing blocks in the segmented image to detect such corners of objects. We also demonstrate that ANMS Keypoints can be effectively utilized to detect blurred and scaled forged regions. The ANMS features of the image are shown to exhibit the internal structure of copy moved region. We provide a new texture descriptor called local phase Quantization (LPQ) that is robust to image blurring and also to eliminate the false positives of duplicated regions. Experimental results show that our scheme has the ability to reveal region duplication forgeries under scaling, rotation and blur manipulation of JPEG images on MICC-F220 and CASIA v. 2 Image DatasetsDownloads
Published
How to Cite
Issue
Section
License
I assign to Informatica, An International Journal of Computing and Informatics ("Journal") the copyright in the manuscript identified above and any additional material (figures, tables, illustrations, software or other information intended for publication) submitted as part of or as a supplement to the manuscript ("Paper") in all forms and media throughout the world, in all languages, for the full term of copyright, effective when and if the article is accepted for publication. This transfer includes the right to reproduce and/or to distribute the Paper to other journals or digital libraries in electronic and online forms and systems.
I understand that I retain the rights to use the pre-prints, off-prints, accepted manuscript and published journal Paper for personal use, scholarly purposes and internal institutional use.
In certain cases, I can ask for retaining the publishing rights of the Paper. The Journal can permit or deny the request for publishing rights, to which I fully agree.
I declare that the submitted Paper is original, has been written by the stated authors and has not been published elsewhere nor is currently being considered for publication by any other journal and will not be submitted for such review while under review by this Journal. The Paper contains no material that violates proprietary rights of any other person or entity. I have obtained written permission from copyright owners for any excerpts from copyrighted works that are included and have credited the sources in my article. I have informed the co-author(s) of the terms of this publishing agreement.
Copyright © Slovenian Society Informatika