Mutual Information Based Feature Selection for Fingerprint Identification
DOI:
https://doi.org/10.31449/inf.v43i2.1621Abstract
In the field of fingerprint identification, local histograms coding is one of the most popular techniques used for fingerprint representation, due to its simplicity. This technique is based on the concatenation of the local histograms resulting in a high dimension histogram, which causes two problems. First, long computing time and big memory capacities are required with databases growing. Second, the recognition rate may be degraded due to the curse of dimensionality phenomenon. In order to resolve these problems, we propose to reduce the dimensionality of histograms by choosing only the pertinent bins from them using a feature selection approach based on the mutual information computation. For fingerprint features extraction we use four descriptors: Local Binary Patterns (LBP), Histogram of Gradients (HoG), Local Phase Quantization (LPQ) and Binarized Statistical Image Features (BSIF). As mutual information based selection methods, we use four strategies: Maximization of Mutual Information (MIFS), minimum Redundancy and Maximal Relevance (mRMR), Conditional Info max Feature Extraction (CIFE) and Joint Mutual Information (JMI). We compare results in terms of recognition rates and number of selected features for the investigated descriptors and selection strategies. Our results are conducted on the four FVC 2002 datasets which present different image qualities. We show that the combination of mRMR or CIFE feature selection methods with HoG features gives the best results. We also show that the selection of useful fingerprint features can surely improve the recognition rate and reduce the complexity of the system in terms of computation cost. The feature selection algorithms may reach 98% of time reduction by considering only 20% of the total number of features while also improving the recognition rate of about 2% by avoiding the curse of dimensionality phenomena.Downloads
Published
How to Cite
Issue
Section
License
I assign to Informatica, An International Journal of Computing and Informatics ("Journal") the copyright in the manuscript identified above and any additional material (figures, tables, illustrations, software or other information intended for publication) submitted as part of or as a supplement to the manuscript ("Paper") in all forms and media throughout the world, in all languages, for the full term of copyright, effective when and if the article is accepted for publication. This transfer includes the right to reproduce and/or to distribute the Paper to other journals or digital libraries in electronic and online forms and systems.
I understand that I retain the rights to use the pre-prints, off-prints, accepted manuscript and published journal Paper for personal use, scholarly purposes and internal institutional use.
In certain cases, I can ask for retaining the publishing rights of the Paper. The Journal can permit or deny the request for publishing rights, to which I fully agree.
I declare that the submitted Paper is original, has been written by the stated authors and has not been published elsewhere nor is currently being considered for publication by any other journal and will not be submitted for such review while under review by this Journal. The Paper contains no material that violates proprietary rights of any other person or entity. I have obtained written permission from copyright owners for any excerpts from copyrighted works that are included and have credited the sources in my article. I have informed the co-author(s) of the terms of this publishing agreement.
Copyright © Slovenian Society Informatika