82h—58¢ "dd ‘¢ 1oquinN (000¢) $¢ BoNEWLIOJU]




[ S———

s

Informatica

An International Journal of Computing and 'Inf(\)rmatics

Archive of abstracts may be accessed at USA: http://, Europe: http://ai.ijs.si/informatica, Asia:
http://www.comp.nus.edu.sg/ liuh/Informatica/index.htrml.

Subseription Information Informatica (ISSN 0350-5596) is published four times a year in Spring, Summer,
Autumn, and Winter (4 issues per year) by the Slovene Society Informatika, VoZarski pot 12, 1000 Ljubl_]ana
Slovenia.

The subscnption rate for 2000 (Volume 24) is

— DEM 100 (US$ 70) for institutions,

— DEM 50 (US$ 34) for individuals, and

— DEM 20 (US$ 14) for students

plus the mail charge DEM 10 (US$ 7).

Claims for missing issues will be honored free of charge within six months after the publication date of the issue.

BIX chhr Support: Borut Znidar, Krzinj, Slovenia. o :
Lectorship: Fergus F. Smith, AMIDAS d.o.0., Cankarjevo nabreZje 11, Ljubljana, Slovema ’
Printed by Biro M, d.o.0., Zibertova 1, 1000 Ljubl_]ana Slovenia.

Orders for subscription may be placed by telephone or fax using any major credit card. Please call Mr. R. Murn,
JoZef Stefan Institute: Tel (+386) 1 4773 900, Fax (+386) 1 219 385, or scnd checks or VISA card number or use
the bank account number 900-27620-5159/4 Nova Ljubljanska Banka d.d. Slovenia (LB 50101-678-51841 for
domestic subscribers only).

Informatica is published in cooperation with the following societies (and contact persons):
Robotics Society of Slovenia (Jadran Lenarcic) :

Slovene Society for Pattern Recognition (Franjo Pernug)

Slovenian Artificial Intelligence Society; Cognitive Science Society (MatjaZ Gams -

Slovenian Society of Mathematicians, Physicists and Astronomers (Bojan Mohar)

Automatic Control Society of Slovenia (Borut Zupan¢ic)

Slovenian Association of Technical and Natural Sciences / Engineering Academy of Slovenia (Janez Peklenik)

Informatica is surveyed by: Al and Robotic Abstracts, AI References, ACM Computing Surveys, ACM Digital
Library, Applied Science & Techn. Index, COMPENDEX*PLUS, Computer ASAP, Computer Literature Index,
Cur. Cont. & Comp. & Math. Scar., Current Mathematical Publications, Engineering Index, INSPEC,
Mathematical Reviews, MathSci, Sociological Abstracts, Uncover, Zentralblatt {iir Mathematik, Linguistics and

Language Behaviour Abstracts, Cybernetica Newsletter

The issuing of the Informatica journal is financially supported by thc Ministry for Science and Technology, Sloven-

~ ska 50, 1000 Ljubljana, Slovenia.

Post rax payed at post 1102 Ljubljana. Slovenia taxe Percue.



http://
http://ai.ij's.si/informatica
http://www.comp.nus.edu.sg/liuh/Informatica/index.html

T T~

R gt Pt S

N

Informatica 24 (2000) 285-286 285

Introduction: Attribute Grammars and Their Applications

Attribute grammars are formalism for specifying the
syntax and the static semantics of programming languages,
as well as for implementing syntax-directed editors, com-
pilers/interpreters, debuggers and compiler/interpreter gen-
erators.  Attribute grammars have become one of the
most fundamental formalism of modern Computer Science.
Since 1968, when Knuth [5] introduced the basic concepts,
more than 1100 references [2] on theoretical aspects, ap-
plications and systems have appeared, proving the inten-
sive research and importance of the area [3, 6, 7]. Research
on attribute grammars in the first 15 years, when theoret-
ical concepts (S-attributed grammars, L-attributed gram-
mars, absolutely noncircular attribute grammars, ordered
attribute grammars) and basic implementations (FOLDS,
GAG, LINGUIST-86, HLP-84) were developed, moved to
more pragmatic issues in recent years. Recently, there has
been a lot of research work on augmenting ordinary at-
tribute grammars with extensions to overcome the deficien-
cies of attribute grammars, such as lack of modularity, ex-
tensibility and reusability. Several concepts, such as remote
attribute access, object-orientation, templates, rule models,
symbol computations, high order features etc., have been
implemented in various attribute grammar specification
languages [3]. The implementation of programming lan-
guages is the original and the most widely recognized area
of attribute grammars, but there are many other areas where
they are used: software engineering, static analysis of pro-
grams, natural language processing, graphical user inter-
faces, communication protocols, databases, pattern recog-
nition, hardware design, rapid prototyping domain-specific
languages, web computing, e-commerce, etc.

The aim  of  workshops  WAGA'99  and
WAGA’00 was to bring together researchers from
academia and industry interested in the field of attribute
grammars. Workshops covered all aspects of attribute
grammars, with special emphasis on new applications of
attribute grammars and comparisons to other formalisms
and to programming languages. WAGA’99 was held on
March 26th, 1999 in Amsterdam, The Netherlands, as a
satellite event of ETAPS’99, European Joint Conferences
on Theory and Practice of Software. WAGA’00 was held
on July 7th, 2000 in Ponte de Lima, Portugal, as a satellite
event of MPC’2000, the 5th International Conference on
Mathematics of Program Construction.

This special issue on Attribute Grammars and their Ap-
plications contains 6 papers, which have been selected
from 37 submissions, of which 21 were accepted for pre-
sentation at WAGA’99 [7] and WAGA’00 [8]. These papers
are extensively revised versions of original presentations
published in WAGA proceedings [7, 8].

The first paper presents a new structure-oriented denota-
tional semantics of attribute grammars where the attributed
tree is presented by nested records. Katsuhiko Gondow
and Takuya Katayama, in Attribute Grammars as Record

Calculus - A Structure-Oriented Denotational Semantics of
Attribute Grammars by Using Cardelli’s Record Calculus,
describe the theoretical framework for modeling attribute
grammar extensions, such as higher-order attribute gram-
mars, recursive attribute grammars and object-oriented at-
tribute grammars. The new formalism is implemented us-
ing SML/NJ. Next two papers describe an object-oriented
extension to canonical attribute grammars. Gorel Hedin,
in Reference Attributed Grammars, introduces reference
semantics to attribute grammars where attributes are al-
lowed to be references to nodes in the syntax tree. Im-
portant practical problems, such as name and type analy-
sis, inheritance, qualified use, and assignment compatibil-'
ity in the presence of subtyping, can be expressed in a con-
cise and modular manner in these grammars. The formal-
ism and efficient algorithm have been implemented in AP-
PLLAB, an interactive language development tool. The next
paper is focused on incremental language design. Mar-
jan Mernik, Mitja Leni¢, Enis AvdiCausevi¢ and Viljem
Zumer, in Multiple Attribute Grammar Inheritance, intro-
duce a new object-oriented attribute grammar specification
language where specifications can be developed incremen-
tally with multiple attribute grammar inheritance. Multi-
ple attribute grammar inheritance is a structural organiza-
tion of attribute grammars where the attribute grammar in-
herits the specifications from ancestor attribute grammars,
may add new specifications or may override some spec-
ifications from ancestor specifications. The approach is
successfully implemented in the compiler/interpreter gen-
erator tool LISA ver. 2.0. Modular descriptions of at-
tribute grammar specification languages is a topic of the
next paper. Oege de Moor, Kevin Backhouse and Doaitse
Swierstra in First-class Attribute Grammars, presented a
semantic view of attribute grammars, embedded as first-
class values in the lazy functional programming language
Haskell. In the next paper the importance of attribute gram-
mars to functional programming is presented. Loic Corren-
son, in Equational Semantics, continues his work on sym-
bolic composition where the deforestation method provides
a better deforestation method than other existing functional
techniques. The equational program is a set of proper-
ties that rely on attributes and are especially dedicated to
program transformations, such as partial evaluation, reduc-
tion, specialization, deforestation and elimination of iden-
tity. One drawback of attribute grammars is also that non-
linear algorithms can not be expressed. However, this is not
true for Equational Semantics, a formalism largely inspired
by attribute grammars, but where non-linear algorithms can
be encoded. In some sense, Equational Semantics is a kind
of lambda-calculus dedicated to program transformations.
In the final paper Two-dimensional Approximation Cover-
age, Jorg Harm and Ralf Liammel present fundamentals
for attribute grammar testing. Developing, extending and
tuning real-world attribute grammar specifications are non-
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trivial tasks. Automatic generation and application of test
cases are then of great help to the language developer. The
proposed approach is also applicable to first-order declar-
ative programs, such as logic programs and constructive
algebraic specifications.

In conclusion, we hope the papers in this special issue
will provide readers with the glimpse of current research
trends in attribute grammars. Also, we wish to sincerely
thank the Program Committee for their assistance in the
reviewing process.
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1 Introduction

In this paper, we present a new denotational semantics of
attribute grammars (AGs) [15] [16] [6] based on Cardelli’s
record calculus [5][1]. This semantics is structure-oriented
as well as natural and simple. Unlike previous works, an
attributed tree is represented as a nested record to preserve
its structural information.

AGs[15][16][6] are a formal system for specifying se-
mantics of programming languages, and many compiler
generators are studied and implemented [7][14]. Since
the latter half of 1980s, however, syntax-directed edi-
tors based on AGs have been considered useful in de-
scribing and generating interactive programming environ-
ments [21]. Declarative structures, separation of semantics
and syntax definition, local description resulting in high
readability and high maintainability, and clear description
caused by functional computation of attributes are the pos-
itive characteristics of AGs.

Using AGs, interactive programming environments are
often described as attributed trees with several AG exten-
sions, e.g., higher-order AGs (HAGs)[26][{23], subtree re-
placement in the Synthesizer Generator[10] and in object-
oriented AGs(OOAG)[22][9], recursive AGs(RAGs)[8],
and remote access[10][16][12]. Unfortunately, it was not
easy to compare various definitions for these extensions
in a formal way. One of the reasons is that previous
studies(e.g., [24][13]) for AG semantics are not structure-
oriented, that is, they are based on attribute valuation, not
an attributed tree itself. For example, AG semantics based
on attribute valuation can not deal directly with program

Revised: August 28, 2000

Accepted: September 11, 2000

transformationsuch as a X (b+¢) = a xb+a x ¢, since it
focuses only on attribute values, not on the structure of an
attributed tree.

In [24], Takeda and Katayama defined a semantics of
AGs as a sequence of all attribute values in an attributed
tree. In [13], Johnsson defined it as a collection of func-
tions to compute values of synthesized attributes. These
semantics are essentially based on attribute valuation, not
an attributed tree itself. Thus, these formal semantics lack
the structural information in AGs, so they do not suit to for-
malize structure-oriented aspects of OOAG, HAGs, and so
on.

Fig.l shows the overview of the new semantics. A
derivation tree is represented as a term like p; (p2, p3), and
an attributed tree is represented as a nested record like
{a = 1,X = (a = 1)) where, for example, a denotes an
attribute and X denotes a nonterminal. A production rule
p and its semantic rules R(p) are translated into a function
pe. In other words, an AG is represented as a set of pg.
The semantic function £ is the key of our AG semantics;
the semantic function £ corresponds to an attribute evalu-
ator. The definition of £ is defined as simple recursion on
tree structures in Def.3.6 as follows.

Elp(te, .- tn)] = pself.pe(E[t], - .. , E[tr], self)
where t1, ... ,t, are subtrees of the derivation tree, and
4 is a fixed-point operator.
We think the semantics is a good theoretical groundwork
for modeling AG extensions (especially structure-oriented
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(Attribute Grammar World)

sentence derivation tree attributed
lree
attribute
parung evaluanon
w = abed - - - A
(G A R)
A
H Y v
Y a set of \
pe (a —
pi(p2,p3) ——» (a = 1))
term £ record

(Record Calculus World)

Figure 1: Relations among Attribute Grammars, Attribute
Evaluator, Semantic Function £, and Function pg

ones). To show it, we also represent HAGs, RAGs and
OOAG as record calculus.

The rest of the paper is organized as follows. In the
next section, Section 2, we present a brief background of
AGs and Cardelli’s record calculus. Section 3 provides the
new AG semantics by using record calculus. In Section 4,
we represent AG extensions as record calculus. Section 5
gives a simple implementation using SML/NJ[25]. Section
6 summarizes this paper and future works are presented in
Section 7.

2 Backgrounds

2.1 Definition of Attribute Grammars

This section provides a tuple-style definition of AGs and
some terminology.

An AG is defined by a 3-tuple AG = (G, A, R), where
G is an underlying context free grammar, A is a finite set of
attributes and R is a finite set of semantic rules. A context
free grammar is defined by a 4-tuple G = (N, T, S, P),
where IV is a finite set of nonterminals, T is a finite set of
terminals, S € N is a start symbol, and P is a finite set of
production rules.

Each nonterminal is associated with two disjoint finite
set Inh(X) and Syn(X), where Inh(X) N Syn(X) =
p,A = Uxen(nh(X) U Syn(X)). An element of
Inh(X) is called an inherited attribute, and that of Syn(X)
is called a synthesized attribute.

For a productionrule p : Xo = X1 --- X, we call an
attribute @ of X; occurring in the semantic rules in R(p)
an attribute occurrence, which is written as X; - a, where
0<i<mnanda € Inh(X;) U Syn(X;)'. The following
Occur(p) is a set of attribute occurrences that may occur in

"We use < -
ing operator

to distinguish an attribute occurrence from record select-
.’ given in Section 2.2.

K. Gondow et al.

Occur(p) = {X;-a|(0<i<n)
Ala € Inh(X;) U Syn(X,))}

A set R(p) of semantic rules associated with a produc-
tionrulep : Xo — X1 --- X, is defined:

Rp)={X;-a=c¢|i =0Aa € Syn(Xo))V
(L<i<nAace Inh(Xy),e € Exp(Occur(p))}

where B = (J,cp R(p), and Exp(Occur(p)) is a set of
terms constructed by attribute occurrences Occur(p) and
function symbols.

For a given derivation tree on an AG, the denotational se-
mantics of the AG is the attributed tree where all attribute
values on the derivation tree satisfy their associated seman-
tics rules. In other words, the semantic function of an AG
is a mapping from any derivation tree to the attributed tree
where all values of attributes are consistent.

A condition “attribute dependencies on any derivation
tree is cycle free” is a sufficient condition (not a neces-
sary one) to be able to compute all attribute values on the
derivation tree. AGs that hold this condition are called
non-circular AGs. This paper does not suppose non-
circular AGs. A wider class of recursive AGs introduced
by Farrow(8] is represented as records in Def.4.2.

2.1.1 An Example AG

Example 2.1 (AG;: n-radix numerals)
AG; = (G, A, R) is defined as follows.

N = {N,I,D}

T = {0,1,...,9}

S = N

P = {pv:N=>ILpn:I1-21D,pp: 12D,

ppo:D—=0, ..., ppg: D — 9}

Inh(N) = {radix}
Inh(l) = Inh(D) = {scale, radix}
Syn(N) = Syn(l) = Syn(D) = {val}
R(pn) = {I-scale=0,

I-radix = N - radix,
N-val=1-val }

R(pnn) = {Iz-scale=1; -scale+1,
D - scale =I; - scale,
I, - radix =1 - radix,
D . radix = I - radix,
I -val = Iz - val + D - val}
R(piz) = {D-scale=1-scale,
D -radix = I - radix,
I-val =D - val}
R{pp;) = {D-val=

¢ x D -radix 1 D - scale}

We assume that the value of inherited attribute N - radix
is given a priori. Symbols 4+, X%, and 1 are infix operators
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radix=8 ll\Ival=156

scale=0 radix=8 Va[=156

scale=1 radix=8 ] val=152scale=0radix=8]) val=4
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Figure 2: An Attributed Tree where w = 234, N.radix = 8

for addition, multiplication, and power respectively. To dis-
tinguish between different occurrences of the same nonter-
minal I in a production, indexing is used like I; and Is.
R(pp;) = {---} is an abbreviation for each definition of
R(pDo) T R(ng)-

a

Readers can understand AG} intuitively as follows. Let
the value of N-radix be n, then the value of N-val indicates
the value of w € L(G) as n-radix numeral. Fig.2 shows
attributed trees where w = 234 and N - radix = 8. Arrows
in Fig.2 indicate dependencies between attribute instances
(a — brepresents “b depends on a”).

Any traditional semantics is enough when you need only
the value of N - val, but not when you want to handle at-
tribute trees as databases (or interactive programming en-
vironments). For example, you may want to search leaves
whose values are 3 and change them to 0. The traditional
semantics can not deal with such cases. Therefore we need
a new semantics that handle not only attribute values but
also attributed trees.

2.2 Definition of Cardelli’s Record Calculus

In this section, we briefly explain a record and its calculus
introduced by Cardelli{S][1]. We do not explain a record
type, since it is beyond the scope of this paper to consider
the aspects of record types. A Cardelli’s record is a finite
mapping from labels to values. A record is written?:

(ll =V15.-- )ln:U'ﬂ)

where l1,... ,l, are labels, and vy, ... ,v, are associ-
ated values, respectively. Each [; = v; (1 < i < n) is
called a field. The following is an example record.

(@ =1,b = false)

2In [5](1], symbols ‘{” and ‘}’ are used as record constructors. But,
to distinguish between a record and a set explicitly, we use ‘(" and *)* for
record instead of ‘{’ and ‘}’.

Informatica 24 (2000) 287299 289

Selecting the value associated with a label [ of a record

'r is given by r.[. Therefore, the value of the following

expression is 1.
{a = 1,b = false).a

We assume the selecting operator is left associative,
so we abbreviate (- - - ((r.dy).d2) -+ 1) to rdyda. -+ Ay,
where r is arecord and [y, l2, ... , [, are labels. For exam-
ple, the value of following expression is false.

(a = {a = 1,b=false), b = true).a.b

A record calculus used in this paper is A-calculus with
the following reduction rule (1 < ¢ < n).

(ll =V1,... ,ln=vn).li$vi

2.3 Objects and Classes as Records

Many studies have been done to formalize and discuss the
various concepts in object-oriented programming such as
objects, classes, encapsulation and inheritance by using
record calculus (e.g., [1][4]{2][3]). This section gives a
brief review for objects and classes represented as records.

— Objects are represented as records whose fields are
methods and instance variables. For example, an ob-
ject point has two instance variables z and y and one
method dist.

point = (z = 10,y = 20, dist = sqrt(z® + y*))

Note that the method dist refers to labels « and y in
point. Thus, the methods of an object may refer to
each other. To eliminate references to labels z and
i, a binding variable self and a fixed-point operator p
are traditionally used; the variable self corresponds to
pseudo-variable self in object-oriented programming
languages.

point
= {(z =10,y = 20,
dist = sqrt(point.x® + point.y?))
= (Aself.{z =10,y = 20,
dist = sqrt{self .z* + self .y*)))(point)
= pself (x =10,y = 20,
dist = sqrt(self x> + self .y*))

where p is a fixed-point operator. A fixed-point of f
(that is, z that satisfies z = f(z)) is represented as
uz.f(z). The fixed-point operator has the unrolling
rule:

pz.f(z) = flpz. f(z))
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For readability, we also use a fixed-point combinator
Y.

pe-f(z) = Y(f)
The combinator Y has the following reduction rule.

Y(f) = F(Y(f)

~ Classes are parameterized objects (i.e. functions) that
return object records.

pointclass
= Mg Aiy.pself (z =iz, y =1,
dist = sqrt(self .2 + self .y?))

The methods of an object may refer to any class to
create new instances, so a class may be (mutual) re-
cursively defined. In the following example, we use
myclass and u to eliminate a recursive occurrence of
pointclass.

pointclass
= Nig.Aly.pself {x =i,y =1y,
dist = sqrt(self .x? + self .y?),
move = Adz.Ady.pointclass
(self .x + dz)(self .y + dy))
= pmyclass. Mg My pself (x = iz, y =1y,
dist = sqrt(self .z + self .y?),
move = Adz.Ady.myclass
(self .z + dz)(self .y + dy))

3 Formalizing AGs by Using Record
Calculus

In this section, we define a new denotational semantics of
AGs by using record calculus.

First, an attributed tree is represented as a nested record
(Section 3.1). In Section 3.2, we introduce a function pg,
which corresponds to a production rule p and a set of se-
mantic rules R(p). Here we use a term as a linear notation
to express a derivation tree. In Section 3.3, we define the
semantic function £. We give an example to show a process
of computing attributed trees from derivation trees (Section
3.4).

3.1 Record Representation for Attributed
trees

In this section, we show how to represent an attributed tree
as records.
Each node in an attributed tree has:

~ attributes and their values

—~ subtrees

K. Gondow et al.

Figure 3: An Attributed Tree: Ty

Therefore, it is natural to regard an attributed tree as a
record which has fields for both attributes and subtrees.

Definition 3.1
tributed Tree)

Let the top production rule of an attributed tree be p :
Xg = Xi---X,. The record representation for an at-
tributed tree is defined by the record that has the following
fields:

(Record Representation for an At-

1. fields whose labels are X; (1 < 7 < n), and whose
values are records that represents attributed subtrees
rooted in X; (1 < i < n), respectively

2. fields whose labels are attributes @ € Inh(Xp) U
Syn(Xo), and whose values are values of attribute in-
stances, respectively

a

To illustrate Def.3.1, consider an attributed tree in Fig.3.
An attributed tree T in Fig.3 is represented as the follow-
ing record by Def.3.1:

Ty :< levi“---)ip:'v‘ipa
81 = Uy, ... ;8¢ = Vs,
X1 =Ty, Xn=Ta )

where 1;(1 < j < p) is an instance of an inherited at-
tribute in Inh(Xo), 51 (1 < k < gq) is an instance of a syn-
thesized attribute in Syn(Xy), v, is the value of an attribute
instance a, and T;(1 < ! < n) is a record which represents
an attributed subtree rooted in X;.

For example, the following record represents an at-
tributed tree IV in Fig.2.

N = (radix = 8, val = 156,
I = (scale = 0, radix = 8, val = 156,
I, = (scale = 1, radix = 8, val = 152,
Iz = (scale = 2, radix = §, val = 128,
D = (scale = 2,radix = 8, val = 128)),
D = {scale = 1,radix = 8, val = 24)},
D = (scale = 0,radix = 8, val = 4)))
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3.2 Translating from an AG to a Set of
Functions pg

In this section, we define a function pg, which we need
later in Section 3.3 to define the semantic function £. A
function pg¢ has the following information.

1. aproductionrulep: Xg — X;--- X,
2. aset of semantic rules R(p)

3. aset of attributes Syn(Xo) U Inh(Xj)

Roughly speaking, input of pg is (1) attributed sub-
trees A-abstracted with inherited attributes on their roots
(‘child;” in Def.3.2), and (2) an attributed tree A-abstracted
with inherited attributes on its root (a ‘self” in Def.3.2),
which is equal to pg’s output. Output (=self) of pg has
the top production rule p on its root. Thus, an attributed
tree ‘self’ is recursively defined by pe, attributed subtrees
‘child,’, ... ,‘child,’, and ‘self’ itself as follows.

self = pg(childy, ... ,child,, self)
(See Def.3.2,3.6 for the formal definitions.)

Definition 3.2 (Function pg)
For a production rule p : X, — X;---X,, let
Inh(X;), Syn(X;) (0 < j < n) and R(p) be as follows.

Inh(Xj) = {ij,l’ s vijypj}
Syn(X;) = {sj1y--- 85,4
R(p) =
{
Xo- 50,1 = €0,15- - - , Xo - 80,90 = €0,q0>

X, *21,1 = €11y .- , X1 'il,Pl = €l,p1s

Xn - In,l = €En,1y--- v Xn - Tn,pn = €n,pn

}

Then, p¢ is defined as follows,

pf\childl -+« Achild,,.Aself. Ainhy - - - Ainhp, .
(
iO,l = inhl, . ,io,po = inhpo,
S0,1 = e(,),lv <09 50,q0 = ef),qoa
Xy = childy(e] 1,---,€1,,),
) Xn = childp(ey, 1,--- s€np.)

where forany ,k ((j = 0A1 <k < g)V(1<j<nA
1 <k < pj)), €j, is a term where all attribute occurrences
a are replaced with ag in e; p(each right-hand side of a
production rule p). A term ag¢ is defined as follows.
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self(inhy, ... ,inh,,).X;.a
_ (ifa=X;-anl1<i<n)
@€ =19 self(inhy,... ,inhy).a
(ifa = Xo - a)

0

In Def.3.2, the reason why ‘self” appears recursively in
the body of pg as its argument is:

1. pe is a constructor i.e. a mapping from attributed sub-
trees ‘child;’ to an attributed tree ‘self’, that is, ‘self’
depends on ‘child;’.

2. Inherited attributes in ‘child;” may depend on inher-
ited attributes in ‘self’, that is, ‘child;’ depends on
‘self’.

3. From (1) and (2), ‘self’ depends on ‘self’ itself, so
‘self” needs to be defined recursively.

If non-circular AGs are supposed, it is, of course, pos-
sible to define AG semantics without g operator nor other
recursive directives like letrec, but the definition would be
so complicated; using p operator helps to make the defini-
tion simple.

The definition of ag needs to be divided into two cases
in Def.3.2, since “Xp - a is an attribute of ‘self’, but on the
other hand X; - a(1 < i < n) is an attribute of ‘child;’ of
‘self’ ”, where of corresponds to the record selector “.".

For function symbols ‘self’ and ‘child;” in Def.3.2, a
notation f(z) represents an application of function f to
an argument z, and f{zy)(z2)...(z,) is abbreviated to
f(z1,...,z,). And a nullary function f() will be also ab-
breviated to f.

3.3 Definition of the Semantic Function £

This section presents the definition of the semantic func-
tion £ by using pg defined in Section 3.2. The semantic
function defined here is a mapping from a set of derivation
trees T to a set of attributed trees R. More precisely, T is
a set of terms which represents derivation trees (Def.3.3),
and R is a set of records which represent attributed trees as
semantics of the AG.

Before defining £, we provide a term representation for
an attributed tree and a definition of T, then we define se-
mantic function &.

Definition 3.3
tributed Tree)

We define a set of sorts N and a set of operators P as-
sociated with a set of nonterminals N and a set of pro-
duction rules P, respectively. For each production rule
p: Xo = Xi1---Xn € P, we also define its arity and
sort as follows.

(Term Representation for an At-

arity(p) XiXg - X,
sort(p) = Xg
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In other words, we regard a production rule p as a func-
tion symbol p typed:

P:X1,... , Xn = Xo

Let Xy — Xj---X, be a production rule at the root
of a derivation tree Tp, and let ¢;(1 < ¢ < n) be a term
which represents a derivation subtree rooted in X;. Then,
a term that represents a derivation tree Ty is defined by

p(tl, . ,tn).
O

For example, a term that represents a derivation tree in
Fig.2 produced by the AG of Example 2.1 is as follows.

pn (P11 (P11 (p12(PD2), PD3), PD4))

Definition 3.4 (Term Set of Derivation Trees)

We define recursively Tx, (Z¢, ¢) (a set of ground terms
of sort Xg) produced by a signature g = (N, P) associ-
ated with a grammar G as follows.

1. If arity(p)=¢ and sort(p)=Xg, then p € Tx,(Zq, ¢)

2. If arity(p)=X . . . Xpn.s0rt(p)=Xg and t; € Tx, (E¢, §)
where 1 <4 < n, thenp(ty,... ,tn) € Tx,(Za, @)

]

Txo(Zq, @) is a set of terms that represents derivation
trees whose roots are labeled by Xo. Here ¢ means that
Txo(E, @) has no variables.

Definition 3.5 (T: Term Set of Grammar G)
A term set T of derivation trees produced by grammar
G = (N,T, S, P) is defined as follows.

T= ] (¢, ¢)

XeN
O

Note that T includes not only 75(X¢, ¢) (a term set for
derivation trees whose roots are labeled with the start sym-
bol S), but also Tx(Z¢g, ¢) whose roots are labeled with
any other nonterminals X € N.

Def.3.3,3.4 and 3.5 were originally defined by Vogt et al.
in [26], and we slightly modified them to fit our notations.

Definition 3.6 (A Semantic Function of AGs: &)

A semantic function £ : T — R is defined here, which
is a mapping from a set of terms that represents derivation
trees to a set of records that represents attributed trees.

For a productionrule p : Xg = X;---X,, and ¢; €
Tx;(Ze, ¢) where 1 < i < n, the semantics of a derivation
tree p(t1, ... ,tn) is defined by using the semantic function
& as follows:

Elptay- .. ytn)] = pself.pe(Eft], . - -, E[tn], self)

K. Gondow et al.

O

Here we illustrate the meaning of Def.3.6. Def.3.6 de-
fines that the semantics E[p(t1,... ,tx)] of a derivation
tree p(£1, ... ,t,) is the record that represents its attributed
tree. This is obtained by applying a function pg to at-
tributed subtrees child;, ... , child,,, and self.

Elp(t,. ..

We can derive Def.3.6 from the three facts: (1) a right-
hand side of this expression is equal to ‘self” itself, (2)
child; = £[t;] (1 £ 1 < n), and (3) the definition of g,
as follows.

,ta )] = pe(childy,. .. ,child,, self)

self

pe(childy, ... , child,, self)
pself.pg(childy, . .. ,child,, self)
uself.pe(Et1], - .. , E[tn], self)

Elp(ta, - - ta)l = pself.pe(E[ta], - -, E[tn], self)

Note that if Inh(S) # ¢, &[] is a record A-abstracted
with elements of Inh(S) as defined in Def.3.2. For ex-
ample, let ¢ be the derivation tree in Fig.2, then we need
to apply £[t] to 8 (that is, £[¢](8)) to obtain the attributed
tree of Fig.2 with N - radix = 8.

34 An Example of Evaluating an AG as
Records

In this section, we show an evaluating process of an AG as
record calculus in order to provide intuitive understanding
of £ defined in Section 3.3.

First, we translate the example AG of Section
2.1.1 into a set of functions pe for all p € P.
Then, we apply the semantic function £ to t =
P (P11 (P11 (P12(Pp2), PD3), Pp4)), resulting in a record
that represents an attributed tree in Fig. 2.

By Def.3.2, we can translate the example AG into the
following functions.

pNe = Achild;. Aself. Ainh; .(
radix = inhy, val = self(inh;).I.val,
I = child, (0, self(inh;).radix))
prie = Achild; Achilds. Aself. Ainhy.Ainhs . {
scale = inh, radix = inhs,
val = self(inhy, inhg).I5.val
+ self(inhy, inhy).D.val,
I = child; (self(inhy, inhs).scale+1,
self(inh;, inhs).radix),
D = childy(self(inhy, inhs).scale,
self(inhy, inhy).radix))
Pi2¢ = Achildy . Aself.Ainh; . Ainhg.(
scale = inhy, radix = inhs,
val= self(inhy, inhs).D.val,
D = child, (self(inhy, inhy).scale,
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self(inh;, inhs).radix))
DPpie = Aself.Ainh;. Ainhg . (
scale = inhy, radix = inhs,
val =1 X self(inhy, inhy).radix
4 self(inhy, inhs).scale)
Similar to Def.2.1, ‘pp;g = ...’ is an abbreviation for
each definition of ppog, - - -, Ppos-
Here we apply the semantic function £ to a term
t = pn(p1i(pri(p12(Pp2), Pp3), Pp4)) that represents the
derivation tree for a word “234”. That is, we calculate
Elpn (P11 (p11(p12(pp2), Pp3), Pp4))] as follows.

Elpp2]

= pself.ppog (self) [By Def.3.6)]
=Y(pp2e) ---(1) (uz.f(z) = Y(f)]
= pp2¢ (Y (Pp2¢)) (Y(f) = f(Y())]

= Ainh;.Ainh,.( scale = inh;, radix = inhs,
val = 2 X Y (ppa2¢g)(inhy, inhs).radix 1
Y (pp2g)(inhy, inhs).scale)  ---(2)
[By applying ppae to Y (ppae)]
= Ainh; . Ainhs.( scale = inh;, radix = inha,

val = 2 x inhy 1 inhy) [(H=(2)]

Similarly, we can show the rest part of the calculation.

Elpi2(pp2)]

= pself.prag (€[pp2], self)

= pself.piog (E]pp2]) (self)

=Y (pr2e(€pp2]))

= pr2e(E[Pp2]) (Y (Pr2e (€[pp2])))

= Ainh; . Ainh,.(scale = inh;, radix = inh,,
val = Y (pi2e (E[pp2]))(inhy, inh;).D.val,
D :5IIPD2]]

(Y (pr2e (€[pp2]) ) (inhy, inhy) .scale,
Y (pr2e (E[pp2])) (inhy, inhy).radix) )

= Ainhy.Ainhy.{scale = inh;, radix = inhs,
val = Y {pr2e(€[pp2])) (inhy, inhy).D.val,
D= E[[ngll(inhl,inhg) )

= Ainh; .Ainhsy.(scale = inhy, radix = inhg,
val = E[ppe](inh,, inhs).val,
D = £[pp2](inh;, inhy) )

= Ainhj.Ainhs.{scale = inh;, radix = inh,,
val = 2 X inhg T inhl,
D = ( scale = inh;, radix = inh,,

val = 2 x inh2 T inh] >>

Elpu1 (pPi2(pPp2), Pp3)] = - - - (omitted)

Underlines in the above calculation mean reducing
places. Finally, we obtain the result of this example record
calculation shown in Fig.4. By applying the result to ‘8’
as the argument ‘inh1’, we get a record that represents the
attributed tree shown in Fig.2.
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4 Formalizing AG extensions

In this section, we formalize as records the following AG
extensions: higher-order AGs, recursive-AGs and object-
oriented AGs. This demonstrates that our denotational
semantics fits well with structure-oriented computational
models based on AGs.

4.1 Higher-Order AGs

Higher Order AGs (HAGs)[26][23] are a structure-oriented
computational model based on AGs. In HAGs, (parts of)
attributed trees can be defined by attribute values, and vice
versa. As suggested in [23], HAGs should handle both of
attributed trees and unattributed ones. But, to simplify this
paper, we assume all trees are attributed. Table 1 summa-
rizes attributed HAGs. In Table 1, €' is the same as e ex-
cept that all attribute occurrences are replaced as defined
in Def.3.2. In Table I, attribute values old;,... , old, are
inherited attributes in old context, while new,,... ,new,
are those in new context.

Note that syntactic reference Xy has the two meanings:
self and self(oldy, ... , old,), because

— we want ¢ to be attributed in old context when access-
ing to the attributes of e, so the meaning of e should
be ‘self(oldy, ... ,o0ld,)’,

— e should be A-abstracted to be attributed in new con-
text when constructing or grafting trees, so the mean-
ing of e should be ‘self’.

Evaluation strategies and techniques like incremental at-
tribute re-evaluation are often important in AG systems, but
it is not so straightforward to handle them in record calcu-
lus. Of course, it is possible to integrate the two meanings
into something like the pair (self, (oldy,. .. , old,)), which
is not given here to keep this paper simple.

4.1.1 An Example HAG

In this section, we show an example HAG to compute fac-
torial numbers, which is almost taken from [26].

Example 4.1 (factorial numbers by HAGs)
HAG, = (G, A, R) is defined as follows.

P ='{pR:R—)F,pF1:F—)F,
Pra : F—- 6}
R(pr) = {F-in=R-in,R out=F-out}
R(pFl) = {F2 = lf(F2 in = O,pF27pF1);
Fy-in=F; -in—1,
Fi1-out =F; -in x Fy - out}
R(pr2) = {F-out=1}

O
The following semantic rule in R{pp ) is important here.

FQ = 1f(F2 cin = 0,PF2,PF1)
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Elpn(pr1(pr(pr2(pp2), Pn3), PD4))]

= Ainh; .(radix = inhy, val = ((2 X inh; 1 2) + (3 X inh;)) + 4,
I = (scale = 0, radix = inhy, val = ((2 x inh; 1 2) + (3 X inh,)) + 4,
I = (scale = 1,radix = inhy,val = (2 x inh; 1 2) + (3 x inh;),
I, = (scale = 2,radix = inh;y,val = 2 x inh; 1 2,
D = (scale = 2,radix = inh;, val = 2 x inh; 1 2))
D = {scale = 1,radix = inh;, val = 3 X inh;))
D = (scale = 0,radix = inhy, val = 4)))

Figure 4: Result of Example Record Calculation

expression record calculus description
Xy self/self(oldy, ... , old,) syntactic reference (attributed tree rooted
in nonterminal Xg)
X; child;/child;(oldy, . .. , old,) | syntactic reference (attributed tree rooted
in nonterminal X;(1 < ¢ < n))
e.qa e.a selection (an attribute value a in the root of
attributed tree €)
pler,... ,en) uself .pg(ey,. .. ,eh,self') | construction (an attributed tree constructed
by a constructor p and attributed subtrees
€1y.-+ ,€n)
e{i1 = newy,... ,in = Newn} e'(newl,... , newl) attribution expressions (an attributed tree e
applied to its inherited attribute values)
semantic rule record calculus description
X=e¢ X =é'(new),... ,new)) | a semantic rule that defines by e the at-
tributed tree rooted in a nonterminal X

Table 1: Extended Syntax and Semantics of Attributed HAGs

It defines the subtree that grows while Fo - in # 0. Fig.5
shows the process of attribute evaluation with R.in = 3.
In Fig.5, the leftmost object shows “the attributed tree for
pr(pr2) where all attributes except nonterminal attributes®
are evaluated” and white right arrows show “the value of
the bottom nonterminal attribute F is bound to pr; or pr2”.

4.1.2 An Example of Calculating Record Semantics
of a HAG

We can obtain the following three functions by applying
Def.3.2 and Table 1 to the HAG, in Example 4.1.

pre = Achild;.Aself. Minhy .(
in = inh;, out = self(inh; ).F.out,
F = child; (self(inh; ).in))
pri1ge =Aself. Ainh; .(
in = inh;,
out = self(inh; ).in x self(inh, ).F2.out,
Fy = (if(self(inh; ).in — 1 = 0,
pselfs. ppog (selfz),
uself; .prig (selfy)))(self(inh; ).in — 1))
prae = Aself.Ainh; .(in = inh;, out = 1)

3 A nonterminal occurring in the left-hand side of semantic rules is
called a nonterminal attribute[26].

Now we can compute E[pr(pr1)](3). This calcula-
tion process corresponds to Fig.5. First, we calculate

5[[PF1]](3)-
Elpr1](3)

= (in = 3,
out = 3 x (uself;.prie(selfi))(2).out,
F2 = (uselfl .pF1g(Self1))(2))

pselfy .prie (selfy))(2)

= (in=2,
out = 2 x (pself;.pr1¢ (selfi))(1).out,
Fy = (uself; .prie(self;)) (1))

pselfy .ppie(selfy))(1)

={in=1,
out = 1 x (uselfs. prag (selfz))(0).out,
Fo = (uselfg.ppgg(selfz))(O))

pselfa . prag (selfz))(0) = (in = 0, out = 1)

Elpr(pr1)](3)
= {in = 3,out = 6,
F = (in = 3,0ut = 6,
Fs = (in = 2,0ut = 2,
Fo=(in=1,out =1,
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in=3 out=? in=3 R out="?
Pr \L Pr

in=3 F out=2 in= F  out=?
Pr1 l/ T E=A, PR \H

in=2 F Ao'ut='? in=2 F ou=7
? D P \‘[J

- B=8, P
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in=3 R out=? in=3 R out=6
Pr Pr l

in=3 F ou=? in=3 F ou=6
P, \I[J Per \iJ

in=2 F out=? ) in= F  out=2

\IJ - \f
in=1 F out=? in=1 out=1

in=0 F out=7

- B=P, Pri

in=0 F out=l

Figure 5: A Calculation of the factorial of 3

R out=6

N

fact_i=Xx.€--) F fact_s=Ax.¢--)

N

Figure 6: An Attributed Tree of RAG; with R -in = 3

FQ = <iIl = U,
out = 1)))})

The result record matches the rightmost attributed tree in
Fig.5.

4.2 Recursive AGs

In [8], Farrow pointed out that even a circularly (i.e. recur-
sively) defined AG can be evaluated if its recursive defini-
tion has the least fixed-point. Such AGs are called recursive
AGs (RAGs). Our formal semantics can deal with RAGs as
it is. To show this, this section gives an example RAG and
translates the RAG into records.

Example 4.2 (RAG;: factorial numbers by RAGs)
RAG, = (G, A, R) is defined as follows.

P = {pp:R=3F, pr:F—oe }
R(pr) = {R- Sut = apply(F - fact_s, R - in),
F . fact_i=F - fact_s }
R(pr) = {F - -fact_s=\z.if(z=0,1,

xx F-fact_i(x—1)) }

RAG; defines factorial numbers as follows.

R-out = FACT(R -in)
F.-fact_i=F- fact_ s = FACT
=Azif(z = 0,1,z x FACT(z — 1))

Fig.6 shows an attributed tree of RAG; with R - in = 3.
As shown Fig.6, fact_i and fact_s are circularly defined. In
the following, we represent RAG1 as record calculus. By
Def.3.2, we can translate RA G, into the two functions.

pre = Achild;. Aself. Ainhy .(
in=inhy,
out=apply(self(inhy).F.fact_s, self(inh;).in),
F=child (self(inh; ).F.fact_s))
pre = Aself. Ainh; . (
fact_i=inhy,
fact_s=Az.if(x =0, 1,
zx(self(inhy).fact_i)(z — 1)))

The following is the record semantics of RAG; (calcu-
lating steps are omitted).

Elpr(pr)]
= Ainhy.(in = inhy, out = FACT(inh,),
F = (fact_i = FACT, fact_s = FACT))

where

FACT
= Y (pre(Epr])) (inhl).F.fact_s
= Az.if(z = 0,1,z x FACT(z — 1))

4.3 OOAG

We have introduced a computational model OOAG
(Object-Oriented AGs)[22][9], which is an extension of
standard AGs by importing message passing and assign-
ment to instance variables (i.e. multiple subtree replace-
ment). This extension makes it easier to describe dynamic
aspects of systems such as:
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Figure 7: Swapping Subtrees

— retrieval:  getting attribute values or attributed
(sub)trees by sending retrieval messages to attributed
trees

— updating: changing tree structures depending on their
attribute values or by sending updating messages to
attributed trees

In OOAG, an attributed tree is regarded as an aggregated
object in object-oriented programming, and attributed sub-
trees and attributes are regarded as instance variables. Mes-
sage passing may cause subtree replacements. As a result
of the subtree replacements, attribute values in the grafting
point generally become inconsistent with each other, that
1s, attribute values do not satisfy their semantic rules. To
recover the situation, the evaluation process of attributes
will be executed for the entire attributed tree in consistent
with the semantic rules. Thus, in OOAG, message passing
and attribute evaluation are alternately repeated.

OOAG is similar in nonterminal occurrences to HAGs,
but OOAG is definitely different from HAGs. OOAG
can update an attributed subtree with another one, while
HAGs can not. To show this, here is given an example
OOAG where a subtree swapping method is implemented.
The method just returns a new object where subtrees are
swapped. So, strictly speaking, this implementation given
here does not implement mutable objects.

Example 4.3 (swapping subtrees by OOAG)

P = {px:X=>YY,py1:Y > ¢
py2:Y — €}
R(px) = {X-swap = f (Y2, Y1)}
R(py1) = {Y-id=1}
R(py2) = {Y-id=2}

O

By Def.3.2, we obtain the following functions from Ex-
ample 4.3.

pxe=pmyclass. Achild; . Achildy. Aself.(
swap = pselfy.myclass(child,, childy, selfs),
Y:=child;, Ya=child,)

Py = /\self.( id=1 )

Py2e = /\Sle.( id=2)

First, we have the following attributed tree ¢ as a result
of evaluating E[px (py1, Py2)]-

t = Elpx (Py1,pv2)]
= { swap = uselfy.pxe ((id = 2), (id = 1), selfp),
Y; ={d=1),Y2 = (id = 2))

K. Gondow et al.

Next, we can obtain the result of t.swap as follows.

t.swap = Epx(pv1,Py2)]-swap
= (swap = pselfz.pxe ((id = 1), (id = 2), selfz),
Y =({d =2),Y2 = (id = 1))

This record represents an attributed tree where Y7 and Ys
are swapped.

5 A Simple Implementation using
SML/NJ

Our new formalization introduced in Section 3 and 4 can be
straightforwardly implemented in functional programming
languages with record types, especially lazy ones. To show
this, we provide a simple implementation using Standard
ML of New Jersey (SML/NJ for short)[25]. Using this im-
plementation method, readers can easily experiment new
ideas of AG extentions as running codes.

Fig. 8 shows a SML code implementing the record se-
mantics of the HAG described in Section 4.1.2%. If you
load and execute the SML code, you can see the following
result, which shows E[pr(pr1)](5) = 120.

% sml

- use "hag.sml";

(omitted)

val tree = p_R1_ p_Fl_ : R_

val atree = p_R1l {F=fn, inl=fn, out=fn} : R
val out = 120 : int

val it = () : unit

Note that a closure technique of delaying evaluation
with functions [20] is used in the SML code in Fig. 8,
since SML/NJ uses call-by-value evaluation rather than
lazy evaluation. Without this technique, the computation
may not terminate on call-by-value evaluators including
SML/NJ. The technique is to write:

- “fn ()

This represents an anonymous function whose argu-
ment () is a dummy, unused empty tuple. The type
of () isunit. A function body expr is not evaluated
until the function is applied.

=> expr”, to delay the evaluation of expr.

— “delayed_expr ()7, where delayed_expris an expres-
sion that evaluated the form “fn () => expr’, to
force the evaluation of the function body expr.

This represents the application of delayed_expr to an
empty tuple. The body expr of delayed_expr is evalu-
ated now.

From our simple implementation, we found SML/NI is
powerful enough to describe our AG formalization straight-
forwardly except the following points.

“We implemented all examples in this paper in the same way, but we
do not give them for lack of space.
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— We have to write many case pattern matchings even
for records that have the same fields, since SML/NJ
has no support for subtyping or inclusion polymor-
phism.

— We have to define the semantic function £ as several
functions (e.g., eval_R and eval_F in Fig. 8) de-
pending on a given AG. This is because in SML/NJ
there is no way to simply describe a function to op-
erate on different user-defined types that can not be
parameterized.

6 Conclusion

In this paper, we first presented a new denotational seman-
tics of attribute grammars (AGs) based on Cardelli’s record
calculus. This semantics is structure-oriented as well as
natural and simple. Unlike previous works, an attributed
tree is represented as a nested record to preserve the struc-
tural information.

Our AG semantics is simple and natural because:

— Our record representation for AGs preserves struc-
tures of attributed trees as well as values of attributes.
There are no extra fields in records; all fields represent
only attributes or attributed subtrees (Def.3.1).

— A function pg is easily obtained by rewriting p and
R(p) (Def.3.2).

— The definition of £ is defined as simple recursion on
tree structures as follows (Def.3.6).

Elp(ta,--- 1 ta)]

= pself.pe(E]t1], ... , E[tn], self)

— Underlying record calculus is simple.

We think the semantics is a good theoretical groundwork
for modeling AG extensions (especially structure-oriented
ones). To show this, we represented HAGs, RAGs and
OOAG as record calculus in Section 4. We also showed
the semantics can be implemented straightforwardly and
simply in a functional language SML/NJ.

7 Future Works

The paper emphasizes that Cardelli’s record calculus
makes it easy to formalize AGs, HAGs, RAGs and OOAG
with a structure-oriented view. In [3], however, Cardelli’s
record calculus is used to formalize inheritance. We will
provide some formalization of AG inheritance extending
our AG semantics, and compare it with previous works on
AG inheritance, e.g., [11][19][18].

Another issue is the generality of our AG seman-
tics. We plan to apply our AG semantics to many
other AG extensions, e.g., modularity concepts[ L 6], remote
access[10][12], and so on.

Informatica 24 (2000) 287-299 297

Acknowledgment

The authors would like to thank our OOAG project mem-
bers, especially Takashi Hagiwara, for their efforts on de-
veloping MAGE2 system and their useful discussions. We
would also like to thank Kikuchi, Yutaka for reading the
draft and making a number of helpful suggestions.

References

[1] L. Cardelli. A semantics of multiple inheritance. In
Information and Computation, pages 138—164, 1988.

[2] Peter Canning, William Cook, Walter Hill, and Wal-
ter Olthoff. F-bounded polymorphism for object-
oriented programming. In FPCA ’89 Conf. Proc.,
pages 273-281, 1989.

[3] William R. Cook, Walter L. Hill, and Peter S. Can-
ning. Inheritance is not subtyping. In Proc. 17thACM
Sympo. on Principles of Programming Languages,
pages 125-135. ACM, 1990.

[4] W. Cook and J. Palsberg. Denotational semantics
of inheritance and its correctness. In Proc. 4th
ACM Conf. on Object-Oriented Programming Sys-
tems, Languages, and Applications, pages 433-443,
1989.

[5] L. Cardelli and P. Wegner. On understanding types,
data abstraction, and polymorphism. In ACM Com-
puting Surveys, Vol.17, No.4, pages 471-522. ACM,
1985.

[6] Pierre Deransart, Martin Jourdan, and Bernard Lorho.
Attribute Grammars: Definitions, Systems, and Bib-
liography, volume 323 of Lec. Notes in Comp. Sci.
Springer-Verlag, 1988.

[7]1 R. Farrow. Generating a Production Compiler from
an Attribute Grammar. IEEE Software, 1(4):77-93,
1984.

[8] Rodney Farrow. Automatic generation of fixed-point-
finding evaluators for circular, but well-defined, at-
tribute grammars. In Proc. the ACM SIGPLAN °86
Sympo. on Compiler Construction, pages 85-98, Palo
Alto, Calif., 1986. ACM.

[9] Katsuhiko Gondow, Takashi Imaizumi, Yoichi Shin-
oda, and Takuya Katayama. Change management and
consistency maintenance in software developmenten-
vironments using object oriented attribute grammars.
In Object Technologies for Advanced Software (Proc.
1st JSSST Int. Sympo.), volume 742 of Lec. Notes in
Comp. Sci., pages 77-94. Springer Verlag, 1993.

[10] GrammaTech, Inc., Ithaca, NY. The Synthesizer Gen-
erator Reference Manual, fifth edition, 1996.


file:///vorks

298 Informatica 24 (2000) 287-299 K. Gondow et al.

infix 8 >>;
fun record >> label = label record (); (* >>: field selector *)
fun fix £ inhs = £ (fix £) inhs; (* fix: fixed-point operator *)

(* type definitions of abstract syntax trees (production rules) *)
datatype R_ = p_R1_ of F_
and F_=p_Fl_ | p_F2_

(* type definitions of attributed trees *)
datatype R = p_Rl1 of {F:unit->F, inl:unit->int, out:unit->int}
and F = p_Fl of {F2:unit->F, inl:unit->int, out:unit->int}
| p_F2 of {inl:unit->int, out:unit->int}
{(* semantic rules *)
(* pre *)
val rec p_R e = fn childl => fn self => fn inhl =>
pP_R1 {
inl = inhl, (* ‘*inl’ is used instead of ‘in’ since ‘'in‘’ is a key-
word in SML/NJ *)
out = fn () => (case (self inhl) of )
Rl r => (case r >> #F of p_Fl r2 => r2 >> #out)),
(* self(inh;).Fout *)
F = fn () => childl (fn () => case {(self inhl) of p_R1l r => r >> #inl)
(* child; (self(inhy).in) *)

}
(* prig *)
and p_Fl e = fn self => fn inhl =>
p_Fl {
inl = inhl,
out = fn () => (case (self inhl) of p_Fl r => r >> #inl) *
(case (self inhl) of p_Fl r =>
(case r >> #F2 of p_Fl x2 => r2 >> #out [ p_F2 r2 => r2 >> #out)),
(* self(inhy).inxself(inhy).Fa.out *)
F2 = fn () => (if (case (self inhl) of p_Fl r => r >> #inl)-1=0
then fix p_F2_e else fix p_Fl_e)
(fn () => (case (self inhl) of p_Fl r => r >> #inl)-1)
(* (if(self(inhy).in — 1 =0, pselfs.proe(selfz), pself;.prre(self;))) (self(inhi).in — 1) *)
}
{(* prag *)
and p_F2_e = fn self => fn inhl =>
p_F2 {
inl = inhl,
out = fn () => 1
}

(* functions that implements the semantic function £ *)

fun eval_R t = case t of p_R1_ tl => fix (p_R_e {eval_F t1))

and eval_F t = case t of p_Fl_ => fix p_Fl_ e l p_F2_ => fix p_F2_e
(* for sample execution *)

val tree = p_R1_ p_Fl_;

val atree = eval_R tree (fn () => 5);

val out = case atree of p_R1 r => r >> #out;

Figure 8: A Simple Implementation in SML/NJ of the HAG Example 4.1
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An object-oriented extension to canonical attribute grammars is described, permitting attributes to be ref-
erences to arbitrary nodes in the syntax tree, and attributes to be accessed via the reference attributes. Im-
portant practical problems such as name and type analysis for object-oriented languages can be expressed
in a concise and modular manner in these grammars, and an optimal evaluation algorithm is available. An
extensive example is given, capturing all the key constructs in object-oriented languages including block
structure, classes, inheritance, qualified use, and assignment compatibility in the presence of subtyping.
The formalism and algorithm have been implemented in APPLAB, an interactive language development

tool.

1 Introduction

Canonical attribute grammars (AGs), as introduced by
Knuth [26], is an appealing formalism that allows context-
sensitive properties of individual constructs in a language
to be described in a declarative way, and to be automati-
cally computed for any program in the language. Impor-
tant applications include defining context-sensitive syntax
and code generation for a language.

A major problem with canonical AGs is that the spec-
ifications often become too low-level when dealing with
non-local dependencies, i.e., situations where a property of
one syntax tree node is dependent on properties of nodes
far away in the tree. For example, the type of an identifier
use site depends on the type of the declaration which may
be located arbitrarily far away in the tree.

Many researchers have suggested different extensions to
attribute grammars to solve this problem, e.g. [3, 4, 5, 12,
14, 15, 16, 17, 19, 20, 23, 33, 34, 38]. Our approach is in
the line of our earlier work [12, 14, 15, 16], of Poetzsch-
Heffter [33, 34], and of Boyland [4] in that we propose an
extension that permits attributes to be explicit references
denoting nodes arbitrarily far away in the syntax tree, and
attributes of those nodes to be accessed via such reference
attributes. Similar to Poetzsch-Heffter and Boyland we
propose a recursive evaluation algorithm that allows opti-
mal evaluation for non-circular AGs with such extensions.
The formalism we propose, Reference Attributed Gram-
mars (RAGs), casts these extensions into an object-oriented
form, allowing advanced static-semantic analysis problems
to be expressed in a concise and modular manner. We give
an extensive example of this by providing a complete spec-
ification of PicoJava, a small subset of Java including key

constructs found in object-oriented languages such as block
structure, classes, inheritance, qualified use, and assign-
ment compatibility in the presence of subtyping. We have
implemented the formalism and evaluation algorithm in our
interactive language development tool APPLAB (APPlica-
tion language LABoratory) [6, 7].

The rest of this paper is structured as follows. In Sec-
tion 2 a background is given on canonical AGs and their
drawbacks. Section 3 introduces the basic RAG formalism,
discusses the evaluation algorithm, and compares RAGs
to canonical AGs. Section 4 discusses additional object-
oriented features of RAGs, including a class hierarchy for
nonterminals and support for virtual function attributes.
Section 5 shows an extensive example of name and type
analysis for an object-oriented language, PicoJava. Sec-
tion 6 discusses our tool APPLAB, Section 7 relates to
other work, and Section 8 concludes the paper and suggests
future research.

2 Background

2.1 Canonical attribute grammars

A canonical attribute grammar consists of a context-free
grammar extended with attributes for the nonterminals and
semantic rules for the productions. The attributes are char-
acterized as synthesized or inherited, depending on if they
are used to transmit information upwards or downwards in
the syntax tree. Given a production X — X;...X,,
a semantic rule is written ag = f(a1,...,a,;) and de-
fines ag as the value of applying the semantic function f
to the attributes ay, ... ,ay. The attribute ag must be ei-
ther a synthesized attribute of X or an inherited attribute
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of X;,1 £ j £ n. Le, a semantic rule defines either
a synthesized attribute of the left-hand symbol of the pro-
duction, or an inherited attribute of one of the symbols on
the right hand side of the production. A function argument,
ar,1 < k < m, must be an attribute of X;,0 < j < n.
Le., arule is local, depending only on information available
in the attributes of the symbols of the production.

A grammar is considered to be well-formed if each at-
tribute in any syntax tree of the grammar has exactly one
defining semantic rule. This is obtained by restricting the
start symbol to have synthesized attributes only, and by re-
quiring a production Xy — X ... X, to have exactly one
rule for each synthesized attribute of Xy and one rule for
each inherited attribute of X;,1 < j < m.

The assignment of values to attributes of a syntax tree
is called an artribution. An attribution is called a solution
if all semantic rules are satisfied. A well-formed grammar
is considered to be well-defined if there exists exactly one
solution (or one best solution according to some criteria)
for each syntax tree of the grammar.

If an attribute @y is used for defining another attribute
ay we say that there is a dependency (a1, a). If the de-
pendency graph for a syntax tree is non-circular, the attri-
bution can be obtained simply by applying the semantic
functions in topological order, provided that the semantic
functions terminate. If each syntax tree derivable from a
grammar will have a non-circular dependency graph, the
grammar is said to be non-circular. Usually, canonical AGs
are required to be non-circular, but there are also extensions
which allow circular dependencies. The usual requirement
for such grammars is that the values in the domain of an
attribute on a cyclic dependency chain can be arranged in
a lattice of finite height, and that all semantic functions
are monotonic with respect to these lattices. In this case,
there will be at least one solution, and the solution with the
"least” attribute values is taken to be the best one. For such
circular grammars, the attribution can be obtained by itera-
tively applying the semantic functions, giving the attributes
on the cycle the lattice bottom values as start values. See,
e.g. [10, 211

2.2 Problems with canonical attribute
grammars

Canonical AGs are well-suited for description of problems
where the dependencies are local and follow the syntax tree
structure. For example, in type analysis, the type of an op-
erator may depend on the types of its operands. Canonical
AGs are less suited for description of problems with non-
local dependencies, such as name analysis problems where
properties of an identifier use site depends on properties of
an identifier declaration site. Typically, the use and dec-
laration sites can be arbitrarily far away from each other
in the tree, and any information propagated between them
needs to involve all intermediate nodes. There are several
drawbacks with this.

One drawback is that the information about declarations
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in the syntax tree needs to be replicated in the attributes: To
do static semantic analysis, all declared names in a scope,
together with their appropriate type information, need to be
bundled together into an aggregate attribute, the “environ-
ment", and distributed to all potential use sites. At each use
site, the appropriate information is looked up.

A second drawback is that the aggregate attributes with
information replicated from the syntax tree can become
very complex. The distribution of the aggregate informa-
tion works well for procedural languages with Algol-like
scope rules (nested scopes), but is substantially more diffi-
cult for languages with more complex scope rules, for ex-
ample modular languages and object-oriented languages.
For example, the use of qualified access in a language im-
plies that it is not sufficient with a single environment at-
tribute at each use site—it is necessary to provide access
to all potentially interesting environments and select the
appropriate one depending on the type of the qualifying
identifier. The aggregate attributes thus need to become
more complex, and to contain also information about rela-
tions between different declarations. The semantic func-
tions working on these complex attributes naturally also
become more complex. The AG formalism does not it-
self support the description of these complex attributes and
functions.

A third drawback is that it is difficult to extend the gram-
mar. Suppose we have a grammar with a working name
analysis for extracting types, and we want to extend it
by propagating also the declaration kind, i.e. information
about if the declaration is a constant or a variable. There
are two alternatives for modelling this. Either we introduce
an additional environment attribute which maps names to
kinds and is defined analogously to the environment map-
ping names to types. Just like the type environment, the
definition of the kind environment needs to involve all in-
termediate nodes. A second alternative is to modify the
original type environment to also include kind information.
None of these alternatives is very attractive since we cannot
describe the extension in a clean concise way.

A fourth drawback with canonical grammars is that they
are not suited for incremental evaluation. This is partly
because there is no mechanism for incremental updating of
the aggregated attributes (environments) and partly because
a change to a declaration typically affects attributes all over
the syntax tree (i.e., the environments), even though the ex-
tracted information is unchanged. Incremental evaluation
based on this model does thus not scale up.

In this paper we address the first three of these draw-
backs.



REFERENCE ATTRIBUTED GRAMMARS

3 Reference Attributed Grammars
(RAGS)

3.1 Reference attributes

Canonical attribute grammars assume value semantics for
the attributes. I.e., an attribute cannot (conceptually) be
a reference to an object, or have a value containing such
references. From an implementation point of view it is
possible, and common, to implement two attributes with
the same value as references to the same object. However,
this is merely an implementational convenience for saving
space, and the fact that these two attributes refer to the same
object cannot be used in the grammar. Le., the implemen-
tation is referentially transparent, preserving the value se-
mantics of the grammar.

In our extension to canonical attribute grammars, at-
tributes are allowed to be references to nodes in the syntax
tree. Thus, we abandon the value semantics and introduce
reference semantics. Structured attributes like sets, dictio-
naries, etc., may also include reference values. As we will
illustrate in Section 3, the use of reference values makes at-
tribute grammars well-suited for expressing problems with
non-local dependencies that do not necessarily follow the
syntax tree structure.

A reference value denoting a node in the syntax tree may
be dereferenced to access the attributes of that node. This
way, a reference attribute constitutes a direct link from one
node to another node arbitrarily far away in the syntax tree,
and information can be propagated directly from the re-
ferred node to the referring node, without having to involve
any of the other nodes in the syntax tree. We call an at-
tribute grammar extended with this capability a reference
attributed grammar (RAG).

3.2 TINY: an example RAG

Figure 1 shows the RAG specification of TINY, a tiny lan-
guage made up to illustrate some central concepts in RAGs.
TINY is so simple that it has only one possible syntax tree,
which is shown with its attribution in Figure 2.

Nonterminal Attributes Prf)duc- Semantic rules
Hons
A A-BC |BrC=C
CrB=B

B LrC:ref(C) | B— Bb=B.uC.c
T b: integer

c IB:ref(B) | C— Cc=7
T c:integer

Figure 1: RAG specification of TINY

The example illustrates important aspects of RAGs.
First, by considering the reference attributes in addition to
the tree links, the syntax tree can be viewed as a (syntax)
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tree link tree link
///// \
et reference S
Antr | Value Anr. | Value
reference
local (‘ C | B
r \my (7 |- c |7
non-local dependency

Figure 2: RAG attribution of TINY (non-circular)

graph. The syntax graph may contain cycles: the B node
contains a reference attribute rC denoting the C node which
in turn contains a reference attribute rB referring back to
the B node. However, although the syntax graph contains a
cycle, the dependencies between the attributes form a non-
circular graph, and the RAG is thus non-circular. Since all
semantic functions terminate, the RAG is well-defined, and
a unique solution has been found for the tree by evaluating
the attributes in topological order, e.g., rB, c, rC, b.

The value of a reference attribute is the (unique) identity
of the denoted node, drawn as an arrow in the figure. This
value can be computed before the attributes of the denoted
node are evaluated, and does thus not depend on those at-
tributes. In the example, the semantic rules defining rC and
rB depend only on constant values (the identities of non-
terminals B and C), and rB and xC do therefore not have
any incoming dependency edges.

In a canonical AG all dependencies are local, i.e., they
occur because an attribute of a nonterminal X7 in a pro-
duction is defined using an attribute of a nonterminal X in
the same production. For any given syntax tree, it is pos-
sible to determine the complete dependency graph without
evaluating any attributes. In a RAG, there are non-local
dependencies in addition to the local dependencies. A non-
local dependency (a, b) occurs when b is defined by a se-
mantic function that accesses a via a reference attribute r.
The dependency (a,b) can be determined only after eval-
uating the reference attribute r. In the TINY example, the
non-local dependency from ¢ to b can be determined only
after rC has been given a value.

As will be shown in Section 5, practical grammars for
complex problems, like name analysis for object-oriented
languages, can be written concisely using a non-circular
RAG.

3.3 Attribute evaluation

Similar to a non-circular canonical AG, a non-circular RAG
can be evaluated simply by following the dependencies,
evaluating the attributes in topological order. As noted
above, the dependency graph for a RAG cannot, in contrast
to canonical AGs, be completely determined before evalu-
ation, it has to be determined during the evaluation. Algo-
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Attributes Semantic rules
Tid: integer A-BC | BrCc=Cid
Tet: <> C.rB = B.id
T subCt: array{tuple] Aid=1
T allCt: array[tuple] B.id = A.id+1
C.id = B.max|d+1
Act=<>
A A.subCt =
[Aid — Act] U
B.subCt U
C.subCt
A.allCt = A.subCt
B.aliCt = A.aliCt
C.allCt = A.aliCt
1 1C: integer B— B.b = B.allCt{B.rC](2)
T b: integer B.maxld = B.id
4 id: integer B.ct = <B.rC, B.b>
B | T maxid: integer B.subCt =
T ct: <integer, integer> [B.id = B.ct]
T subCt: array[tuple]
| aliCt: arrayftuple]
1 (B: integer C~- Ce=7
T c: integer C.maxld = C.id
lid: integer C.ct=<C.rB, C.c>
C | T maxid: integer C.subCt =
T ct: <integer, integer> [C.id = C.cf]
T subCt: array[tuple]
L aliCt: array[tuple]

Figure 3: Table-translated specification of TINY (canoni-
cal AG form)

rithms based on static computation of dependency graphs,
such as for OAGs [24] are therefore not immediately ap-
plicable to RAGs. However, demand-driven algorithms,
i.e., where each attribute access is replaced by a call to
the corresponding semantic function, can be directly used
for RAGs and will work for any non-circular RAG, as also
noted by [33] and [4]. By caching an attribute value at the
first access and returning the cached value at subsequent
accesses, this evaluation algorithm becomes optimal. Set-
ting a flag for attributes under evaluation allows circulari-
ties in the grammar to be found at evaluation time. Several
implementations of this algorithm have been presented for
canonical attribute grammars [27, 18, 22]. In our system
(APPLAB), we have implemented the algorithm for RAGs
by using techniques from object-oriented programming, as
described for canonical AGs in [13]. This technique fits
well with the object-oriented extensions we have done to
RAGs (see Section 4) and makes the translation particu-
larly simple.

3.4 Translation of a RAG to a canonical AG

To show the relation between a RAG and a canonical AG
we will discuss two different ways a RAG can be translated
into a canonical (but in general circular) AG: table transla-
tion and substitution translation.

G. Hedin

3.4.1 Table translation

In table translation, the idea is to model references as in-
dices into a large table, with one entry per node in the syn-
tax tree, and where each entry contains the attributes of the
respective node. This table can itself be described as an at-
tribute and be made available throughout the syntax tree so
that dereferencing a reference attribute can be replaced by
indexing into the table. The table translation will lead to a
circular AG, but which may still be well-defined and pos-
sible to evaluate with iterative methods. The detailed steps
of the table translation are as follows.

— For each symbol X in the grammar, an attribute id is
defined in such a way that the 14 attributes enumerate
the nodes in the syntax tree in a preorder traversal.
Le., the root will have id = 1, its leftmost son id =
2, and so on. To define 1d, a help attribute maxId is
introduced which contains the maximum id used in
the subtree of X.

- An attribute ct (the "contents") is defined for each
symbol X as a tuple {a1,...,a;) where ay,... ,ax
are the original attributes in X. The ¢’th field in the
tuple can be accessed by the notation ct(z).

— An attribute al1Ct is defined for each symbol X as
an array of size |T'|, where al1Ct[n.id] = n.ct for
any node n in the syntax tree 7. To define allCt,
array slices are collected bottom up using a synthe-
sized attribute subCt. The allCt attribute is equal
to subCt of the root, and that value is propagated
down to each node using inherited al1Ct attributes.

— Each reference attribute 7 is replaced by an integer
attribute 7.

— In semantic rules, an access to a symbol X (used as a
reference value) is replaced by the expression X . id,
i.e. the id attribute of the X node.

— In semantic rules, a dereferencing expression r.a,
where r is a reference denoting a node of nontermi-
nal X and a is an attribute of the denoted node, is
replaced by the expression allct|r](i), where a is
the ith attribute of X.

While this translation is straight-forward, it introduces
circular attribute dependencies which are not allowed in
canonical attribute grammars. In particular, any attribute
o defined using attribute dereferencing introduces a circu-
lar dependency since it depends on 7', and the definition of
T in turn depends on a. However, although the translated
grammar is in general circular, it is well-defined (provided
that the RAG is non-circular), and possible to evaluate us-
ing iterative algorithms.

Figure 3 shows the specification of TINY, translated by
table translation to canonical AG form. Figure 4 shows
the resulting syntax tree and its attribution solution (some
values are left out for brevity). The dereferencing of the
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aliCt =
A 1o <>,
2> <3,7>
Aur Val 3 <27>
id 1 | ]
t I
c <>
. 4
subCt -
(’ -
| allCt
C
Anr Val Attr Val
C 3 B 2
b 7 = c 7
id 2 circular id 3
dependency -
| ot <3,7> % chain k ct <2,7> i
| subCt - subCt -
allCt -t »i aliCt

Figure 4: Attribution of TINY for table-translated specification (circular)

A
B C
circular
Attr. Value dependency Autr. Value

chain
[-— rC <IB, 7> |- > B <rC, 7> ﬁ
b |7 c 7 P
- -
»| Ct <rC, 7> ct <B, 7> |-

Figure 5: Attribution of TINY for substition-translated specification (circular). Attributes rC and rB have infinite attribute
values
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reference attribute rC leads to a circular dependency chain.
However, the grammar is well-defined: a unique solution
has been found for the tree.

3.4.2 The substitution translation

An alternative to the table translation is to translate RAGs
by replacing each reference attribute by the corresponding
ct attribute, i.e. the tuple containing the attributes of the
denoted syntax node. In this translation, the allCt at-
tribute is not needed. We refer to this translation method as
the substitution translation. The problem with this method
is that if a reference attribute is part of a circular data struc-
ture, it will have an infinite value in the translated canonical
AG, and also give rise to a circular dependency chain. Fig-
ure 5 shows the attribution for TINY for such a translation.
We might consider a refinement of this method where ct
would include only the subset of attributes that are accessed
via references. For TINY, such a translation would yield a
non-circular canonical AG. However, there are other non-
circular RAGs for which such a refinement will still pro-
duce a circular AG with infinite attribute values. Consider,
e.g., extending C with an attributed = rB.b.

4 Object-oriented features of RAGs

In this section, we will introduce some features of RAGs
which make specifications more concise. These features
are based on an object-oriented view of attribute grammars,
where nonterminals are viewed as superclasses and produc-
tions as subclasses. In particular, we will discuss the use of
virtual function attributes and an extended class hierarchy
of nonterminals.

4.1 Virtual function attributes

Canonical AGs have a straight-forward translation to
object-oriented programming [13]. In particular, a syn-
thesized attribute is equivalent to a parameterless virtual
function: The declaration of a synthesized attribute o of
a nonterminal X is modelled by a declaration of a virtual
function a() in a class X; and a semantic rule defining a in
a production p is modelled by a virtual function implemen-
tatton in a class p which is a subclass of X.

With this view, it is close at hand to make a generaliza-
tion: to allow virtual functions with parameters. However,
for a canonical AG, such a generalization is not necessary.
This is because the number of accesses to an attribute is
always bounded, so if parameters are desired, they can be
modelled by inherited attributes. For RAGs, the situation is
different. Because of the reference attributes, there may be
an unbounded number of accesses to a given attribute. For
example, in a typical RAG an identifier use site has a ref-
erence attribute denoting the appropriate declaration node.
Since a declaration can be used in an unbounded number
of places in the syntax tree, the number of references to a
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given declaration node, and thereby also the number of ac-
cesses to attributes in the declaration node, is not bounded
by the grammar. In RAGs, parameters to virtual functions
can therefore not be modelled by inherited attributes.

We therefore generalize synthesized attributes by allow-
ing nonterminals to have virtual function attributes. A vir-
tual function attribute v(by, ... ,b;) of a nonterminal Xy,
is similar to a synthesized attribute in that it must be defined
by a semantic rule of each production Xp = X; ... X,. A
semantic rule for v(by, ... ,b;) is written v(by,... ,bg) =
f(bi,...  br,a1,... ,am), where a;,1 < i < m, is an
attribute of X;,1 < j < n. From this we see that a pa-
rameterless virtual function attribute w() is equivalent to a
synthesized attribute.

It is possible to eliminate virtual function attributes and
replace them by auxiliary functions. Each semantic rule
defining the attribute is then replaced by an auxiliary func-
tion, and type case analysis is used at each call site to call
the correct auxiliary function. This translation is analogous
to translating object-oriented programs to procedural pro-
grams. Thus, virtual function attributes are not strictly nec-
essary. However, they make the grammar more modular
and easy to extend and change, by allowing the call site ex-
pressions to be written in a polymorphic way (being able to
handle objects of different types without having to mention
these types explicitly).

4.2 Extended class hierarchy

The object-oriented view on attribute grammars gives a
two-level class hierarchy where nonterminals are viewed
as superclasses, i.e. general concepts, and productions as
subclasses, i.e. specialized concepts. Taking this view,
it is natural to expand the class hierarchy into more lev-
els. In doing this we differ between abstract nonterminals
and concrete nonterminals. An abstract nonterminal differs
from a concrete nonterminal in that it may not occur in any
production and it may not have a concrete nonterminal as
its superclass. Abstract nonterminals are thus irrelevant for
the context-free part of the grammar. They are introduced
in order to simplify the description of the attribution, allow-
ing common behavior (in the form of attributes and seman-
tic rules) to be factored out. They are also useful as types
for reference attributes.

We make use of a rooted single-inheritance class hierar-
chy, i.e. each nonterminal has exactly one nonterminal as
its superclass, except for the root nonterminal ANY which
has no superclass. Each node in the syntax tree will thus be
an instance of a subclass to ANY which models the behavior
common to all nodes in the tree. The class hierarchy will
thus be a tree rooted at ANY, with a top region of abstract
nonterminals, lower subtrees of concrete nonterminals, and
productions at the leaves.

Abstract nonterminals are similar to the notion of sym-
bol inheritance in [25], but makes use of single rather than
multiple inheritance. We have chosen single inheritance
because we find it conceptually simpler and because we re-
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place the use of multiple inheritance by composition, using
so called semantic nodes as explained in Section 5.2.

To be able to refer to each class in the class hierarchy, the
productions are named. If a nonterminal X has exactly one
production, that production will also be named X, and both
the nonterminal and production are mapped to the same
class.

As a generalization of associating attributes with nonter-
minals and semantic rules with productions, it is possible to
also associate attributes with individual productions (local
attributes) and semantic rules with nonterminals. A seman-
tic rule in a nonterminal constitutes a default definition that
may be overridden by a semantic rule defining the same
attribute in a subclass (production or other nonterminal).
This notion of overriding is analogous to overriding of vir-
tual functions in object-oriented programming languages.

In order to make sure that the grammar is well-formed, a
production or concrete nonterminal C that has a concrete
nonterminal Cy as a superclass may not declare any inher-
ited attributes. All the inherited attributes of C; must be
declared further up in the class hierarchy, either in an ab-
stract nonterminal or in the topmost concrete nonterminal.

5 PicoJava—an example

To illustrate the utility of RAGs we will demonstrate how
name and type analysis can be defined for an object-
oriented language. From the point of view of this anal-
ysis, our demonstration language PicoJava, a small sub-
set of Java [1], includes the major features of an object-
oriented programming language: classes, inheritance, vari-
ables, qualified access, and reference assignment. For
brevity, methods are omitted but the language allows nested
class definitions [28, 37] and global variables, in order to
show the combination of block structure and inheritance.
The goal of the name analysis is to define a reference at-
tribute decl of each identifier use site, which denotes the
corresponding declaration. The goal of the type analysis is
to define an attribute tp modelling the type of each expres-
sion. We also show how type compatibility for assignments
can be specified, in the presence of object-oriented subtyp-
ing. The example grammar is non-circular and has been
implemented in our language tool APPLAB.

5.1 Context-free grammar

Figure 6 shows the context-free grammar of PicoJava in
RAG form. Some remarks about the notation: A nonter-
minal X appearing to the left of the table cell of another
nonterminal or production C is a superclass of C. A pro-
ductionp : Xg — X; ... X, is written "p — X;7...X},"
and appears to the right of the table cell for Xy. If a non-
terminal Xy has only one production, the production takes
on the same name as the nonterminal, and is written simply
“—= X;...X,". IDis a predefined nonterminal modelling
an identifier. The productions for Decls and Stmts make
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use of a shorthand for lists. The topmost concrete nonter-
minal, Prograum, is the start symbol.

5.2 Semantic nodes

Several of the nonterminals in the context-free grammar
have the prefix SEM. This is a convention for marking so
called semantic nonterminals, i.e., nonterminals that are
not motivated from the context-free syntax point of view,
but from an attribution point of view. Semantic nontermi-
nals always have only one production. Thus, by includ-
ing a semantic nonterminal S on the right hand side of a
production p, a corresponding p-node will get an extra S
node as a son, a so called semantic node. As an example,
the production ClassDecl has a right hand side starting
with ID SuperOpt Block, as one would expect, mod-
elling the name of the class, an optional superclass, and a
block consisting of declarations and statements. The pro-
duction continues with two semantic nonterminals: SEM-
ClassStaticEnv SEMClassClassEnv. These lat-
ter two nonterminals have only one production each, and a
ClassDecl node in the syntax tree will thus always have
two extra sons of type SEMClassStaticEnvand SEM-
ClassClassEnv, respectively. Rather than locating all
attributes relevant to class declarations directly in Class-
Decl, some attributes with a specific purpose can be pack-
aged into a separate semantic nonterminal, e.g. SEM-
ClassStaticEnv. This technique allows an ordinary
node to be provided with several interfaces. A reference
attribute r can be defined to denote either the ClassDecl
node directly, or one of its semantic nodes, depending on
what part of the information is relevant to the clients of r.
This technique is somewhat similar to the use of part ob-
Jjects in object-oriented programming [29], where parts of
the behavior of an object are delegated to a separate ob-
ject, that nevertheless forms an integral part of the original
object.

5.2.1 Constant semantic nodes

When reference attributes are used, it may be the case that
an appropriate "real” node cannot be found in the syntax
tree. For instance, suppose there is a use of an identifier =
in a PicoJava program, but no corresponding declaration.
In this case, there is no Decl node that the dec1 attribute
of the use site can denote. One solution could be to give
the decl attribute the special value null, denoting no
node. However, it is often a nicer design to avoid null
and instead make use of constant "null objects”" [39]. In this
case, we introduce a constant node SEMMissingDecl,
modelling a missing declaration. This allows clients of the
decl attribute to, e.g., access the type of the decl, re-
gardless of if there is a real declaration or not. The type
of a missing declaration can be modelled by another "null
object"”, the constant node SEMUnknownType, modelling
that the type of the identifier is unknown. An abstract non-
terminal SEMDec1 is introduced as a common superclass
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Abstraft Concrete nonterminals Productions
nonterminals
Proaram — Block SEMGIobalConstanis
g SEMProgramStaticEnv
Block — Decls Stmts
Decls — Decl*
Stmts — Stmt*
SEMGlobalConstants |— SEMEmptyEnv SEMUnknownType
SEMEmptyEnv -
SEMProgramStaticEnv | —
SEMEnv
SEMClassStaticEnv |-
SEMClassClassEnv  |—
SEMUnknownType |—
ANY | SEMType DecTvoe RefDeclType: — UnQualUse
yp IntDeciType: —
SEMMissingDec! -
ClassDecl: — ‘class' ID SuperOpt
SEMDecl 1{' Block '}
Decl SEMClassStaticEnv
SEMClassClassEnv
VarDecl: — DeclType ID
Stmt AssignStmt: — Use '=' Exp
WhileStmt: — 'while’ Exp 'do' Stmt
Ex Use UnQualUse: — ID
P QualUse: = Use -~ UnQualUse
Super: — 'extends' Use
SuperOpt NoSuper: —

Figure 6: Context-free syntax for PicoJava

to Decl and SEMMissingDecl in order to be used as
the type for the dec1l attribute. The same pattern is used
for SEMUnknownType, where SEMType is introduced as
a common superclass of Dec1Type and SEMUnknown-
Type.

5.2.2 Global access to constant nodes

In many cases, it is useful to make the constant nodes glob-
ally accessible, i.e., throughout the syntax tree. This is ac-
complished by collecting all constant nodes under a seman-
tic nonterminal SEMGlobalConstants which is made
a semantic node under the start symbol Program. A refer-
ence to the SEMGlobalConstants node is propagated
down throughout the syntax tree, thus giving access to all
the constant nodes. Figure 7 shows how this can be done
conveniently by defining a default semantic rule in the ab-
stract nonterminal ANY which is overridden in Program.
The semantic rule in ANY propagates the value of its in-
herited globals attribute down to all its son nodes of
type ANY. Since this holds for all nodes (except for the root
Program node which overrides the rule), the reference is
propagated down throughout the syntax tree. The overrid-

Non-

, Semantic rules
terminal

Anributes

ANY lglobals: ANY* globals =
SEMGlobalConstants globals
Program ANY*.globals =
g SEMGlobalConstants

Figure 7: Specification of the propagation of a reference to
global constants

ing rule in Program instead defines globals of its son
nodes as denoting the SEMGlobalConstants son node
of the Program node. Note that we permit inherited at-
tributes of the start symbol as long as they are not accessed.
In this case, Program has an inherited attribute globals
since it is a subclass of ANY, but this attribute is never ac-
cessed for Program nodes since Program overrides the
rule in ANY.

Remarks about the notation. In Figure 7, the sub/super-
class relationships between nonterminals and productions
are not shown. Please refer to Figure 6 for these relation-
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Nonterminals and Attributes and
productions Semantic Rules
Decl Tname: string

ClassDecl name = [D.val
VarDecl name = ID.val
Exp Ttp: SEMType
Use Tdecl: SEMDecl
ClassDecl TisCircular: boolean

Figure 8: Module declaring name, tp, decl, and is-
Circular

ships. In semantic rules, an attribute a of the left hand side
nonterminal (or the production) is written without any qual-
ifying name, i.e. simply "a", whereas an attribute b of a
nonterminal X of the right-hand side is written "X.0". A
semantic rule X *.b = exzp means that the b attribute of each
right-hand side nonterminal of type X is defined to have the
value ezp. The keyword ref that we used in Section 3.2
is left out here. Any attribute declared with a nonterminal
type is assumed to be a reference.

5.3 Modularization

In PicoJava, name and type analysis are dependent on each
other. For example, in order to find the type of a use site,
we first need to know its declaration, and in order to find
the declaration of a qualified use site, we need to first know
the type of the qualifying use site. In order to modularize
the definition of this attribution, we first define an interface
module consisting of the attributes declared in Figure 8.
The Decl.name attribute is simply the name of a Decl
node, and the definition of this attribute is so simple that it
is given directly in the figure. The definitions of the other
three attributes are a bit more complex and are therefore
given in separate modules, making use of the attributes in
the interface module. The Exp . tp attribute is a reference
to the SEMType node modelling the type for the expres-
sion. For expressions where the type is unknown, e.g. uses
of undeclared names, the constant node SEMUnknown -
Type is used. The Use.decl attribute is a reference to
a SEMDecl node. For declared names, this will be the
corresponding Decl node, and for undeclared or multiply
declared names it will be the constant node SEMMiss-
ingDecl. The ClassDecl. isCircular attribute is
a boolean attribute which is true if the ClassDecl is part
of a circularly defined class hierarchy (which is illegal in
PicoJava, but cannot be ruled out by the context-free syn-
tax}, and false otherwise (the normal case). In the following
sections, these attributes are defined.
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Nomermi.n als/ Attributes and Semantic Rules
Productions
ANY lenv: SEMEnv
SEMEnv  |SEMDecl func lookup(str: string)
Tdecldict: dictionary (string — Decl) =
Decls {(d.name — d) | d € Decl* A
(d.name ¢ {d'.name | d'e Decl" - {d}}) }
SEMDecl func lookup(str: string) =
Block inspect $D := Decls.decldict(str)
when Decl do $D
otherwise globals.SEMMissingDecl

Figure 9: Module declaring env and 1lookup

5.4 Name analysis

The goal of the name analysis module is to define the
Use.decl attribute. The key idea for doing this is to de-
fine data structures, constituting of syntax tree nodes and
reference attributes, to support the scope rules of PicoJava.
For each block-like construct in the language, an attribute
decldict containing a dictionary of references to the
Decl nodes for local declarations is defined, excluding
references to multiply declared identifiers. The blocks are
connected to each other so that the declaration of an iden-
tifier can be located by doing lookups in block dictionar-
ies in an appropriate order. For Algol-like block structure,
a block is connected by a reference attribute to its outer
block. For object-oriented inheritance, a class node is con-
nected by a reference attribute to its superclass node. Se-
mantic nodes that are subclasses of the abstract nontermi-
nal SEMEnv encapsulate these connections and define the
function attribute Lookup for finding a Decl node for a
given identifier. For each node n in-the syntax tree, an at-
tribute env is defined which refers to a SEMEnv node that
connects to the visible identifiers at the point of n. The
declaration for a Use can be found by calling the Lookup
function in Use.env. The attribute env thus represents
the environment of visible identifiers, similar to the com-
mon solution used in canonical attribute grammars, but
here env is a reference to a node, possibly connecting to
other nodes, rather than a large aggregate attribute.

Figure 9 shows the declaration of ANY.env, the
lookup function of SEMEnv, and the definition of de-
cldict. Actually, decldict is an attribute of the
Decls node, but is accessed via the function lookup
in Block which returns the constant node SEMMiss-
ingDecl incase no declaration was found in decldict.

Remarks about the notation. The definition of
Block.lookup makes use of an inspect-expression
"inspect $V:= exp...", which is similar to a let-
expression, but in addition performs a type case analysis.
Within each case "when T do exp" the named value V is
guaranteed to have the type 7. A catch-all clause "oth-
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Noaterminals/

. Attributes and Semantic Rules
Productions

lookup(str: string) =
globals.SEMMissingDecl

T blk: Block = parent Program.Block

SEMEmptyEnv

SEMProgramStaticEnv

lookup(str: string) = blk.lookup(str)
T blk: Block = parent ClassDecl.Block

T superE; SEMEnv =
it parent ClassDecl.isCircular
then globals.SEMEmptyEnv
else
parent ClassDecl.SuperOpt.classE

SEMClassClassEnv

lookup(str: string) =
inspect $D := blk.lookup(str)
when Decl do $D
otherwise superE.lookup(str)

T thisE: SEMEnv =
parent ClassDecl. SEMClassClassEnv

T outerE: SEMEnv = env

lookup(str: string) =
inspect $D := thisE.lookup(str)
when Decl do $D
otherwise outerE.lookup(str)

SEMClassStaticEnv

SuperOpt T classE: SEMEnv

classk =
inspect $D := UnQualUse.decl
when ClassDecl do
$D.SEMClassClassEnv
otherwise globals. SEMEmptyEnv

Super

NoSuper classE = globals.SEMEmptyEnv

Figure 10: Module defining 1lookup

erwise exp" is needed to make sure there is always an
applicable case.

Figure 10 shows the definition of the SEMEnv con-
nections and the SEMEnv.lookup function. There are
two block constructs in PicoJava: Program containing
global declarations, and ClassDecl, containing declara-
tions local to a class. Algol-like block structure is obtained
by nesting a class inside another class. Program has
a single semantic node SEMProgramStaticEnv con-
necting to the Block of the Program (blk). Class-
Decl has two semantic nodes; SEMClassClassEnv
handles inheritance by connecting to Block of the class
(b1k) and to the SEMClassClassEnv of the superclass
(superE); and SEMClassStaticEnv combines inher-
itance with Algol-like block structure by connecting to the
SEMClassClassEnv of the class (thisE) and to the
environment (outerE). Figure 11 shows these connec-
tions for an example PicoJava program. The 1ookup func-
tion in SEMClassClassEnv is defined to give prefer-
ence to local declarations over those in the superclass (a
declaration in the class will shadow declarations of the
same name in superclasses). The lookup function in
SEMClassStaticEnv is defined to give preference to
inheritance over block structure (a declaration in a super-
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Nonterminals/

. Attributes and Semantic Rules
Productions

ANY ANY*.env = env
Program Block.env = SEMProgramStaticEnv
ClassDecl Block.env = SEMClassStaticEnv
UnQualUse.env =
inspect $T := Use.tp
when RefDeciType do
QualUse inspect $D := $T.UnQualUse.decl

when ClassDecl do
$D.SEMClassClassEnv
otherwise globals.SEMEmptyEnv
otherwise globals. SEMEmptyEnv

Figure 12: Module defining env

class will shadow declarations of the same name in an outer
block).

Remarks about the notation. The expression "parent
T" is areference denoting the parent node which must be of
type T. This is a shorthand for using an inherited attribute
parent defined by the parent node. To assure that this
expression is always well defined, it is only applicable for
nonterminals that appear on the right-hand side of exactly
one production.

A PicoJava program may contain an (illegal) circular
class structure. Therefore, care must be taken so that the
recursively defined 1 ookup function does not lead to end-
less recursion. To prevent this, a test on the isCircular
attribute (declared in the interface module) is performed
when defining the connections between the SEMClass-
ClassEnv nodes. In case the class hierarchy is cyclic,
the attribute superkE is defined as a reference to the con-
stant node SEMEmp tyEnv rather than to the SEMClass-
ClassEnv of the superclass. This way, the graph con-
sisting of SEMClassClassEnv nodes and superE at-
tributes can never be cyclic, and their lookup functions
will therefore terminate.

Figure 12 shows the definition of env. For most nodes,
the environment is the same as for the enclosing node, as
defined by the default semantic rule in ANY. This default
behavior is overridden in three productions. In Program
and ClassDecl, the environment for the Block is de-
fined as a reference to the SEMProgramStaticEnv and
SEMClassStaticEnv, respectively. In the QualUse
production, the environment of the second operand de-
pends on the type of the first operand which should be a
reference variable.

The definition of the decl attribute is now simple, as
shown in Figure 13.
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’Program)
\ Block ] SPSE |-
blk
4
ClassDecl ClassDecl
name [“‘A"" name [“B"
; | -
1 v \ 1
| Block | | SCCE SCSE | Block | | SCCE SCSE
- Bk T thisE | - | [pk [~ thisE™ | |- -
superkE outerg |~ superE | - outerE
i |
ClassDecl
classA{..} name ["BB
class B extends A { -
classBB{...}
, ] Blockl SCCE SCSE
T Bk 1 [fhisE— —
superE outerE

Figure 11: Connections between SEMEnv nodes for a small program

Nonterminals/

. Attributes and Semantic Rules
Productions .

UnQualUse decl = env.lookup(ID.val)

QualUse decl = UnQualUse.decl

Figure 13: Module defining decl

5.5 Check of circular class hierarchy

Figure 14 shows the definition of the isCircular at-
tribute declared in Figure 8 which says if a class is cir-
cularly defined or not. The idea is to use a help func-
tion circularClass (s) whichis called recursively for
each ClassDecl in the superclass chain. The argument
s contains the set of references to already visited Class-
Decl nodes. The recursion is terminated either when the
top of the class hierarchy is reached (the normal case), or
when a ClassNode is reached that is already in s (a cycle
is found in the hierarchy).

Remark on the notation. The construct "self" in a rule

Nonterminals/

. Attributes and Semantic Rules
Productions

isCircular = SuperOpt.circularClass({self})

boolean func circularClass (s: set of ClassDecl) =
ifselfe s
then true
else SuperOpt.CircularClass(s w {self})

ClassDecl

SuperOpt  |boolean func circularClass (s: set of ClassDecl)

NoSuper circularClass(s: set of ClassDecl) = false

circularClass(s: set of ClassDecl) =
inspect $D := UnQualUse.decl
when ClassDecl do $D.circularClass(s)
otherwise false

Super

Figure 14: Module defining isCircular

means a reference to the left-hand nonterminal of the pro-
duction. E.g., in Figure 14, self refers to the Class-
Decl node.
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5.6 Type analysis

Figure 15 shows the definition of the tp attribute declared
in Figure 8. For illegal uses of identifiers, e.g. where the
declaration is missing, the constant node SEMUnknown-
Type is used.

Nonterminals/

, Attributes and Semantic Rules
Productions

tp=
inspect $D := decl
when VarDecl do
$D.DeclType
otherwise
globals.SEMUnknownType

Use

QualUse tp = UnQualUse.tp

Figure 15: Module defining tp

The tp attribute can be used to perform type check-
ing, e.g., checking that the types of the left and right
hand side of an assignment are compatible. For an object-
oriented language, this check is rather more involved than
for procedural languages, due to the subtype compatibility
rules. For a reference assignment Use = Exp in Pico-
Java, the class of Exp must be the same or a subclass of
the class of Use. To further show the expressiveness of
RAGs, Figure 16 shows how a boolean attribute type-
sCompatible can be defined for Assignment, taking
into account both ordinary types and reference types with
subtyping. The typesCompatible attribute is true if
the assignment statement is type correct. A help func-
tion assignableTo is defined in SEMType such that
T1l.assignableTo (T2) is true if it is legal to assign
a value of type T'1 to a variable of type T2. For reference
types (RefDeclType), this function checks if the class
of T1 is a subclass of that of T2. To perform this check,
the class hierarchy is traversed using a recursive function
recSubclassOf in ClassDecl. However, in order to
make sure that this function terminates, even in the case
of an illegal circular class hierarchy, the attribute 1sCir-
cular is checked before calling the recursive function (in
ClassDecl. subclassOf).

6 Experimental system

We have implemented RAGs in our language tool AP-
PLAB and used RAGs to specify a number of languages,
including an extended version of PicoJava described in
Section 5 (the extended version includes also methods and
some additional basic types, operators, and statements).
We are also working with specification of worst-case ex-
ecution time analysis [31, 32], robot languages [7], state
transition languages [11], visualization [30], design pat-
terns [8, 9], and the RAG formalism itself.
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. Attributes and Semantic Rules
Productions

SEMType boolean func assignableTo(T: SEMType)

SEMUnknownType | assignableTo(T: SEMType) = false

assignableTo(T: SEMType) =
T in IntDeclType

assignableTo(T: SEMType) =
inspect $T := T
when RefDeclType do
inspect $D := UnQualUse.decl
when ClassDecl do
inspect $DT := $T.UnQualUse.decl
when ClassDecl do
$D.subclassOf($DT)
otherwise false
otherwise false
otherwise false

IntDeciType

RetDeclType

boolean func subclassOf(C: ClassDec!) =
if isCircular
then false
else recSubclassOf{C)

boolean func recSubclassOf(C: ClassDecl) =

if C = self

then true

else
inspect $Super := SuperOpt.superClass
when ClassDeci do

$Super.recSubclassOf(C)

otherwise false

ClassDecl

TtypesCompatible: boolean =

AssignStmt Exp.tp.assignableTo(Use.tp)

SuperOpt TsuperClass: ClassDec!

NoSuper superClass = null

superClass =
inspect $D := SimpleUse.decl
when ClassDecl do $D
otherwise null

Super

Figure 16: Module defining typesCompatible

The APPLAB system is an interactive language tool
where both programs and grammars for the programming
language can be edited at the same time, resulting in a
highly flexible and interactive environment for language
design. Changes to the grammars, e.g. changes to the
context-free syntax or changes to the attributes and seman-
tic functions, are immediately reflected in the language-
based program editor, allowing the user to get immediate
feedback on the effects of changes to the grammar specifi-
cation. The details of APPLAB are covered in [6, 7] (al-
though these papers do not focus on reference attributes
which is a later addition).

Figure 17 shows a screendump from the APPLAB sys-
tem, showing the editing of an example program in Pico-
Java, and parts of the grammar specification. In the Exam-
pleProgram window, the user has selected the statement
g=rB in class BB, where BB is an inner class of B which in
turn is a subclass of A. The example illustrates both block
structure (g is declared globally, i.e. two levels outside of
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BB) and combined block structure and inheritance (rB is
declared one level outside of BB in a superclass of B). The
assignment is type correct (the value of typesCompat-
ible is TRUE) since B (the class of rRB) is a subclass of
A (the class of g). The value of the attribute is shown in
a separate attribute window at the user’s request (after se-
lecting the attribute in a popup-menu). The subsequent as-
signment rB=g is not type correct since A (the class of
g ) is not equal to or a subclass of B (the class of rB),
and a request for the typesCompat ible attribute of that
statement would display a corresponding attribute window
showing that typesCompatible has the value FALSE.

7 Related work

The idea to support non-local dependencies has been sug-
gested in a number of systems in various ways. Early ap-
proaches provided special support for nested scopes (sup-
porting Algol-like block structure) such as [19, 20, 3, 23,
17, 2], but fail to handle more complex scope combina-
tions such as inheritance or qualified access of identifiers.
Later approaches support explicit reference attributes and
remote attribute access, in a similar way as described here,
and allows scope mechanisms to be defined without being
restricted to predefined combinations. In particular:

— In our previous work on Door Attribute Grammars
[14, 15, 16] dereferencing of reference attributes is
supported, but must be delegated to special nonter-
minals called doors. This way, the non-local depen-
dencies are encapsulated in a so called door package.
Door AGs also support remote definition where col-
lection values can be defined remotely via references.
Door AGs support efficient incremental attribute eval-
uation, but the implementation is not fully automatic
because the door package needs to be implemented
manually. Door AGs allows object-oriented languages
to be specified in a way very similar to for RAGs,
using similar techniques for connecting environments
and traversing inheritance graphs, but RAGs are con-
siderably more compact because the non-locally ac-
cessed information does not need to be propagated to
door nonterminals, but can be accessed directly, thus
avoiding replication of information. RAGs offer fully
automatic evaluation, but not (currently) incremental
attribute evaluation.

— The MAX system by Poetzsch-Heffter [33, 34] sup-
ports reference attributes and remote access, and de-
velops an extension to term algebras called occur-
rence algebras to formalize the approach. A demand-
based evaluation technique is used, and in addition an
approximate static dependency analysis is developed
which allows many function calls to be eliminated and
thereby speed up the evaluation [34].

— Boyland also developed a system supporting both re-
mote access and remote definition, and making use of
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a demand-algorithm for attribute evaluation [4]. He
has also addressed the problem of computing static
evaluation schemes for grammars with both remote
access and remote definition via reference attributes
in order to apply visit-oriented evaluation algorithms.
However, the scope of this latter technique is unclear.
It has been applied only for simple example grammars
and does not seem to be implemented [5].

— Sasaki and Sassa have developed a static evalua-
tion scheme for circular grammars with reference at-
tributes and remote access [36). Their motivating ex-
ample is liveness analysis in the presence of gotos
where the goto links are modelled by reference at-
tributes in the AST. In their evaluation scheme remote
dependencies are added conservatively, causing cycles
in the production dependency graphs that correspond
to real or potential cycles in an actual tree. Cycles are
evaluated iteratively.

The underlying principles of remote access and attribute
evaluation are the same in RAGs as in MAX and in Boy-
land’s system. However, the RAG formulation is radically
different, expressing the specification using object-oriented
concepts like inheritance and virtuals.”

Other related approaches include the following:

— The Synthesizer Generator supports syntactic refer-
ences, i.e., an attribute may be a reference to a syntax
tree node [35]. However, attributes of the referenced
node may not be accessed via the reference attribute.
Le., the syntactic references are considered to stand
for unattributed subtrees. There are certain similari-
ties to RAGs in that the syntax tree can itself be used
as e.g. symbol tables, rather than having to construct
such information in a separate attribute domain. How-
ever, RAG reference attributes are much more power-
ful than syntactic references in that the attributes of the
referenced nodes may be accessed, allowing attribute
information to be propagated along non-locally paths.
The Synthesizer Generator also allows attributes to be
defined as references to other attributes. This is used
to define cyclic graphs in code generation, e.g. for
linking the last instruction of a while statement back
to the first instruction. However, for the purpose of the
attribute evaluation, these references are just treated as
constants and may not be dereferenced. Dereferenc-
ing can only be done after the attribution is complete,
by an interpreter written directly in C.

— The Elegant system {2] also supports the construction
of a cyclic program construct graph which is essen-
tially the syntax tree extended with edges from use
sites to declaration sites. However, the additional
edges cannot be dereferenced in order to define other
attributes. They may, however, be dereferenced after
the attribution is complete, in order to check context
conditions. The resulting program construct graph can
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% > CONCRETE A UUSL-Circu]arCheckI
{l{ . 00sL-checkassignnent|meanalysis-1ookup

addto RefDec1Type
{ imp1 assignableTo :=
inspect $T := T
when RefDec1Type do
inspect $D := a_SimpleUse.dec]
when ClassDecl do
inspect $DT := $T.a_SimpleUse.decl

when ClassDecl do $0.subclassOf( $0T ) ‘?\Examp1eProgram|
otherwise false A g;
otherwvise false :
otherwise false class & {
H B rB;
addto ClassDecl };
{ syn thisClassDecl: ref ClassDecl ; tlass B extends A {
eq thisClassDecl := class BB {
this ClassDecl;
subclass0f: func boolean g = rb;
(C: ref ClassDecl ) := 'R = gf
if isCircular }; ?
then false ’ .
glse thisClassDecl.recSubclass0f( C ); }s 2 . I
recSubclass0f: func boolean ’ quwta;§2;3gt$e theOuterEny
(C: ref ClassDecl ) mn hu #g]oba]s
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otheruise false

2

addto AssignStmt ngtypescompatjb]e|
syn typesCompatible: boolean ;

eq typesCompatible := TRUE {

a_Exp.tp.assignableTo( a_Use.tp )

Figure 17: Screendump from APPLAB. The attribute typesCompatible is shown for the current focus in the Exam-
pleProgram window (the assignment statement g = rB in class BB)
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also be processed by a special-purpose code genera-
tion formalism.

~ Vorthmann has developed a graphical technique called
visibility networks for describing name analysis and
use-declaration bindings in programming languages,
and exemplified the technique for Ada [38]. The focus
is on providing efficient incremental evaluation. This
technique might be interesting to integrate with RAGs
in order to provide support for incremental attribute
evaluation for certain classes of RAGs.

8 Conclusions

We have presented Reference Attributed Grammars
(RAGs) and showed how they can be applied to an ad-
vanced problem: name and type analysis for an object-
oriented language, yielding a simple and concise non-
circular specification. Figures 6-10 and 12-16 constitute
a complete static-semantic specification of PicoJava, a lan-
guage with all the key object-oriented constructs: block
structure, classes (including inner or nested classes), inher-
itance, qualified use, and assignment compatibility in the
presence of subtyping.

The use of reference attributes allows cyclic structures
to be constructed on top of the syntax tree substrate. We
have demonstrated how attributes can be used to check for
such cyclic structures to ensure that semantic functions ter-
minate, thus allowing the RAG to remain non-circular, al-
though it works on cyclic structures. (See the definition and
use of the ClassDecl.isCircular attribute in Sec-
tion 5.)

We have implemented the RAG formalism and an eval-
uation algorithm that can handle any non-circular RAG. In
our tool for language experimentation, APPLAB, it is pos-
sible to experiment with RAG specifications and immedi-
ately try out changes to the attribution rules, e.g. by asking
for the values of attributes in an example program.

We have demonstrated advantages of RAGs over canon-
ical AGs. First, there is no need in RAGs to replicate
the information available in the syntax tree into attributes.
By using reference attributes the syntax tree itself can be
used as the information source. The syntax nodes can be
connected using reference attributes to form suitable data
structures, also cyclic ones, without the need for introduc-
ing data structures and functions in auxiliary languages.
Second, the semantic functions working on a complex data
structure can be split into smaller functions, delegated to
the different syntax nodes making up the data structure, and
specified completely within the RAG formalism. Third, it
is easy to extend an existing grammar with additional func-
tionality. This was shown in the PicoJava example where
the test for type compatibility of assignments was added in
a very concise way, although it included advanced rules for
subtype compatibility.

In our experience, RAGs are of immediate practical use
and we have a number of current projects concerning lan-
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guage specification using this technique. There are many
interesting areas for further research, including the follow-

ing.

— Efficient incremental evaluation of RAGs is an open
problem. However, RAGs are a much better start-
ing point for incremental evaluation than canonical
AGs since large aggregate attributes are not needed
in RAGs, and the number of affected attributes after a
change is much lower than for a canonical AG.

— It would be useful to develop algorithms for deciding
statically if a RAG is non-circular. This is an open
problem. The APPLAB system currently tests circu-
larity dynamically and reports circular dependencies
at evaluation time.

— It would be useful to develop algorithms for deciding
if a RAG contains nonterminating semantic functions.
In the PicoJava example there are two cases where
special care is taken in order to make sure that the
semantic functions terminate, namely when using re-
cursive functions that traverse the class hierarchy. The
attribute 1sCircular was introduced in order to be
able to terminate the recursion in case of a cyclic class
hierarchy. During grammar development it would be
useful if potential circular structures and nonterminat-
ing functions could be automatically spotted by the
system.

— The formalism should be extended so that semantic
nonterminals and nodes can be added in extension
modules, i.e. without having to modify the context-
free syntax. We expect this to be straight-forward,
making use of object-oriented concepts like part ob-
jects and inner (anonymous) classes as available in
BETA and recently also in Java [28, 29, 37].

— Since RAGs allow arbitrary data structures to be built
using syntax tree nodes and references it should be in-
teresting to extend the technique to allow graph-based
grammars, working on syntax graphs rather than
trees. This would be relevant for building language-
based editors for, e.g., UML class diagrams or state-
transition diagrams.
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The language design process should be supported by modularity and abstraction in a manner that allows in-
cremental changes as easily as possible. To at least partially fulfill this ambitious goal a new object-oriented
attribute grammar specification language which supports multiple attribute grammar inheritance is intro-
duced. Multiple attribute grammar inheritance is a structural organization of attribute grammars where
the attribute grammar inherits the specifications from ancestor attribute grammars, may add new specifi-
cations or may override some specifications from ancestor specifications. With the proposed approach a
language designer has the chance to design incrementally a language or reuse some fragments from other
programming language specifications. The multiple attribute grammar inheritance is first introduced using
an example, and thereafter by a formal model. The proposed approach is successfully implemented in the

compiler/interpreter generator tool LISA ver. 2.0.

1 Introduction

We have developed a compiler/interpreter generator tool
LISA which automatically produces a compiler or an in-
terpreter from the ordinary attribute grammar specifica-
tions [1, 2]. But in this version of the tool, incremen-
tal language development was not supported, so the lan-
guage designer had to design new languages from scratch
or by scavenging old specifications. Other deficiencies of
ordinary attribute grammars become apparent in specifi-
cations for real programming languages. Such specifica-
tions are large and unstructured, and are hard to under-
stand, modify and maintain. Yet worse, small modifica-
tions of some parts in the specifications have widespread
effects on the other parts of the specifications. Therefore
specifications are not modular, extensible and reusable.
Compared to modern programming languages, such as
object-oriented or functional languages, the attribute gram-
mar specification languages are far less advanced, specifi-
cally concerning the possibilities of abstraction, modular-
ization, extensibility and reusability. Therefore, the inte-
gration of specification languages with various program-
ming paradigms has developed in recent years. A detailed
survey of attribute grammar based specification languages
is given in [3]. We applied inheritance, a characteristic
feature of object-oriented programming, in attribute gram-
mars. A new object-oriented specification language with
the paradigm rAttribute grammar = Class | which is not in-
cluded in [3], is presented in the paper. In [4] the new
concept is introduced only in the informal manner through
examples of a simple calculator language. We have incre-

mentaily designed various small programming languages,
such as COOL and PLM, with multiple attribute grammar
inheritance. Our experience with these non-trivial exam-
ples shows that multiple inheritance in attribute grammars
is useful in managing the complexity, reusability and ex-
tensibility of attribute grammars. The benefit of this ap-
proach is also that for each language increment a compiler
can be generated and the language tested. In this paper the
reasons for introducing multiple inheritance into attribute
grammars and the formal definition of multiple attribute
grammar inheritance are presented. The multiple attribute
grammar inheritance approach is successfully implemented
in the newly developed version of the tool LISA ver. 2.0.

2 Background

Attribute grammars have been introduced by D.E. Knuth
and since then have proved to be very useful in specify-
ing the semantics of programming languages, in automatic
constructing of compilers/interpreters, in specifying and
generating interactive programming environments and in
many other areas. Attribute grammars [5, 6, 7] are a gen-
eralization of context-free grammars in which each symbol
has an associated set of attributes that carry semantic in-
formation, and with each production a set of semantic rules
with attribute computation is associated. An attribute gram-
mar consists of:

~ A context-free grammar G = (T, N, S, P), where T
and NV are the set of terminal symbols and nonterminal -
symbols; S € N is the start symbol, which doesn’t
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appear on the right side of any production rule; and P
is the set of productions. Now set V =T U N.

- A set of attributes A(X) for each nonterminal sym-
bol X € N. A(X) is divided into two mutually dis-
joint subsets, I(X} of inherited attributes and S{X)
of synthesized attributes. Now set A = |JA(X).
Let T'ype denote a set of semantic domains. For each
a € A(X), a : type € Type is defined which is the
set of possible values of a.

- A set of semantic rules R. Semantic rules are defined
within the scope of a single production. A produc-
tionp € Pp: Xo = X1...Xn (n > 0) has an
attribute occurrence X;.a if a € A(X;),0 < i < n.
A finite set of semantic rules R, is associated with
the production p with exactly one rule for each syn-
thesized attribute occurrence Xp.a and exactly one
rule for each inherited attribute occurrence X;.a,1 <
i < n. Thus R, is a collection of rules of the form
Xia= f{y1,...,9%),k > 0, where y;,1 < j <k,
is an attribute occurrence in p and f is a semantic
function. In the rule X;.a = f(y1,...,yx), the oc-
currence X;.a depends on each attribute occurrence
¥j,1 € j < k. Now set R = | J Rp. For each produc-
tionp € Pp: Xg — Xi1...Xn (n > 0) the set of
defining occurrences of attributes is Def Attr(p) =
{XialX;e = f(...) € Ry}. An attribute X.a is
called synthesized (X.a € S(X)) if there exists a pro-
ductionp : X = X;...X, and X.a € Def Attr(p).
It is called inherited (X.a € I{X)) if there exists a
productiong : ¥ —- X;...X...X,, and X.a €
Def Attr(q).

Therefore, an attribute grammar is a triple AG = (G, A, R)
which consists of a context free grammar G, a finite set of
attributes A and a finite set of semantic rules R.

3 Reasons for Introducing Multiple
Inheritance into Attribute
Grammars

The language design process should be supported by mod-
ularity and abstraction in a manner that allows to make
incremental changes as easily as possible. This is one of
the strategic directions of further research on programming
languages. When introducing a new concept the designer
has difficulties in integrating it into the language in an easy
way. Therefore inheritance can be very helpful since it is
a language mechanism that allows new definitions to be
based on the existing ones. A new specification inherits the
properties of its ancestors, and may introduce new proper-
ties that extend, modify or defeat its inherited properties.
When a new concept is added/removed in/from a language,
not only is the semantic part changed, but the syntax rules
and the lexicon may also need to be modified. Therefore,
such incremental modifications usually do not preserve up-
ward language compatibility. A language designer needs a
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formal method which enables incremental changes and us-
age of specification fragments from various programming
languages. We accomplish these goals by introducing the
object-oriented concepts, i.e. multiple inheritance and tem-
plates, into attribute grammars [4]. Let us look at the in-
formal definition of multiple attribute grammar inheritance
and templates. Multiple attribute grammar inheritance is
a structural organization of attribute grammars where the
attribute grammar inherits the specifications from ances-
tor attribute grammars, may add new specifications, may
override some specifications from ancestors or even de-
feat some ancestor specifications. With inheritance we can
extend the lexical, syntax and semantic parts of the pro-
gramming language specification. Therefore, regular defi-
nitions, production rules, attributes, semantic rules and op-
erations on semantic domains can be inherited, specialized
or overridden from ancestor specifications. The language
is specified in the following manner:

language L; [extends Lo, ., In] A«
lexicon {

[P] overrides | [P] extends] R regular expr.

}
attributes type Al, ..., AM

rule [[Y] extends | [Y] overrides] Z {
X := Xn X2 X1p compute {
semantic functions }

Xr1 Xr2 X, compute {
semantic functions }

}

method [[N] overrides | [N] extends] M {
operations on semantic domains

}

}

In object-oriented languages the properties that consist of
instance variables and methods are subject to modification.
Since in attribute grammars semantic rules are tightly cou-
pled with particular production rules, properties in multiple
attribute grammar inheritance consist of lexical regular def-
initions, attribute definitions, rules which are generalized
syntax rules that encapsulate semantic rules and methods
on semantic domains. The benefits of multiple attribute
grammar inheritance are:

— specifications are extensible since the language de-
signer writes only new and specialized specifications,

— specifications are reusable since specifications are in-
herited from ancestor specifications, and

— the language designer can construct the programming
language specification from multiple specifications.
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In our opinion the main weakness of multiple attribute
grammar inheritance approach is that it does not help the
designer in the case when languages have similar seman-
tics and a totally different syntax. One possible solution
to this problem is that of Composable Attribute Grammars
(CAG) [11]. CAG consists of component attribute gram-
mars and glue grammar. In component attribute grammar
phrase structure and its semantics are expressed in terms
of abstract, language independent context free grammar.
The concrete syntactic structure is specified only in a glue
grammar. In our approach templates are introduced with
a similar goal. When studying semantic specifications for
various programming languages common patterns can be
noticed. Patterns like value distribution, list distribution,
value construction, list construction, bucket brigade, propa-
gate value and many others are independent of the structure
of production rules. Such patterns are described with tem-
plates. A template in attribute grammars is a polymorphic
abstraction of a semantic rule parameterized with attribute
occurrences which can be associated with many produc-
tion rules with different nonterminal and terminal symbols.
Since a nonterminal symbol can be considered as a class
in object-oriented attribute grammars [3], a template in at-
tribute grammars is a kind of polymorphism. Further, at
template instantiation appropriate semantic rules are gen-
erated at compiler generation time which is similar to tem-
plates in object-oriented languages where the code is gen-
erated at compile time. Templates are also independent of
a number of attribute occurrences which participate in se-
mantic rules. For this purpose a variable list of arguments
is proposed. As an example, a value distribution pattern is
described as:

Y ::= X1 X2 ... XN
{ X1.in = Y.in; X2.in = Y.in;
XN.in = Y.in; }

A template describing the value distribution pattern is:

template <attributes Y_in, X_in*>
compute valueDistribution ({
{ X_in* = Y_in; }

}

The formal argument X_in* in the template valueDis-
tribution is a variable list of arguments. Such argu-
ments are denoted with an asterisk after the name. At tem-
plate instantiation a part of semantic rules enclosed with
braces is generated for each argument in the variable list.
Together with a variable list of arguments some functions
are defined which can be used for variable list manipula-
tion (first, last, succ, pred). A successor for
the last argument and a predecessor for the first argument
do not exist. The usage of the above functions is presented
in the next example. A pattern bucket brigade left is de-
scribed as:

Y ::= X1 X2 ... XN
{ X1.in = Y.in; X2.in = Xl.out;

XN.in = XN-1l.out; Y.out = XN.out; }
A template describing the pattern bucket brigade left is:

template <attributes Y_in, Y_out, X_in*,
X_out*>
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compute bucketBrigadeLeft ({
if (empty(X_in*) && empty(X_out*))
Y _out = Y_in;
else
first(X_in*) = Y_in;
{ ¥ in* = pred(X_out¥*);}
Y_out = last(X_out*);
endif
}

One of the drawbacks of attribute grammars pointed out
by several researchers are the less readable semantic rules
since essential computations are mixed with a lot of copy
and propagation rules. To understand the work that has
been accomplished by semantic rules can take a lot of time,
as shown in the next example.

DECLS ::= DECL \; DECLS compute {

DECL.1isGlobal = DECLS{0].isGlobal;
DECL.inEnv = DECLS{0].inEnv;
DECLS([1] .isGlobal = DECLS[0].isGlobal;
DECLS[0] .outEnv = DECLS{1].outEnv;
DECLS[1]).inEnv = DECL.outEnv;

}

Specifications with templates are on higher abstraction
level and hence more readable. In the semantic rules above,
attribute computations are composed of bucket brigade and
value distribution patterns. '

DECLS ::= DECL \; DECLS compute {
bucketBrigadeLeft<DECLS([0] . inEnv,
DECLS[0] .outEnv,

[DECL.inEnv, DECLS(1l].inEnv],
[DECL.outEnv, DECLS[1l].outEnv]>
valueDistribution<DECLS[0] .isGlobal,

[DECL.isGlobal, DECLS[1l].isGloball>
}

The benefits of templates are:

— specifications are more readable and- maintainable
since templates are on higher abstraction level than
assignment statements,

— specifications are reusable since the templates are in-
dependent of the structure of grammar productions,
and

— language designers can create their own templates.

Let us look at the example of a simple language with as-
signment statements which may seem trivial, but a more
concrete language would require several pages (for exam-
ple COOL specifications are written on 25 pages). In the
first attempt expressions have no side effects. The meaning
of the program:

a :=5
b:=a+1+a+ a

is the following values: a=5, b=16. Let us develop the lan-
guage without side effects in an incremental way. In each
language increment only one semantic aspect are covered.
In the first specification, only the rules for attribute val are
given which reflect semantic aspect for value of an expres-
sion.
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language Expr

lexicon {

Number [0-91+

Operator \+

ignore [\0x09\0x0A\0x0D\ ]
}

attributes int * val;

rule Expressionl {

EXPR ::= EXPR + TERM compute {
EXPR[0].val = EXPR[1l].val + TERM.val;
i
}
rule Expression2 {

EXPR ::= TERM compute {
EXPR.val = TERM.val;
Y
}

rule Terml {

TERM ::= #Number compute {
TERM.val = Integer.valueOf (
#Number .value()) .intValue() ;
}i

} Hlanguage Expr

The language ExprEnv is an extension of the language
Expr where regular definitions Number, ignore, and at-
tribute val are inherited and reused. The regular definition
operator, and rules Expressionl, Expression2,
and Terml are extended. Regular definition Identi-
fier, and rules Start, Statements, Statement,
and Term2 are added. In this language semantic aspect
of symbol table management is covered.

language ExprEnv extends Expr
lexicon {
Identifier [a-z]+
extends Operator =
}
attributes Hashtable *.inEnv,
rule Start ({
START ::= STMTS compute {
STMTS.inEnv = new Hashtable();
START.outEnv = STMTS.outEnv;

* . outEnv;

}s;
}
rule Statements {
STMTS ::= STMT STMTS compute {
bucketBrigadeLeft<STMTS[0].inEnv,
STMTS[{0] .outEnv,
[STMT.inEnv, STMTS[1].inEnv],
[STMT.outEnv, STMTS{1].outEnv]>
}
| compute {//epsilon
" bucketBrigadeLeft<STMTS.inEnv,
STMTS.outEnv, []1, []>
}:
}

rule Statement {
STMT ::= #Identifier := EXPR compute {
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EXPR.inEnv = STMT.inEnv;
STMT.outEnv = put(STMT.inEnv,

#Identifier.value(), EXPR.val);
}i
}
rule extends Expressionl {
EXPR ::= EXPR + TERM compute {
/ production can be omitted as in
// Expression2

valueDistribution<EXPR[O] . inEnv,
[TERM. inEnv, EXPR[1l].inEnv]>
};
}
rule extends Expression2 {
compute {
valueDistribution<EXPR.inEnv,
[TERM. inEnv] >

}
rule Term2 {

TERM ::= #Identifier compute {
TERM.val = ((Integer)
TERM. inEnv.get (
#Identifier.value())).intvalue();
Y

}
method Environment{
import java.util.*;
public Hashtable put (Hashtable env,
String name, int val) {
env = (Hashtable)env.clone();
env.put (name, new Integer(val));
return env;
}
}
Y/ language ExprEnv

If later the designer needs expressions with side effects
he/she must change only those parts which differ from an-
cestor specifications. In our example we have to use the
bucket brigade left pattern instead of the value distribu-
tion pattern in rules: Expressionl, Expression2,
Terml, and Term2. Also, a new rule Term3, which
produces a side effect with the following expression con-
struct [1d := EXPR] is introduced. The value of id is
changed and propagated in further expressions. For exam-
ple the next program:

a :=5
b:=a+ 1+ [a :=8] +a

produces the following values: a = 8 and b = 22. The lan-
guage ExprSideEffect is an extension of the language
ExprEnv where regular definitions Number, Opera-
tor, Identifier and ignore, attributes inEnv, out-
Env and val, rules Start, Statements and method
Environment are inherited and reused. The rules
Statement, Expressionl, Expression2, Terml
and Term2 are extended, and the regular definition Sep-
arator and the rule Term3 are added.

language ExprSideEffect extends ExprEnv
lexicon {
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Separator \[ | \}
}
rule extends Start {
compute { }
} // for starting production
rule extends Statement {
compute {
bucketBrigadeLeft<STMT. inEnv,
STMT.ocutEnv,
[EXPR.inEnv], [put(EXPR.outEnv,
#Identifier.value(),
}
}
rule extends Expressionl {
compute {
bucketBrigadeLeft<EXPR[0].inEnv,
EXPR[O].outEnv,
[EXPR[1] .inEnv,
[EXPR[1] .0outEnv,

TERM. inEnv],
TERM.outEnv]>
}
}
rule extends Expression2 {
compute {
bucketBrigadeLeft<EXPR. inEnv,
EXPR.outEnv, [TERM.inEnv],
[TERM.outEnv]>
}
}
rule extends Terml {
compute { .
bucketBrigadeLeft<TERM. inEnv,
TERM.outEnv, [], []>
}
}
rule extends Term2
compute {
bucketBrigadeLeft<TERM. inEnv,
TERM.outEnv, [], []>
}
}
rule Term3 {
TERM ::= [ #Identifier \:=
compute ‘
{
bucketBrigadeLeft<TERM. inEnv,
TERM.outEnv, [EXPR.inEnv],
[put (EXPR.oOutEnv,
#Identifier.value(),
TERM.val = EXPR.val;
}

EXPR ]

EXPR.val) ]>

}
Y /language ExprSideEffect

Let us look what semantic rules are generated from the tem-
plate in rule Term3:

EXPR.inEnv = TERM.inEnv;
TERM.outEnv = put (EXPR.outEnv,
#Identifier.value(), EXPR.val);

Language ExprSideEffect inherits properties from
single parent. An example where language inherit proper-
ties from several parents can be found in [4, 21]. In [21]
incremental development of PLM language is presented.

EXPR.val)l)>
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4 Formal Definition of Multiple
Attribute Grammars Inheritance

Formally, inheritance can be characterizedas R = PO AR
[8], where R denotes a newly defined object or class, P
denotes the properties inherited from an existing object or
class, AR denotes the incrementally added new properties
that differentiate R from P, and @ denotes an operation
that combines AR with the properties of P. As a result
of this combination, R will contain all the properties of P,
except that the incremental modification part AR may in-
troduce properties that overlap with those of P so as to re-
define or cancel certain properties of P. Therefore, £ may
not always be fully compatible with P. The form of inheri-
tance where properties are inherited from a single parent is
known as single inheritance, as opposite to multiple inher-
itance where inheritance from several parents is allowed at
the same time. Multiple inheritance can be formally char-
acterizedas R=P, o P & ... ® P, ® AR. Before inheri-
tance on regular definitions, context-free grammars and on
attribute grammars are defined, let us look at the semantic
domains used in formal definitions.

ProdSem is a finite set of pairs (p, R,), where p is a pro-
duction and R, is finite set of semantic rules associated
with the production p.

ProdSem ={(p, Ry)|p € P,
p:)ﬂ;—%)(LX2m)(n,
_szz{kﬁxz::f(kbﬁ,.”
X;.a € DefAttr(p)}}

,A%ﬁ)

Properties in attribute grammars consist of lexical regular
definitions, attribute definitions, rules which are general-
ized syntax rules that encapsulate semantic rules, and meth-
ods on semantic domains.

Property = Regde f Name + AttributeName+ -
RuleName + MethodName :

For each language [, an Ancestors(l) is a set of ancestors
of the language I.

Ancestors : Language — {Language}
Ancestors(l) = {l1,12, ... , I}

For each language [, a LexzSpec(l) is a set of mappings
from regular definitions to regular expressions of the lan-
guage [. A regular definition is a named regular expression.

LexSpec : Language — Regdef Name
— RegFEzp

LexSpec(l) = {d1 — rexpy, ... ,dn > rezp,}

For each language [, an Attributes(l) is a set mappings

from attributes to their types of the language [.

Attributes : Language — AttributeName
— Type

Attributes(l) = {a1 — typey,... ,an — typen}
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For each rule r in the language !, Rules(l)(r) is a finite set
of pairs (p, Rp), where p is a production and R, is finite set
of semantic rules associated with the production p.

Rules : Language — RuleName — ProdSem
RUIGS(Z)(T) = {(p7 RP)Ip € Pa
p:X() —)Xle...Xn,
Rp = {Xi.a = f(Xo_b, e
X;.a € DefAttr(p))}}

’Xj-r:l

A set of properties of the language o, which are not acces-
sible (and hence overridden) in the language {;, is denoted
with QuerriddenId(ly,ls).

Overriddenld : (Language x Language)
— {Property}

Overriddenld(ly,ls) = {pr1,pra,... ,pr0}

Rules inherited from ancestors must be merged with the
rules in the specified language so that the underlying at-
tribute grammar remains well defined. If production p ex-
ists in current and in inherited rules, then semantic rules
must be merged R, = merge(Rpc, Rpr). Otherwise rules
are simply copied from inherited or current rules.

Merge : ProdSem x ProdSem — ProdSem
Merge(CurrentProd, InhProd) =

{(p, Rp)|((p, Rpr) € InhProdA

(p, Rpc) € CurrentProdA

R, = merge(Ryc, Rpr))V

((p, Rp) € InhProdA

(p, Rpc) ¢ CurrentProd)V

((p, Rp) € CurrentProdA

(s, Ror) ¢ InhProd))}

merge(Rpc, Rpr) is a set of semantic rules associated to
production p where the semantic rule for the same attribute
redefines the inherited ones.

merge(Rpc, Rpr) =
{Xia= f(Xop,..., Xje)
| X;.a € Def Attr(pc)
V(X;.a € DefAttr(pr)A
Xi.a ¢ DefAtir(pc))}

For the function f : A — B, we let f[a/b] be the function
that acts just like f except that it maps specific valuea € A
tob € B. Thatis:

(fla/b])(a) = b
(fla/b))(a0) = f(ao);Yao € AANao #a

4.1 Regular definition inheritance

The input string can be recognized with different regu-
lar expressions even in monolitic lexical specifications. In
such cases the first match rule is commonly used and the or-
der of regular expressions becomes important. The concept
of inheritance of regular definitions causes further prob-
lems as presented in the following example [4]:
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AddSubCalc.digit [0~9]
Dec.int [0-S]1+

For example, the input string 7’ is recognized as
AddSubCalc.digit. If reference to Dec.int was
made in the syntax specifications, the error would be re-
ported, despite the correctness of specifications. If the or-
der of regular definitions were different, the same problem
would appear with reference to AddSubCalc.digit.
Our solution to this problem is to find all matching regu-
lar definitions for the input string. For example, the result
of lexical analyses for the input string 7" would be the set
{AddSubCalc.digit, Dec.int}. In that case ref-
erence to both regular definitions can be made and there-
fore the sequence of regular definitions becomes irrelevant.
For these reasons the inheritance of regular definitions is
defined in the following way:

Let By, B, ..., By, be sets of mappings from regular defi-
nitions to regular expressions of languages {1, s, . . . 1, for-
mally defined as

Ey = {di1 = e11,di2 = €12,... ,dip = ey}
E; = {dy > e21,do2 > €22,... ,doy > ey}

Em = {dml > €ml,y .- - ;d7nn — emn}

where d;; is a regular definition and e;; is a regular expres-
sion,then E = E, @ ... ® E,, ® AE;, where E, which
inherits from Es, ... , E,,, is defined as:

E=EU...UE,.

4.2 Context-free grammar inheritance

Let Gy, Go, ..
defined as

. » G, be context-free grammars, formally

Gl = (T11N1y517P1)7
Gy = (T2, N2, 52, Ps),

Gm = Ty Ny Sm, Pr), then

G=Gy®...0G, ® NG,
where GG1, which inherits from
Ga, ..., G, is defined as

G = (T,N, S, P), where
T:T1®...®Tm,
N=N©Q...9 Ny,
P=P0o©...0FP,.

Note that the start nonterminal symbol of context free
grammar G is the start nonterminal of context-free gram-
mar (1. Since the incrementally added new productions P;
may override some productions where terminal and nonter-
minal symbols are defined, the final set of terminal symbols
T and the set of nonterminal symbols NV are not simply a
union of inherited terminal and nonterminal symbols. The
operation @ is defined as:
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VioVe@...0V, =
ViU Wz \ {z|z € OverriddenSym(l1,13)})
u...u
(Vi \ {z]z € OverriddenSym(l1,lm)}).

Where, OverriddenSym(ly,l3) is a set of overridden
symbols of the language > which are not accessible from
language l;. Also, the set of productions P is not simply a
union of inherited productions since some productions may
be overridden or cause horizontal overlap [8]. The opera-
tion is defined as:

P=P6..0FP,=PU
(P2 \ {plp € fst(Rules(l2)(r)) A
r € QuerriddenlId(ly,l)})U...U

(P \ {pIp € fst(Rules(lm)(r)) A

r € QuerriddenlId(ly,ln)}) A
dom(Rules(l;)) N dom(Rules(l;)) = 0,
t=2.m,j=2.mA1T#j.

4.3 Multiple attribute grammar inheritance

Let AG1, AG,, ..
defined as:
AGl = (Gl,Al,Rl),
AGy = (GQ,AZ,Rz),

. » AG,, be attribute grammars formally

AG = (G, Am, Ryn), then

AG = AGy @ ... 0 AG,, ® ANAG,
where AG, which inherits from
AGa,... ,AG,,, is defined as

AG = (G, A, R), where
G=G:®...0G, ® LG,
A=A19...0A,,
R=R®..QR,.

Since each attribute has a type, a set of attributes A; is de-
fined as:

A; = {ain = typea, ..., Gin = typein}.

Then, A = A; © ... 8 A, can not be defined simply as
a union, since the same attribute can be of different type
in a different set A;. This situation denotes horizontal or
vertical overlapping. Since unordered inheritance is used,
horizontal overlapping is forbidden and vertical overlap-
ping is resolved by asymmetric descendant-driven lookup
[8]. Hence, A = A1 & ... A,, is defined as:

A=AU (.42 \ {(J,lp — typelp[alp S fSt(Al)})

U...U(Amn \ {a1p = typeiplaip €

fst(Al)})/\ (—E]aji,j =2..m,i = 1l.n,

k#1: (aj; - typejn)A

(aji = typeji) A (typeji # type;i)).
The set of semantic rules R is not a simple union of in-
herited semantic rules, since some semantic rules may be
overridden or may cause horizontal overlap. In any case,
current semantic rules have to be merged with inherited se-
mantic rules.
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R=R ®...QR,, =
R1 U snd(]\lerge((Pl,Rl y (Pz, Rz\
{Rp|R, € snd(Rules(ly)(r))A
T € Overriddenld(ly,12)})))
U...Usnd(Merge((P1, Ry),
(Py R \ {Rp|Rp € snd(Rules(lm)(r))A
r € QuerriddenId(ly,lm,)})))
A dom(Rules(l;)) N dom(Rules(l;)) = 0,
i=2um,j = 2.m,i # 7.

Let us look in more detail what is the result of operation
merg@(REzpressionl 3 ExprEn'U-REwpressionl)-

Semantic rules asociated to production EXPR
— EXPR + TERM in language ExprEnv
are  semantic rules obtained from  operation

merge(REzpressionl y EmpT'REmpressionl ) -

merge(REzpressionly ExpT~REzpressian1) = {
EXPR[0].val=EXPR[1].val + TERM[0].val,
TERMI[0].inEnv = EXPR[0].inEnv,
EXPR[1].inEnv = EXPR[0].inEnv}

Defined attributes in production EXPR — EXPR +
TERM of the language ExprEnv are: EXPR[0].val,
TERM[0] .inEnv,EXPR[1] . inEnv,and in production
EXPR — EXPR + TERM of the language ExprSide-
Effect the defined attributes are EXPR[1].inEnv,
Term(0] .inEnv, EXPR[0].outEnv. Attributes
TERM[0] .inEnv and EXPR[1l].inEnv are de-
fined in both productions, however redefined seman-
tic rules are used. Therefore the result of operation
merge(REzpressionl ) EmpTEnv-REmpressionl) is

{EXPR[0] .val=EXPR[1].val + TERM[O0].val,
EXPR([1] .inEnv = EXPRI[0].inEnv,
TERM[O0] .inEnv EXPR[1l] .outEnv,
EXPR[0] .outEnv = TERM[0].outEnv}

5 Tool LISA ver 2.0

Multiple attribute grammar inheritance is successfully im-
plemented in the compiler/interpreter generator tool LISA
ver. 2.0. The tool LISA is compiler generator with the fol-
lowing features:

— LISA is platform independent since it is written in
Java

— it offers the possibility to work in a textual or visual
environment

— it offers an integrated development environment (fig.
1) where users can specify - generate - compile-on-
the-fly - execute programs in a newly specified lan-
guage

— lexical, syntax and semantic analysers can be of dif-
ferent types and can operate standalone; the current
version of LISA supports LL, SLR, LALR, and LR
parsers, tree-walk, parallel, L-attribute and Katayama
evaluators
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— visual presentation of different structures, such as fi-
nite state automata, BNF, syntax tree, semantic tree,
dependency graph

— animation of lexical, syntax and semantic analysers

— the specification language supports multiple attribute
grammar inheritance and templates which enable to
design a language incrementally or reuse some frag-
ments from other programming language specifica-
tions.

6 Related Work

There has been a lot of research on augmenting ordinary at-
tribute grammars with extensions to overcome deficiencies
of attribute grammars such as lack of modularity, extensi-
bility and reusability {9, 10, 11, 12, 13, 14, 15].

Modular attribute grammars MAG [16] are proposed as
a solution to attribute pragmatic problems. The whole lan-
guage specification consists of several MAGs. A single
MAG is a set of patterns and associated templates. For each
match between a production and pattern a set of attribute
computations is generated. Both, the matching and the gen-
eration process are further constrained to generate only use-
ful and meaningful attribute computations. As in our tem-
plate approach, MAG too specifies the semantic rules for
sets of productions rather than for a particular production.
We are convinced that our template approach offers a better
abstraction of attribute computation since our template is a
generic module parameterized by attribute instances, which
is not the case with MAG modules. Also, in our approach
the attribute computation generation is explicitly stated by
the designer, and in MAG by the pattern matching process
which is very difficult to follow. On the other hand, MAG
has no counterpart to our multiple inheritance approach.

We borrowed the idea of grammar inheritance from [17]
where the only property is a production rule, and extended
it to multiple attribute grammar inheritance. The difference
between the approaches is also in the granularity of mod-
ification. In the approach of [17] modification is possible
only for the whole production rule, since the name of the
property is left hand nonterminal.

In object-oriented attribute grammars [3, 18] the con-
cepts of class and class hierarchies have been introduced
where nonterminals act as classes and class hierarchies
have been derived from the context free grammar. Inheri-
tance could be applied to attributes, attribute computations
and syntactic patterns within one attribute grammar. It is
also well known that inherited attributes and class hier-
archies produce some conflicts on well-definedness of at-
tribute grammars and hence multiple inheritance is not al-
lowed, and also inherited attributes can not be used in dy-
namic classes. In our approach a different view is chosen
where the whole attribute grammar is a class without the
above mentioned conflicts.
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In the report [19], extensible attribute grammars are used
to generate integrated programming systems in an incre-
mental way. In order to perform incremental generation
as quickly and as easily as possible, the restricted form of
extension is used. For example, nonterminal symbols can
not disappear on the right hand of productions upon ex-
tensions. At most they can be replaced by extended non-
terminals which must contain all attributes of its respective
base nonterminal. Therefore, extensible attribute grammars
support some form of strict inheritance while our approach
supports nonstrict inheritance.

In our opinion the only widely accepted approach with
reusability of attribute grammars is the approach presented
in [20] and incorporated in the Eli compiler generator,
where with remote attribute access and inheritance, an at-
tribution module is defined which can be reused in a vari-
ety of applications. But with this approach the attribution
module can be only constructed for those attribute com-
putations where the attribute depends only on remote at-
tributes. In this case computation is associated to a symbol
rather than to production. With the inheritance described
in [20] an attribute computation can be further independent
from symbols used in particular language definitions.

Recently some new attempts to better modularity and ex-
tensibility of attribute grammars have been proposed also in
functional paradigm [23] where Bird example [22] and its
modification were presented. With our approach the same
example can be easily implemented using attribute gram-
mar inheritance. First we write the attribute grammar for
Bird example:

language Bird ({

lexicon {

tip \-?[0-9]+

nodeop \( | \) | .

ignore [\0xOD\0x0A\ \0x09]+

}

attributes int *.min,

String *.val;

rule Start (

START ::= TREE compute {
START.val = TREE.val;
TREE. inMin = TREE.min;

* inMin;

}:

}

rule Tree {

TREE ::= #tip compute {
TREE.min =

Integer.valueOf (#tip.value()).intvValue();

TREE.val= ""+TREE. inMin;
} | ( TREE , TREE ) compute {
TREE.min = TREE(1l] .min<TREE{2] .min?
TREE[1] .min:TREE[2] .min;
TREE([1] .inMin = TREE. inMin;
TREE([2].inMin = TREE.inMin;
TREE.val = "( "+TREE[1l].val+", "
+TREE([2]).val+")";
Y
}
}
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rule Expression?

{
EXER ::= TERM compute

rule Termi

{
TERM ::« AHunmber compute
{
TERM.val = Integer.valueof (#Number
it

ruie Term2
{

TERM ::= #ldentifier compute
{

TERM.val = ({Integer)TRRM,inEnv.get
i:

uage ExprSideE!
T

(i
[{&H[ﬁm‘:w
5

Expr.Separator
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Figure 1: LISA Integrated Development Environment

Evaluation of the attribute grammar requires two tree
passes. In first pass the global minimum value of the tree is
computed. In second pass a new tree with the same topol-
ogy is constructed by replacing all leafs with global mini-
mum value from the first pass.

For the input tree:

(2, ((3,(-10, 2)), (=10, 5)))
the generated result is:

(-10, ((-10, (-0, -10)), (-10, -
10))).

As presented in [23] we modify the attribute grammar
for different problem with grammar inheritance. Modifica-
tion is to replace the each leaf with the number of global
minimum occurrences in the left of the leaf.

For the same input tree the output is:
(0, ((0,(1, 1)), (2, 2))).
Extension of attribute grammar Bird:

language ExtBird extends Bird {
rule extends Start {
compute {
TREE[0] .inMinCount =
; ;
}
attributes int *.minCount,
rule extends Tree {
TREE ::= #tip compute {
TREE.minCount = TREE. inMinCount +
(Integer.valueOf (#tip.value()) .intvalue()
TREE.inMin ?1:0);
TREE.val = String.valueOf (TREE.minCount) ;

0;

* _inMinCount;

} | ( TREE , TREE )
TREE[1].inMinCount = TREE(0].inMinCount;
TREE([2] .inMinCount = TREE[1l] .minCount;
TREE[0] .minCount = TREE[2] .minCount;

Y

}

}

compute {

The only modifications of the original attribute grammar
are semantics functions for computation of minimum value
occurrence and redefinition of the leaf computation. This
is very easily done using attribute grammar inheritance as
presented. Attribute grammar inheritance is very natural
approach since the notion of inheritance is close to devel-
opers from object oriented programming languages.

7 Conclusion

When introducing a new concept, the designer has diffi-
culties in integrating it into the language in an easy way.
To enable incremental language design we introduce a
new object oriented attribute grammar specification lan-
guage based on the paradigm LAttribute Grammar = Class |
In multiple attribute grammar inheritance the properties
which can be inherited or overridden are regular defini-
tions, attributes, rules which encapsulate productions and
semantic rules, and methods. Therefore, with multiple at-
tribute grammar inheritance we can extend the lexical, syn-
tax and semantic part of language definition. In the paper
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an example and the formal definition of multiple attribute
grammar inheritance is given. The main advantages of the
proposed approach are:

~ simplicity and clearness of the approach,

— the object concept is simply transposed on the basic ob-
jects of attribute grammars at the specification level, and

— incremental language development is enabled.

We have incrementally designed various small program-
ming languages, such as COOL and PLM with multiple
attribute grammar inheritance. Our experience with these
non-trivial examples shows that multiple inheritance in at-
tribute grammars is useful in managing the complexity,
reusability and extensibility of attribute grammars. The
benefit of this approach is also that for each language incre-
ment a compiler can be generated and the language tested.
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In this paper, we show how attribute grammars can be divided into components. We introduce three types of
component, called families, rules and aspects. We use the programming language Haskell [4] to give these
components (and their composition) a concise executable semantics. We also show how our semantics
makes it easy to define a number of generic attribution patterns such as chained attributes [16].

1 Introduction

This paper is a contribution to the ongoing quest for mod-
ular descriptions of language processors, with the specific
aim of rapidly prototyping domain-specific languages [21].
Some might argue that this problem was solved in the eight-
ies, with the development of a proliferation of language
processors based on attribute grammars [11, 15, 22]. Oth-
ers might argue that functional programming languages
such as ML are adequate for the purpose, without any
further extensions. We believe that functional program-
ming languages do not offer enough specialised support
for implementing compilers. However, attribute grammars
are not in widespread use, despite their many advantages.
This may be due to restrictions imposed by attribute defi-
nition languages, which are often less flexible than general
purpose functional programming languages. Such general
languages tend to yield descriptions that are compact, but
they lack the dedicated structuring mechanisms of attribute
grammars.

In this paper we initiate a systematic study of such struc-
turing mechanisms, by giving them a compositional seman-
tics. The semantics is expressed in the vocabulary of func-
tional programming. Our semantics thus opens the way to-
wards combining the powerful structuring mechanisms for
attribute grammars with the flexibility of a general purpose
programming language. In particular, it is easy to define
new structuring operators in our semantics. Furthermore,
because the semantics is a-functional program, one imme-
diately obtains a prototype for experimenting with newly
defined features. Naturally the results of this paper do
not stand on their own, and many of the ideas have been
gleaned from the attribute grammar literature, in particular

[5, 6, 16, 19, 20, 23, 26]. Especially the thesis by Stephen
Adams [1] has been an inspiration for this work.

Attribute grammars and functional programming
There exists a well-known encoding of attribute gram-
mars into programming languages that have lazy evalua-
tion [14, 18]. This encoding has been dismissed by others
on the following grounds:

— Lazy evaluation is inherently inefficient, and therefore
an attribute evaluator based on it must be inefficient.

— The resulting programs are highly convoluted and
much less modular than standard attribute grammars.

The first objection has been refuted by the work of
Augusteijn, who has built an attribute grammar evaluator
based on lazy evaluation: he reports that its performance is
on a par with other systems that do a sophisticated analysis
of dependencies, and produce a schedule for the attribute
computations based on that analysis. Augusteijn’s system,
named Elegant, has been widely used within Philips for
implementing domain-specific languages [2]. Because our
primary objective is a compositional semantics, the effi-
ciency issue is not really important in the present context.

The second objection remains valid, however, and in-
deed the Elegant system suffers from this problem. Essen-
tially, all attribute definitions have to be grouped by pro-
duction. It is thus not possible to group all definitions for
a single attribute in one place, and then specify how each
rule contributes to the behaviour of a production. One can-
not reuse the same set of attribution rules, and make them
contribute to different productions. Elegant is particular in
this respect: many other attribute grammar systems do al-
low such groupings, but only at a syntactic and not at a
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semantic level. If we wanted to provide the same function-
ality in a general purpose programming language, so that
rules, productions and grammars are all first-class citizens
of the language, we would have to give a type to each re-
usable component.

The purpose of types is to guarantee the absence of cer-
tain run-time errors. In choosing an appropriate type sys-
tem for composing attribute grammars from smaller com-
ponents, we need to decide what run-time errors we wish to
avoid. There are a number of common errors that are typ-
ically caught by attribute grammar systems: a mismatch
between productions as used in the attribute definitions and
in the context-free grammar, the use of an attribute that has
not been defined, a cyclic dependency between attribute
definitions, and the use of an attribute in a context that does
not match its type. In this paper, we only aim to avoid the
last kind of error.

The idea of embedding domain-specific languages di-
rectly into a more general host language is a buoyant area
of research. Recent examples include languages for pretty-
printing [13], reactive animation [9], and musical compo-
sition [12]. This paper adds the example of attribute gram-
mars to that list. All these works, including our own, can
be seen as providing an executable semantics for a domain-
specific language. While studying semantics, one is not
concerned with matters of concrete syntax, and indeed we
shall defer the choice of appropriate notations to later work.

As argued by Swierstra et al. in [25], some of the above
examples of embedded domain-specific languages could be
more nicely structured in an attribute grammar style. In
that paper, an attribute grammar preprocessor is used for
achieving the desired structure. The present paper provides
a semantics of that preprocessor.

Overview The structure of the paper is as follows. First
we introduce a small attribute grammar example that we
shall use throughout to illustrate the ideas. We show
how we might simplify the attribute grammar by using
“aspects”. Next, we introduce our notation, which is
loosely based on the lazy functional programming lan-
guage Haskell [4]. The notation is illustrated by defining
the basic types of trees, productions and attributes. They
provide the preliminaries for discussing families, rules and
aspects: the building blocks of our semantics. To illustrate
these building blocks in a practical setting, we revisit our
introductory example. We then show how easily they can
be mapped into an executable implementation. Finally, we
discuss directions for future work, in particular how we can
provide more sophisticated static checks on the composed
attribute grammar.

It is assumed that the reader has some degree of famil-
iarity with a modern functional programming language, as
well as the basic concepts of attribute grammars. The tradi-
tional encoding of attribute grammars in a lazy functional
language is described by [14]. A passing acquaintance with
this encoding will be helpful, but is not necessary. A good
introduction to the style of functional definition in this pa-
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The output tree

The input tree

Figure 1: An example of the use of repmin

per can be found in [4].

2 An example: repmin

Consider binary trees, whose internal nodes are unlabelled,
and whose leaves are labelled with integer values. We aim
to replace all leaf values by the minimum leaf value. An
example of this is given in Figure 1. This is known as the
repmin problem, and it was first introduced by [3]. As
noted by [18], the repmin problem is easily expressed as an
attribute grammar, which we will now present in an anony-
mous but hopefully self-explanatory notation.

As a first step we introduce two synthesised attributes,
named ntree (for new tree), and locmin (for local mini-
mum). Furthermore there is one inherited attribute, named
gmin (for global minimum). The strategy is to recursively
compute the local minimum on all nodes. The global min-
imum equals the local minimum of the root. This value is
broadcast to all the leaves. The new tree is then built recur-
sively.

The production named Root rewrites the start symbol
Start to Tree. The resulting tree of parent Start is the
resulting tree of the child Tree. It is here that the global
minimum is defined:

Root Start — Tree
Start.ntree = Tree.ntree
Tree.gmin = Tree.locmin

At each binary node, the local minimum is obtained by
taking the minimum of both subtrees; the global minimum
is broadcast from the parent to both children. Here and
below, we use indices to refer to successive occurrences of
the nonterminal Tree:

Node Treeg — Tree; Treey
Treeg.ntree = Node Tree;.ntree
Treey.ntree
Treeg.locmin = min Tree;.locmin
Trees.locmin
Treeg.gmin
Treeg.gmin

Tree;.gmin =
Trees.gmin =

Finally, the local minimum of a leaf is its value, and the
new tree is a leaf with the global minimum as its value:
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Leaf Tree — Val
Tree.ntree = Leaf Tree.gmin
Tree.locmin = Val.value

Despite the simplicity of this example, there is already
quite a lot of tedious detail to take care of, most notably
the copying of the gmin attribute from the root of the tree
to the leaves. It is also a little annoying that the definition
of each attribute is smeared out over several productions,
making it difficult to see the flow of information at a glance.
It is for that reason that practical attribute grammar systems
provide better structuring mechanisms, of the kind that we
shall discuss below.

Let us plod on, however, and consider how the above at-
tribute grammar would have to be modified for a slightly
different problem. Instead of replacing each leaf L by the
global minimum, we aim to replace it by the number of
times the global minimum occurred to the left of L in the
inorder traversal of the tree. For this we introduce an addi-
tional chained attribute count that keeps track of that num-
ber. The new root production initialises the count to zero:

Root Start — Tree
Tree.count = 0

At a node, we chain the count from left to right. As is
often the case with chained attributes, there is some sub-
tle punning going on with the names: the first mention of
Treeg.count is the inherited attribute count, whereas its
second occurrence is the synthesised attribute of the same
name:

Node

Tree,.count =
Trees.count =
Treeg.count =

Treeg — Tree; Trees
Treey.count
Treey .count
Trees.count

Finally, at a leaf we compare the value to the global mini-
mum, and if they coincide, the counter is incremented. We
also redefine the computation of ntree:

Leaf Tree — Val
Tree.ntree = Leaf Tree.count
Tree.count =

if Val.value = Tree.gmin then
Tree.count + 1

else
Tree.count

To obtain a program for the modified repmin problem, we
now have to paste these new definitions into the original
grammar. This involves adding the new rules for count
to each of the productions, and overriding the original
definition of the ntree attribute in the Leaf production.
Indeed, most attribute grammar systems treat structuring
mechanisms in this syntactic way. Furthermore, they intro-
duce syntactic abbreviations for common patterns such as
chained attributes [16]. We aim to show how these struc-
turing operations can be given a precise semantics.
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In our semantic view, the only essential difference be-
tween the above two grammars is the presence of the count
attribute: the rest of the semantics is shared. The over-
riding of the ntree attribute is modelled by making ntree
a parameterised attribute. Furthermore, the semantics fa-
cilitates easy definitions of oft-occurring patterns (such as
that of chained attributes, and broadcasting of inherited
attributes). Making such patterns explicit removes a lot
of the tedium involved in writing attribute grammars, and
also makes them easier to read. It is the compositional se-
mantics (of well known structuring mechanisms) that is the
contribution of this paper. The fact that the semantics is
an executable prototype is a pleasant side effect of express-
ing ourselves in a lazy functional programming language.
Having an executable prototype makes it easy to experi-
ment with new structuring operators, giving an opportunity
to explore beyond the fixed vocabulary of typical attribute
grammar systems.

With some syntactic sugar for increased readability, the
new formulations of the repmin problem and its variation
are as follows. First we introduce the inherited attribute
gmin. It is introduced through a so-called attribute as-
pect that groups several definitions for an attribute together.
This aspect stipulates that gmin is copied at the Node pro-
duction, and a specialised definition is given at the root:

gmins =
inherit gmin
copy at Node
define at Root[Tree] : Tree.locmin

Here, the notation Root|Tree] specifies that we are defin-
ing an attribute on the Tree nonterminal of the Root pro-
duction.

One can also define attribute aspects for synthesised at-
tributes. The default behaviour here is to collect multiple
occurrences of the attribute from the children. In the case
of the local minimum, we collect with the minimum func-
tion, and its value at a leaf is simply the original label:

locmins =
synthesise locmin
collect with min at Node
define at Leaf[Tree] : Val.value

To cater for later variation, the construction of the new
tree is parameterised by the attribute that we substitute for
leaves:

nirees =
synthesise ntree(a : Attributelnt)
collect with Node at Node
define at Leaf[Tree] : Leaf Tree.a
Root[Start] : Tree.ntree

Finally, the chained counter has special definitions in two
productions. It is inherited in Root, and synthesised in
Leaf:

counts =
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chain count
define at
Root[Tree] : 0
Leaf[Tree] :
if Val.value = Tree.gmin then
Tree.count + 1
else
Tree.count

The solution to the original problem is now obtained by
assembling the above aspects with the following Haskell
expression:

compiler [gmins,
locmins,
ntrees gmin] niree

repming =

The final argument indicates that we want to return the
ntree attribute as the result of compilation. The more com-
plicated variation of the repmin problem is assembled by
including the counter:

compiler [gmins,
locmins,
nirees count,
counts] niree

repming =

We should stress that each of the attribute aspects gmins,
locmins, ntrees and counts are first-class values that can
be passed as parameters and returned as results. To define
precisely what those values are is the goal of the remainder
of this paper.

3 Preliminaries: Trees, Productions
and Attributes

To set the scene, and to introduce some Haskell vocabu-
lary through familiar concepts, we start by defining trees,
productions and attributes. Most of these definitions are
extremely straightforward. It is only in our definition of at-
tributes that we have to exercise some foresight. This will
facilitate easy composition at a later stage. Readers who
are familiar with Haskell may wish to skim the subsection
on attributes, and then proceed to the next section, which is
the core of the paper.

3.1 Trees

For simplicity, our attribute grammars will operate on a
rather primitive kind of tree, whose type is independent of
the underlying context-free grammar. As said in the intro-
duction, that makes our semantic definitions simpler, but
it does carry the risk of run-time errors when an attribute
grammar is applied to a particular tree. A safer approach
would be to define a separate type of tree for each grammar.

A tree is either a Fork labelled with a value of type a
and a list of descendants that are also trees, or it is a Val
labelled with a 3:
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data Tree a f = Fork o [Treea §}| Val 8

Typically, the type a represents the names of productions,
and g is the type of attributions that were computed by the
scanner or parser. The most common type of tree is there-
fore Tree ProdName Attrs, where ProdName denotes the
type of names of productions, and Attrs that of attribu-
tions. Both of these types will be formally defined below.
Sometimes it is convenient to vary the instantiations of o
and 8 in the definition of trees, however, and that is why
we abstract from the concrete type. An example where that
flexibility will come in handy is the definition of a function
that decorates a tree with all relevant attribute values.

In our running example, we have a grammar with three
productions named Root, Node and Leaf. Together these
names make up the data type of production names that may
occur at Fork nodes of a tree:

data ProdName = Root | Node | Leaf

3.2 Attributes and attributions

An attribution is a finite mapping from attribute names to
attribute values. We shall exercise a little notational free-
dom when discussing finite mappings, and write A — B
for the set of finite maps from A to B. Accordingly, the
type of attributions is defined:

type Attrs = AtirName — AtirValue

Note that in contrast to previous types (which were new
types, introduced with the Haskell keyword data) this type
is merely an abbreviation for an existing type (which is
indicated by using type in lieu of data). The choice
to model attributions as finite maps implies that we can-
not guarantee, by exploiting the type system of Haskell,
that certain names are present in an attribution: such a
check could have been enforced by modelling attributions
through record types. Note also that all attributes map to
values of the same type, namely AttrValue. As we shall
see below, AttrValue is defined as the disjoint union of all
possible attribute types in a particular grammar.

We shall often write  {(no,v), (n1,v1),...,
(nk—1,v5—1)} for the attribution that sends each name
n; to the value v;. Strictly speaking this is not valid
Haskell syntax, but it will ease the presentation of concrete
examples.

It is our goal to make all concepts in our semantics com-
posable, and that entails introducing a union, join or merge
operation wherever we can. In the case of attributions, the
obvious choice is the join of finite maps. For finite maps f
and g, the join f @ g is defined by:

(f ® )z = fx,ifz € domain f
= g z, otherwise

In this definition, we are again taking a notational liberty,
namely writing application of finite maps as ordinary func-
tion application. In Haskell, a special operator has to be
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introduced. Furthermore, in Haskell, application of a finite
map to an element outside its domain will result in a run-
time error. Note that the join operator is associative, and it
has an identity element, namely the empty map.

While we have shown how to combine attributions,
as yet we do not have a way of putting elements (i.e.
(name,value) pairs) into an attribution. We define such em-
bedding functions, one for each attribute, along with the
corresponding projection. In fact, we take such an embed-
ding/projection pair as the definition of an attribute. To wit,
the type of attributes whose values are of type « is:

type Ata = (o — Attrs, Attrs = «)

The first component of such a pair is the embedding, and
the second is the projection:

embed 2 Ata = a = Attrs
embed (e,p) = e

project w Ata — Attrs — «
project (e,p) = p

We shall ensure that for any attribute a, we have
project a - embed a = id. The opposite composition
embed a - project a will usually not be the identity, be-
cause it always produces an attribution with only a single
element.

One way to think of the expression project a is as the
function that maps a grammar symbol S to S.a: we project
the a attribute from the attribution associated with §. Con-
versely, the embedding is what is used to define the at-
tribute of a grammar symbol. Admittedly it may appear
a little odd to define attributes in this way, but by encod-
ing them as an embedding/projection pair, we avoid having
to pass attribute names separately to many of the functions
defined below.

Attributes are created using the function mkAt. It takes
an attribute name, an embedding from « into the type of
attribute values, and a coercion that goes in the opposite
direction. The result is an attribute of type At o

mkAt :: (AttrName,
a — AttrValue,
AttrValue ~ o) — Ata
mkAt (n,e,p) = (Ao — {(n,ea)},
Aas — p(asn))

That is, to embed an attribute value we wrap it in a sin-
gleton map, that only maps the name n to the value e a.
Conversely, given an attribution as, we look up the corre-
sponding value and project it to the type a.

In the running example, there are five attributes in all.
First, there is the integer valued attribute of leaves — this is
filled in by the scanner when the tree is read in. Further-
more, we have the local minimum, the global minimum,
the newly created tree, and the counter. For each of these
attributes, we introduce an identifier:
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data AttrName = Valueld | Locminld
| Gminld | Ntreeld
| Countld

The type of attribute values is the disjoint union of values
for each of these five attributes. For each attribute, we have
a constructor that embeds the value into the union, and a
destructor that projects it out of the union. In Haskell syn-
tax, this reads:

data AttrValue =
Value{unvalue :: Int} |
Locmin{unLocmin :: Int} |
Gmin{unGmin :: Int} |
Count{unCount :: Int} |
Ntree{unNtree :: TreeProdNameAttrs}

Note the type of the attribute ntree: it is a tree whose Fork
nodes are labelled with names of productions, and whose
value nodes carry an attribution. Using the above construc-
tors and destructors for AtérValue, we can now define the
five attributes using the mkA¢ function:

value = mkAt (Valueld, Value, unvalue)

locmin = mkAt (Locminld, Locmin,
unlocmin)

gmin = mkAt (Gminld, Gmin, ungmin)

ntree = mkAt (Ntreeld, Ntree, unntree)

count = mkAt (Countld, Count, uncount)

We note once again that our use of embedding/projection
pairs neatly hides the internal structure of an attribute,
namely its name and its type. In an early version of this pa-
per, we did not do so, and consequently we had to pass the
triples of (name, constructor, destructor) around in many
functions. That is rather clumsy, and it breaks the abstrac-
tion of an ‘attribute’ — we wish to hide the implementation
detail as much as possible. The practical benefit is that the
Haskell type system guarantees that each attribute can only
be assigned values of the appropriate type.

To illustrate the above definitions, let us consider an ex-
ample attribution from the repmin problem. An internal
node might have the following inherited attribution:

(embed gmin 4 @© embed count 5) =
{{Gminld, Gmind), (Countld, Count5)}

Using the material presented so far we define the follow-
ing tree construction functions for the repmin example:

leaf a = Fork Leaf [Val (embed value a))
node ss = Fork Node ss
root t = Fork Root [t]

Note how the leaf data is stored in the value attribute. Now,
one can construct an example tree thus:

example :: Tree ProdName Attrs

ezample =
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root (node [node [leaf 3, leaf 1],
node [leaf 4,
node [leaf 1, leaf 2]]])

It is worthwhile to reflect for a moment which parts of
the semantics so far are dependent on the particular exam-
ple at hand. The types of production names, attribute names
and attribute values are specific. To get the semantics for
other examples, new definitions have to be substituted.

4 Composing attribute grammars

What are the building blocks of an attribute grammar? In
their purest form, they are composed only of productions,
and for each production, all attributes are defined simulta-
neously. Many attribute grammar systems also allow one
to group definitions by aspect, where a number of related
attributes are defined together, but not necessarily all at-
tributes for each production. We have seen several exam-
ples of aspects in our running example. These aspects are
however special in the sense that each defines only a sin-
gle attribute. Aspects can be woven together to form a pure
attribute grammar. Naturally one could see this as a syn-
tactic operation, performed by a preprocessor, that simply
collects all attribute definitions for each production from all
aspects. We believe that it is beneficial to give a semantics
to aspects, so that they are first-class values that can be re-
turned as the result of functions, and passed as arguments.
This section describes such a semantics. Experienced func-
- tional programmers may wish to glance ahead at Figure 3,
which gives a summary of the types introduced in this sec-
tion.

The first step towards defining a semantics is to use
Haskell functions to model attribute definitions. Let us re-
call the traditional form of attribute definitions. The fol-
lowing code was used in our repmin example:

Node Treeg — Treey Trees
Treey.ntree = Node Treey.ntree
Trees.ntree
Treep.locmin = min Tree,.locmin
Treep locmin
Treey.gmin
Treeg.gmin

Tree;.gmin
Treey.gmin =

There are two ways of viewing this code. The first view
is that there are four semantic functions that each define a
single attribute. The second view is that there is one se-
mantic rule that defines a set of attributes (containing four
elements). We prefer the second view because it will allow
us to easily define the composition of two semantic rules.
So we shall define semantic rules to be functions from the
set of input attributes to a subset of the output attributes.
Input attributes are attributes such as Tree; .locmin above.
They are the attributes that we are allowed to read from.
The output attributes are the attributes that we are defining.
This is illustrated in Figure 2.
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Inherited attributes of the parent
Synthesised attributes of the children

The family of input attributes

Synthesised attributes of the parent

Inherited attributes of the children

The family of output attributes

Figure 2: Input and Output Attribute Families

It is useful to have a name for the sets of attributes used
above. We shall call them families. The first subsection
below formally defines families, and operators for com-
posing them. Next, we turn to the definition of rules. A
rule is a mapping between families, namely from the input
attributes of a production to some of its output attributes.
Once rules are defined, it is possible to formalise the no-
tion of an aspect. An aspect assigns rules to a number of
production names. The remainder of this section shows
how aspects can be built and combined in various ways,
including those that were illustrated in the introduction.

4.1 Families

Families are used to model sets of input attributes or sets
of output attributes. Therefore, a family consists of an attri-
bution for a parent node, and an attribution for each of its
children. That is, it is a pair that consists of an attribution,
and a list of attributions:

type Fam = (Attrs,[Altrs])

For concreteness, let us consider the family of input at-
tributes associated with the Node production in repmin.
These attributes are depicted in Figure 2. Below is an
instantiation of the family, in which values have been as-
signed to all the attributes:

({ (Gminld, Gmin 2) },
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[ { (Ntreeld, Ntree (Fork ...)),
(Locminld, Locmin 3) },
{ (Ntreeld, Ntree (Val ...)),
(Locminld, Locmin 5) }])

Following our design principle that each new concept
should have a corresponding join operation, we now define
the empty family, and joining of families. Not surprisingly,
we can do so by lifting the earlier definitions on attributions
in an appropriate way.

The simplest family of all has empty attributions, and an
infinite number of children:

0 2 Fam
0 = (B, repeat B)

The function repeat :: @ — [a] generates an infinite list
of copies of its argument. Again we are taking a minor
notational liberty here, by overloading the notation for the
empty map to also apply to the empty family. In Haskell,
the two would have to be separated, or overloaded via a so-
called type class. We shall use the same illicit overloading
in the definition of the join operator on families.

Two families can be joined by joining their parents, and
joining their children position-wise. Informally, we have:

(s,[cs0, c1, .-

J) & (¢, [cto, ctry .2 ])

(s @ t,[cso ® cto, c51 D cty, ...])

In Haskell, this is achieved via the function call
zipWith f zs ys which applies the function f to corre-
sponding elements of the lists zs and ys. Furthermore, the
length of the result of zip With f is the minimum of the
length of its arguments. We have:

(@) 0 Fam — Fam — Fam
(5,¢5) ® (t,ct) = (5 ® 1,
zip With (@) cs ct)

Again the operator {@®) is associative, and has unit .

4.2 Rules

As we discussed earlier, a rule is a mapping from the input
attributes of a production to some of its output attributes.
Since both input and output attributes can be modelled as
families, we define the type of attribute definition rules as:

type Rule = Fam — Fam

To illustrate, consider the rule that defines the locmin at-
tribute in the Node production of repmin. In the traditional
notation we employed in the introduction, it reads:

Treeg.locmin = min Tree;.locmin
Trees . locmin

Encoded as an element of the above type, it becomes the
function:
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A (treeg, [treey, trees]) —
(embed locmin
(min (project locmin tree;)
(project locmin trees)),

[0, 0])

Note that in the resulting family, both children have empty
attributions. If we instead encode two rules simultaneously,
say both of

Treeg.locmin = min Treey.locmin
Treey.locmin
Trees.gmin = Treeg.gmin

we would have a non-empty attribution for the second
child:

A (treeg, [treey, trees]) —
(embed locmin
{min (project locmin tree;)
(project locmin treey)),
[, embed gmin (project gmin treeg)])

Note that we have chosen suggestive identifiers in the argu-
ment family, but these are merely local names. In the rule
itself, no knowledge of the nonterminals of the underlying
context free grammar has been encoded. This has certain
advantages, in particular that one can give rules that are in-
dependent of the precise form of the production that they
will be associated to. The main disadvantage is that the
notation can be a little hairy to use in practice: although
we already named descendants in a production, those same
names have to be repeated in each rule associated with the
production.

Let us now consider some operations for manipulating
rules. By lifting the corresponding operations-on families,
we get an empty rule (that does not define any attributes)
and a join operator: '

0 :: Rule
0f =0
(@) :: Rule — Rule — Rule

nen)f=Mf)eoenf)

It is at this point that we can start introducing some short-
hands for common vocabulary in attribute definitions. For
example, here is an operator that generates a copy rule,
which simply copies an inherited attribute from the parent
to all the children:

copyRule :: Ata — Rule
copyRule (e, p) (inhp, syncs) =
(0, repeat (e (p inhp)))

Another common design pattern is to collect synthesised
attributes off all the children. Here we need a function
collect that maps a list of attribute values to a single value:
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collectRule :: Ata — ([a] - a) = Rule
collectRule (e, p) collect (inhp, syncs) =
(e (collect (map p syncs)), repeat )

The function map p syncs applies the projection p to
each of the synthesised attributions of the children. We are
assuming, therefore, that each of the children does indeed
possess the attribute in question.

Finally, here is a formulation of the notion of chain rule.
It takes an attribute, and it returns a rule that threads the
attribute from left to right, before defining the synthesised
occurrence at the parent:

chainRule :: Ata — Rule
chainRule (e, p) (inhp, syncs) =
(last output, init output)
where output = map (e - p) input
input = inhp : syncs

First we take all the input attributions as a list, by prefixing
the synthesised attributions of the children by the inherited
attribution of the parent: this yields the list named input.
We then apply the composite function e - p to each of the
elements of input: this yields the list output. Finally we
return the last element of output as the synthesised attri-
bution of the parent, and all but the last element as the in-
herited attributions of the children. Note that this definition
is completely independent of how many children there are.
In particular, if there was no child at all (syncs = []), the
attribute is copied unchanged from the inherited attribution
to the synthesised attribution.

Undoubtedly some readers will prefer subtly different
definitions of these common patterns: hopefully they will
be encouraged by the simplicity of our choices to try and
formulate their own in the present framework.

4.3 Aspects

Often we wish to group together rules that define related
attributes, across multiple productions. For instance, we
might wish to group together all attribute definitions that
relate to type checking, or to a particular data flow analysis.
Such a group of related rules is called an aspect, following
terminology in object-oriented design [17]. Formally, we
define:

type Aspect = ProdName +» Rule

In words, an aspect maps production names to rules. It is
not necessary for an aspect to map every production name
in a grammar to a rule: it can be a partial function. We have
already discussed several aspects in the introduction to the
repmin problem, and we shall see shortly how these can be
expressed as elements of the above type.

Again we can lift the empty and join operators to operate
on aspects, and again we shall write §} for the empty aspect,
and @ for join. The empty aspect is simply the empty finite
map. The join operator is a little more subtle than before,
due to the fact that aspects may be partial:
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f® gz = fz,ifz € domaing
= gz,ifz & domain f
= fz & gz, otherwise

An aspect is often defined by giving a default rule for
most productions (for instance a copy rule for an inherited
attribute), supplemented by specific rules for only a handful
of the productions. To build the default aspect, we have the
operator:

defaultAspect :: Rule — [ProdName]
— Aspect
defaultAspect rls = {(I,r) |1 « Is}

It maps each production name [ (of type ProdName) to
the same rule r. Strictly speaking the above is not valid
Haskell, as we have made up the set comprehension nota-
tion for finite maps, for increased readability.

In practice it is somewhat inconvenient to specify rules
and aspects directly. Therefore, to make the interface of
this library for composing attribute grammars a little less
forbidding, we introduce the notion of attribute aspects.
An attribute aspect is like an ordinary aspect, but it de-
fines values only for a single attribute of type «. Formally,
it is a finite map from production names to functions of
type Fam — « (ordinary aspects have a result of type
Rule = Fam — Fam):

type AtAspect « =
ProdName — (Fam — )

An attribute aspect can be converted into a proper aspect by
applying the function inh (for inherited attributes) or synth
(for synthesised attributes). In the case of an inherited at-
tribute, the attribute aspect defines a list of values, one for
each descendant:

inh o Ata — AtAspect [a] — Aspect
inh a atAspect pname f =
(0, map (embed a) (atAspect pname f))

synth :: Ata — AtAspect @« — Aspect
synth a atAspect pname f =
(embed a (atAspect pname f), repeat §)

{In these definitions, we are again taking the liberty of mix-
ing the notation of ordinary functions with that for finite
maps.) Using the above operators, we can define a primi-
tive that defines an inherited attribute that is mostly copied,
except in a few productions that are specified as an attribute
aspect:

inherit :: Ata — [ProdName]

— AtAspect [¢] — Aspect
inherit a pnames atAspect =

nh a atAspect &
defaultAspect (copyRule a) pnames

Astute readers will recognise this as a desugared version
of the inherit construct that was introduced earlier in this

paper:
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inherit (attribute a)
copy at (list of production names pnames)
define at (attribute aspect atAspect)

The only difference is that the list of values was more con-
veniently specified in the introduction, by listing symbol
occurrences in the relevant production. Of course such syn-
tactic sugar is easily added by a simple preprocessor.

Similarly, one obtains the semantic counterpart for the
synthesise construct in the introduction. There a synthe-
sised attribute is collected in a specified list of productions,
and defined elsewhere through an attribute aspect:

synthesise :: Ata — ([o] = @)
— [ProdName]
— AtAspect o« — Aspect
synthesise a coll pnames atAspect =
synth a atAspect
&
defaultAspect (collectRule a coll) pnames

Finally, a chained attribute is defined by specifying two at-
tribute aspects. The first gives the initialisations (which are
inherited) and the second gives the update rules (which are
synthesised):

chain : At o — [ProdName]
— AtAspect [a] - AtAspect «
— Aspect
chain a pnames atAspecty atAspect; =
inh a atAspecty
<
synth a atAspect
S
defaultAspect (chainRule a) pnames

The definition of commonly occurring patterns such as
inherit, synthesise and chain as first-class values was our
original motivation for introducing the notion of aspects.
For reasons of exposition, we have chosen the simplest
possible definitions of these aspects, and not the most gen-
eral ones. It should furthermore be noted that aspects do
not necessarily define a single attribute, and so one can
also define more complex patterns involving multiple at-
tributes. Kastens and Waite [16] discuss techniques for en-
coding common attribution patterns in much greater detail.
Many of our examples (in particular the chain and synthe-
sise functions) were borrowed from their paper.

5 The repmin example revisited

Using the definitions of the previous section, we can return
to the example introduced at the beginning of this paper.
This will illustrate the use of families, rules and aspects in
practice. The reader may find it helpful to refer to Figure 3,
which summarises the definitions of the previous section.
The first aspect is that of the global minimum. The
global minimum is an inherited attribute that is broadcast
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type Fam = (Attrs, [Attrs])

= &

= 8—)0 -

type Rule = Fam — Fam
Q%D ﬁ
P = —
( g2 b8 o o )
| GK ﬁg
P, - —
( 2 b8 o o )

type Aspect = ProdName — Rule

Figure 3: A summary of Section 4

to all nodes through a copy rule. It follows that we only
have to define its value at the root. There it equals the local
minimum of the immediate descendant:

gmins . Aspect
gmins = inherit gmin [Node]
{ (Root, X (start,[tree]) —
[project locmin tree] ) }

By contrast, the local minimum is a synthesised attribute
that is collected from all descendants using the function
mmanlist that returns the minimum of a list of integers. For
leaves, the local minimum is defined to be the value of the
single child:

locmins :: Aspect
locmins = synthesise locmin minlist [Node]
{(Leaf, A (leaf ,[val]) —
project value val) }

It remains to define the aspect that produces new trees.
Recall that we had two versions of the example problem,
which differed in the value that had to be substituted for
leaves. To cater for that difference, we parameterise the as-
pect by the attribute that is the value to substitute at leaves.
At the root, and at ordinary nodes, we collect new trees of
the descendants using the node constructor. At the leaves,
we substitute the argument attribute:
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ntrees :: At Int — Aspect
ntrees a = synthesise ntree node [Node]
{ (Leaf, X (leaf,[val]) —
leaf (project a leaf)),
(Root, A (start, [tree]) —
project ntree tree) }

The first and simplest version of the example can now be
assembled into a compiler, by passing the global mini-
mum attribute to the ntrees aspect: (The Haskell function
compiler that we use here is explained in the next section.)

Tree ProdName Attrs

— Tree ProdName Attrs
repming = compiler [gmins,

locmins,

ntrees gmin| niree

repming

The more complicated version of the example required
that we replace each leaf L by the number of times the
global minimum occurs to the left of L. To program that
variant, we first introduce an aspect for the counter:

counts :: Aspect

counts = chain count [Node]
{ (Root, A (start,[tree]) — [0]) }
{(Leaf, A (leaf,[val]) —

let vy = project value val in
let w2 = project gmin leaf in
if vy == vy then

project count leaf + 1
else

project count leaf ) }

The new compiler is similar to the old one, except that we
now weave in the counter aspect, and we pass the count
attribute to the ntrees aspect:

repming Tree ProdName Attrs
— Tree ProdName Attrs
repming = compiler [gmins,

locmins,
nirees count,
counts] ntree

6 Mapping Aspects to Compilers

In this section we shall explain how families, rules and
aspects can be mapped to an executable implementation.
We shall use the well known method of encoding attribute
grammars as lazy functional programs [14, 18]. We shall
give a brief introduction to this encoding, but the reader
will benefit from an acquaintance with the work of Johns-
son [14] and Swierstra [18]. A more recent paper by Swier-
stra [25] approaches the problem from a wider perspective
and gives some non-trivial examples.
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6.1 The Encoding

The method of encoding attribute grammars as lazy func-
tional programs is based on the following observation:
the semantics of a tree can be modelled as a function.
This function is parameterised by the inherited attributes
of the root of the tree and computes the synthesised at-
tributes of the root. In other words, it is a function of type
Attrs — Attrs. This observation is valid for the follow-
ing reason: if we instantiate the inherited attributes of the
root of the tree, then the attribution rules tell us how to
fully decorate the tree. Therefore, the synthesised attributes
of the root depend functionally on the inherited attributes.
Figure 4 gives an illustration of this.

In this section we shall frequently be manipulating func-
tions of type Attrs — Atirs. These functions represent
the semantics of a tree, so we shall define the following
shorthand:

type SemTree = Attrs — Attrs

A production is a tree constructor: it takes a list of trees
(the children) and constructs a new tree. We said above
that each of the children is modelled by a function of type
SemTree. Therefore, the semantics of the production can
be modelled by a function with the following type:

type SemProd = [SemTree] — SemTree

Once we have modelled the productions of an attribute
grammar with functions of type SemProd, an evaluator for
the grammar is constructed as follows: the evaluator recur-
sively applies the semantic productions to the input tree.
The result is a function of type Sem Tree, which represents
the semantics of the tree. Below, we shall explain how rules
can be mapped to semantic productions. Then we shall ex-
plain how aspects can be mapped to evaluators.

6.2 Mapping Rules to Semantic Productions

The conversion of rules to semantic productions is per-
formed by the operation knit. Given a rule r and the se-
mantics of the children fs, it should map the inherited attri-
bution of the root to its synthesised attribution. To obtain
the synthesised attributes of the root, as well as the inher-
ited attributes of the children, we can simply apply the rule
r. It remains to compute the synthesised attributes of the
children: this we do by applying, for each child, the seman-
tics to the inherited attributes. In sum, the definition of knit
reads:

knit = Rule — SemProd
knit r fs inhroot = synroot
where
(synroot, inhes) = r (inhroot, syncs)
syncs = applyList fs inhcs

Note the cyclic definition of synRoot. Here we are rely-
ing on the lazy semantics of Haskell, so a similar definition
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The semantics of a tree

Black Box

A functional view of the semantics

Figure 4: Modelling tree semantics as a function.

would not work directly in a strict language such as ML.
The function applyList takes a list of functions and applies
them pointwise to a list of values. Its definition is as fol-
lows:!

applyList [} xs = |[]
applyList (f : fs) ~(z :axs) =
" fx : applyList fs s

The use of laziness is crucial to the success of this imple-
mentation. Without it, we would need to analyse each rule
and determine an evaluation order for the attributes. This
would prevent us from defining a single knit function that
can be applied to any rule. Using laziness, the evaluation
order is determined at runtime [24].

6.3 Mapping Aspects to Evaluators

We define an attribute grammar to be a finite map from
production names to production semantics:

type AG = ProdName + SemProd

To convert an aspect to an attribute grammar, all that needs
to be done is to knit each rule in its range. This is achieved
by composing the aspect with the knit function:

Y(For Haskell connoisseurs) This definition contains a strictness an-
notation, which makes the function strict only in its first argument. This
slightly simplifies the use of knit in practice, as it relieves users of the
duty to be careful about strictness in defining attribution rules.
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knitAspect i Aspect — AG
knitAspect as = knit - as

The evaluator is a function that recursively applies the at-
tribute grammar to the input tree.

Attribute grammars define translators, which take a tree
and an inherited attribution, and which produce a synthe-
sised attribution. To translate a Fork node, we translate its
descendants, and apply the semantics of the relevant pro-
duction. To translate a Val node, we return its attribution:

i AG — Tree ProdName Attrs
— SemTree

trans ag (Val a) inh = a

trans ag (Fork [ ts) inh =
ag | (map (trans ag) ts) inh

trans

Naturally we are usually interested only in the value of a
single attribute; furthermore the compiler is often specified
as a set of aspects. That common vocabulary is captured by
the definition:
compiler :: [Aspect] = At a
— Tree ProdName Attrs — «
compiler ass at =
project a (trans (knitAspect as) t 0)
where as = foldr (&) 0 ass

In words, we take a list of aspects ass, an attribute a, and
a tree ¢t. The aim is to produce the synthesised value of at-
tribute a at the root of ¢. To that end, we first join all the
aspects in ass = [aso, as1, - .. , asg—1) to obtain a single
aspect as = asop ® (as1 ® ... (asg—1 @ 0)). We then
apply the corresponding translator to the tree £, giving it
the empty attribution to start with. That produces the syn-
thesised attribution of of the root; projecting on a gives the
desired result.

It is sometimes handy to decorate the tree with all its at-
tributions, both inherited and synthesised. Doing so is in
fact no more difficult than the above compiler. Afficiona-
does of the traditional encoding of attribute grammars in
the functional paradigm (which foregoes the notion of an
aspect) may wish to contemplate whether this operation can
be written with the same efficiency as the one below:

scan :: Aspect — Tree ProdName Attrs
— Attrs —
Tree (ProdName, Attrs, Attrs) Attrs
scan as (Val a) i = Vala
scan as (Fork 1 ts) 1 = Fork (I,4,s) ts'
where
(s,ics) = as ! (i, map syn ts')
ts' = applyList (map (scan as) ts) ics
syn (Fork (1, inh, s) ts) = s
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7 Conclusion

We have presented a semantic view of attribute grammars,
embedded as first-class values in the lazy functional pro-
gramming language Haskell. Naturally we regard it as a
benefit that our definitions are executable, but perhaps the
more important contribution is the compositional seman-
tics that we have given to the attribute grammar paradigm.
It is hoped that this compositional semantics will yield fur-
ther insight into making attribute grammars more flexible,
encouraging the reuse of existing code where possible.

The utility of the semantics as an executable prototype
is severely marred by the absence of static checks such as
closure (each attribute that is used is also defined), and the
circularity check (definitions do not depend on each other
in a cyclic way). It is not difficult to add these checks, how-
ever, namely by providing an abstract interpretation of at-
tribute values, and of the semantic functions. One can use
this approach to compute the dependencies for each pro-
duction separately, or even to generate the text of the com-
posed attribute grammar, which could then be presented to
a traditional attribute evaluator. Full details can be found
in the literate Haskell program that accompanies this paper
(7]

In earlier work we presented some of the same ideas via
an encoding in a Rémy-style record calculus [8]. That en-
coding has the advantage that one can check for closure
of the definitions through type inference. We found, how-
ever, that the approach was too restrictive, and made the
definition of a number of important operations (such as a
combinator for introducing chained attributes) exceedingly
cumbersome. It is conceivable, however, that a more ap-
propriate type system can be found, which offers the same
guarantees (in particular that each attribute is defined pre-
cisely once), without the restrictions. We are however pes-
simistic that such a type system will allow full type infer-
ence, and that the types will be of manageable size. Very
recently, Azero and Swierstra have succeeded in simplify-
ing our original approach through the use of novel mecha-
nisms for resolving overloading in Haskell — but the basic
drawbacks of the approach remain. While preparing the
present paper, we learned that the idea to model the seman-
tics of attribute grammars through record calculus is not
new: it was first suggested by Gondow and Katayama in
the Japanese literature [10].

The examples of aspects given in this paper do not
demonstrate the full potential of production names being
first-class values. Every production that an aspect anno-
tates is explicitly listed. For example, the locmins aspect
individually lists the Node and Leaf productions. In larger
grammars it would often be useful to work with sets of pro-
ductions. For example, we could compute the set of pro-
ductions that might appear on a path from nonterminal X to
nonterminal Y. We could then annotate every production
in that set with a default computation. Production names
are first-class values, so we can easily define functions that
manipulate them in this way.

0. de Moor et al.
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Attribute grammars are well-designed to construct complex algorithms by composing several ones together.
Actually, there exists a powerful transformation called descriptional composition which highly simplifies
the composition of two attribute grammars by removing useless intermediate constructions.

However, most of non-linear algorithms can not be expressed with attribute grammars. Thus, many com-
positions can not be simplified by the decriptional composition. In this paper, we present Equational
Semantics, a formalism largely inspired by attribute grammars but where non-linear algorithms can be
encoded. More precisely, instead of being restricted to one input static tree as it is the case for attribute
grammars, an algorithm encoded with Equational Semantics may use dynamically constructed trees.

This formalism consists in an very poor abstract syntax. We present its semantics and some of its trans-
formations such as partial evaluation and decriptionnal composition (also called deforestation). In some
sense, Equational Semantics is a kind of lambda-calculus dedicated to program transformations.

1 Introduction

For many years, we try to promote our approach for generic
programming and software reuse. It consists in compos-
ing different basic components together in order to produce
more complex ones. Each basic component must be robust
and general, so using them in particular cases may be costly
because of some translation components or unspecialized
algorithms.

Attribute grammars seems to be an interesting model to
deal with this kind of generic programming since there is an
algorithm, the descriptional composition (7, 8, 14], which
simplifies a composition and produces a new and more effi-
cient attribute grammar. However, this descriptional com-
position may fail : for instance, it may produce multiple
definitions for an attribute, or it may introduce a circularity
into attribute dependences.

More generally, an attribute grammar can only encode
an algorithm which is linear in the number of nodes of its
input tree. A syntactic reason for this is the impossibility
to dynamically compute over attributes that are not linked
to the input tree of the attribute grammar. The key point of
our approach consists in removing this impossibility.

Let us consider the following example written with a
straightforward notation. It defines an attribute grammar
which computes the length of a list and its reversed list
(with an accumulator). The first part of the attribute gram-
mar introduces type definitions :

type list, int
constructors
cons : int * list — list
nil © — list
synthesized(list) = rev : list length : int
inherited(list) = accu : list

Then the core of the attribute grammar comes up :

cons £l z2 :
rev = T2.rev
z2.accu = (cons zl accu)
length = (+ 1 z2.length)

nil :
TeU = accu
length =0

In this example, there is a functional dependency be-
tween the inherited attribute accu and the synthesized one
rev : the expression z2.rev can be seen as a call to some
function (or procedure, or visit, or whichever is appropri-
ate) which computes on the sub-tree z2 the synthesized at-
tribute rev with respect to the value of its inherited attribute
accu.

Actually, in classical attribute grammars, it is only possi-
ble to use these “function calls” on a sub-tree of the (static)
input tree of the program. With such a restriction, it is im-
possible to consider calls on dynamically-constructed trees
or multiple calls on one sub-tree with different values for
its inherited attributes. This is why an attribute grammar
can only encode linear algorithms. Then the key point of
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our approach consists in introducing local definition, such
as:

L1 = (cons z1 z2.rev)

Then, we allow to use expressions like Ll.rev and to
define a value for Ll.accu. Thus, it becomes possible to
define the reverse of the reverse of a list:

type unit
constructors

reverse : list — unit
synthesized(unit) = r: list
reverse xl :

r = Ll.rev

Ll.accu = (nil)

Ll =zl.rev

zl.accu = (nil)

Here, 1o compute the attribute 7 of the tree (reverse 1),
the list [ is reversed, and this dynamically constructed list
is also reversed. This algorithm is still linear, but such dy-
namic constructions allow to encode non-linear algorithm.
See section 4 for more examples.

But introducing such syntactic features merely modify
the semantics of attribute grammars. Actually, we must
completely redefine it. This is why we propose a new for-
malism, where we only kept the essential of attribute gram-
mars to deal with program transformations, namely the no-
tion of constructors and attributes.

The result is a kind of lambda-calculus, with a notation
closed to the one of attribute grammars, especially dedi-
cated to program transformations. We called this formal-
ism Equational Semantic and it is presented in the sec-
tion 3 of this paper. Section 4 provides examples. Sec-
tion 5 is a short presentation of how to generate evaluators
which compute the attributes of a tree. In section 6, we
define what should be a correct transformation. Section 7
describes transformations, especially partial evaluation and
deforestation.

2 Related Works

There exists a lot of extensions to attribute grammars. A
common goal for them is to enlarge the expressiveness of
standard attribute grammars. We want to mention here
higher-order attribute grammars [ 16], tree-transducers [10],
and dynamic attribute grammars [13]. Since all of them
are able to encode A—calculus, we will not expose in this
article why and how their equivalence holds. We are in-
terested here in showing an extension of an attribute gram-
mar transformation method, the descriptional composition,
which applies to non-linear programs thanks to Equational
Semantics.

With another point of vue, Equational Semantics not
only aims at improving attribute grammar transforma-
tions. We also use this formalism to unify both functional-
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programming and attribute-grammars semantics and trans-
formations, as described in [1] and [2].

3 Equational Semantics

This section defines notions and vocabulary for the equa-
tional semantics formalism.

Terms: Terms are built using constructors or primitives
which take variables or sub-terms as parameters. There is
no function call.

Variables: They name or represent terms. A variable can
have several forms:

- z.k (k is an integer) represents the k-th sub-term of
(the term represented by) the variable z.

— z.a (a is an attribute name) represents the attribute a
attached to the variable z.

- x.Ly (k is an integer) represents a local variable asso-
ciated to the variable x.

The special variable « is used as a root variable.

Attributes: An attribute @ represents a computation and
the variable z.a represents the result of this computation on
the term represented by the variable z.

Equation Systems: The considered equations are of the
form z = t, where the left-hand-side is restricted to be a
variable. A system X is a set of equations.

Properties and Program: A program is defined by a set
of properties that rely on attributes. For instance, incre-
menting an integer is represented by the following property
about the attribute inc:

(Vz) zanc=(+z1)

We will only consider properties which depend on the
constructor appearing at the head of a term. For instance,
the length attribute defining the length of a list verifies the
two following properties:

z={cons ...)=>
(Vz) z.lenfqth = (+ 1 z.2.length)
z = (nil) =
x.length =0

To simplify notations, the universally quantified variable
z is denoted by the special variable . This yields the fol-
lowing specification, which is (a piece of) a program in
equational semantics:
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cons —
alength = (+ 1 a.2.length)
nil —
a.length =0

The complete syntactic definition of a program in equa-
tional semantics is given below :

N, Att, Cons and Prim are respectively the sets of
integers, attributes, constructors and primitives.
P = (c—>p")*
p = z=1
z = «
| z.a a€ At
| zk keN
l z.L; i€ N
t = =z
|  (ct*) ce€ Cons
| (nt*) =€ Prim

Deduction Rule: A deduction rule ¢ is a function which
takes a system and generates new equations according to it.
The basic deduction rules are described below.

(Psub(z) = {:Ek =1t
|$——_—(Ct1...tn) EE}

Sosubst(z) = {CL‘ = t[y = t’]
lz=teX,y=1te€X}

prim(Z) = {z =1
|lz=te %ttt}

Pprog(P)(Z) = {plz] , Vpe 4
lz=(c...)€X,(c=> A) eP}

> is a rewriting rule over terms. The substitution
[z := {] replaces the full occurrences of variable
by ¢ (i.e. z is not substituted in z.a, z.k or z.L;). The
substitution p[z] replaces each text occurrence of a in
the property p by the variable x.

The deduction rule ¢, is used to have access to sub-
terms ; for instance, if = (¢ ¢; t2) then the variable z.1
represents the sub-term ¢;. The deduction rule @g,ps; sub-
stitutes a variable by a term. The deduction rule ¢p,im
handles primitive computations; for instance x = (+ 1 1)
gives x =" 2. The deduction rule @p.,, depends on the
program P and applies its properties (this notion is defined
below). The program transformations described section 7
will be carried out by adding more deduction rules to this
basic kernel.

Execution: While a program is defined by a set of prop-
erties, its execution' is a system of equations. This system

"More precisely, it is the trace of an execution of the program.
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is constructed by applying deduction rules to an initial sys-
tem which represents the input data of the program.

The execution of a program involves the following
definitions :

P =t
P(E)=ZU U »(E)
pEY
Ly = U ¥"(%)
neN

The result of executing the program P with the ini-
tial system X and the set of deduction rules v is the
system X. The basic kernel of deduction rules is:

Ypasic = {‘Psuh Psubst; Pprim, Pprog (P)}

The semantics of a program according to the set of
deduction-rule ¢ is the function which associates, to an in-
put system X, the system 2.

Such a semantics can be computed, and with a large
amount of technical improvement?, it can be computed ef-
ficiently. We have implemented a prototype, called EQS,
which performs such computations, and more generally,
manipulates and transforms programs in Equational Se-
mantics.

4 Examples

This section intuitively presents how to encode various
kind of algorithms with equational semantics. The example
of executions come from the ones automatically computed
by our implemented prototype EQS.

4.1 Attribute Grammars

As an example of encoding attribute grammars, we choose
the example of reversing a list with an accumulator. The
attribute accu is used to accumulate the elements and the
final result is returned through the attribute rev. In the be-
ginning, accu must be set to the empty list (nil). This pro-
gram is specified in equational semantics as follows:

cons —

o.rev = a.2.rev

a.2.accu = (cons .1 a.accu)
nil —

Q.TeV = (.accu

Actually, a program which never use local variables
looks like an attribute grammar. Now, let us consider the
following initial system :

{ z = (cons 1 (cons 2 (nil)))
z.accu = (nil)

2We do not describe them in this paper
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The application of the basic kernel deduction rules yields
the following execution. However, the entire execution is
too large to be reported here, so we only report some new
equations. For each of them, the deduction rule which pro-
duced it is noticed inside brackets.

z.7evy = z.2.7ev [prog)
z.2.accu = (cons z.1 z.accu) [prog]
zl=1 {sub]
2.2 = (cons 2 (nil)) [sub
z.2.rev = £.2.2.17€0 |prog
x.2.2.accu = (cons £.2.1 z.2.accu) [prog]
z.21=2 [sub]
x.2.2 = (nil) [sub
z.2.2.7ev = £.2.2.accu [prog
z.2.accu = (cons 1 (nil})) subst

[
z.2.2.accu = (cons 2 (cons 1 (nil))) [subst]
(...) {subst]

z.rev = (cons 2 (cons 1 (nil))) subst)

To define a function that reverses a list, the constructor
reverse is introduced. It stands for the call of this function
while the attribute r is defined to catch the result of this
call.

reverse —
ar=al.rev
a.l.accu = (nil)

Now, given a list [ and the equation z = (reverse 1), the
reversed list is represented by the variable z.7.

4.2 Dynamic Trees

In the previous example, the recursion is driven by the con-
structors cons and nil. For functions like factorial, the re-
cursion is only driven by a conditional expression. First, as
like as in the previous example, a constructor factorial and
an attribute r are used to represent a call to factorial. Sec-
ond, for all variable z such that z = (factorial t) the new
local variable z.L; represents the result of the comparison
(< 1t) which drives the recursion. The computation is
then continued on the constructor ¢rue or false through the
attribute fact.

factorial —
a.r = a.L;.foct
a.lin=al
a.L; =(< 1la.l)
true —
a.fact = (x a.n a.La.r)
a.Ls = (factorial (— a.n 1))
false —
a.fact =1

To illustrate how conditional recursions work with the
local variable . L1, we present now the execution from the
initial system {z = (factorial 2)}:
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z.r = x.Lq.fact [prog]
z.Lin==z1 [prog]
z.Ly =(< 1z.1) [prog
z.Li.n=2 [sub, subst
z.L; =(< 12) [sub, subst]
z.Ly, = (true) [prim
z.Ly.fact = (x xz.L1y.n z.Ly.La.r) [prog
z.L1.Ly = (factorial (— z.Ly.n 1)) [prog
z.L1.Lor =1 e
z.Ly.fact = (¥ 2 1) [subst]
zr =2 [prim, subst]

4.3 Composition

The example we present here does not belong to the scope
of classical attribute grammars. More precisely, it can be
encoded with two attribute grammars composed together,
but the composition itself can not. Let n be a Peano integer,
we build with the attribute bin a balanced binary tree of
depth n with a first attribute grammar. Then a second one
counts the leaves of this constructed tree with the attributes
s and h, producing a new Peano integer m. Thus, we have
m = 2". The composition is computed in the attribute 7 of
the constructor ezp.
The first attribute grammar is:

suce —

a.bin = (node a.1.bin «.1.bin)
zero —

a.bin = (leaf)

The second one is:

node —

leaf —
a.s=als a.s = (succ a.h)
al.h=a2ls
a2h=ah

The composition is defined by :

exp —
a.r =a.Ls.s
a.Lg.h = (zero)
a.Lz = a.l.bin

Thus, if n and m are Peano integers such that m = 27,
then the initial system {z = (ezp n)} produces the equa-
tion z.r = m. Both “attribute grammars” are linear algo-
rithms, but the size of the tree produced by the first one
is an exponential of the size of the input tree. Thus the
composition of these two attribute grammars produces an
exponential algorithm. The composition itself can not be
encoded with one attribute grammar.

Notice that the previous specification is transformed by
our deforestation method into
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succ — exp —
as =a.l;.s ar=als
al;=al a.l.h' = (zero)
aLi.h =al.s
a.l.h = a.b
zero —

a.s8' = (suce a.h')

This result could not be encoded with classical attribute
grammar since the visit which computes s’ from A’ is called
twice with two different values for the attribute b’ (look
at the constructor succ). Here, the local variable a. Ly is
identical to a1, but @.L;.h' and o..1.h' represent different
values. Notice that the classical descriptional composition
composition failed in composing these two attribute gram-
mars.

S Evaluators

In this section, we show how to construct an evaluator for
an equational semantics specification. An evaluator is a set
of recursives visits that computes, for any tree ¢, the values
of some attributes associated to . By definition, the visit-
call denoted by [hy...hy — s1...55] (¢) computes all
the attributes s; of ¢ if and only if all the attributes h; of
t have been already computed. A visit is defined for each
constructor by an ordered list of actions. An action could
be either a call to a visit or the evaluation of an equation.
For instance, the following evaluator reverses a list:

[accu — Tev]
cons —
eval a.2.accu = (cons a.l a.accu)
visit [accu — rev] (.2)
eval a.rev = a.2.rev
nil —
eval a.rev = «.accu
[ 7]
reverse —
eval a.1l.accu = (nil)
visit [accu — rev] (a.1)
eval a.r = o.l.rev

The construction of the evaluators is performed by a fix-
point algorithm. The main idea is to compute step by step
a pool of available visits. We first define the following op-
erations :

— Veons(P,c): it finds all the visits that computes at-
tributes on a constructor ¢. To make these visits, all
the visits in pool P are assumed to be available on the
sub-terms of ¢ and on its local variables.

— Vall(P): itcomputes (P’, T') where P’ is new pool of
visits, and T is a table which associates each construc-
tor to its visits. The result of Vall is such that for all

~ constructor ¢, T'(c) = Veons(P,¢c) and P’ = (JT(c)
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- Vwerify(v,T): for the visitv = [H — 5], it veri-
fies that for each constructor ¢ such that at least one
attributes of S is defined on ¢, there exists a visit
[H — S)inT(c) and H' C H. A visit that verifies
this property is called “verified”. If it is not the case,
then the visit v may be undefined on a constructor and
should be eliminated.

With such basic components, the fix-point algorithm is
defined as follows:

P = {[— d]|ae€ Att}
Pn+1 = F(Pn)
where F is defined by :
F(P)={v| veP, Vverify(v,T),

(T, P') = Vall(P)}

When the fix-point is reached, the remaining visits cor-
rectly compute the values of the attributes. As an example,
here is the first iteration to compute the visits to reverse a
list:

Py = {[— rev], [= r]}

The computations of Vcons lead to:

Veons( Py, cons) =
[— rev]
visit [— rev] (e.2)
eval a.rev = a.2.7ev
Veons(Py, nil) =
[accu — rev]
eval a.rev = a.accu
Veons(Py, reverse) =
[ 7]
visit [— rev] (a.1)
eval a.r = a.l.rev

Thus, after the first computation of Vall the visit [ rev]
must be removed since it is not “verified” for cons. How-
ever, the new visit [accu — rev] is “verified” by cons and
nil. Of course, since the fix point has not been reached, the
evaluators found are not correct. Thus we have::

Py = {[accu — rev], [— r]}

Then, the second step produces the right evaluators and
the fix point is reached. ' '

Of course, this simple algorithm have to be improved to
be efficient. The critical point is the computation of Vcons
which seams to be highly exponential. However, a large
amount of the constructed visits are identical (modulo per-
mutation), and it is possible to compute them together. In
practice, with our implemented prototype EQS, the com-
plexity of the entire algorithm remains reasonable.
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6 Safe Transformations

Intuitively, a transformation is correct if the transformed
program produces the same results as the original one. In
section 3 we define the execution of a program according
to an input system ;.

However, this execution is a system which contains
many intermediate computations mixed with the expected
result. Thus, we have to define which equations of the exe-
cution belong to the output system. For instance, consider
the input system :

= (cons 1 (cons 2 (nil)))
Ei{ Z.acczozs(nil§ o

If we suppose that the interesting attributes are rev and
length, the interesting output system is:

a.rev = (cons 2 (cons 1 (nil)))
1 a.length =2

Let R be a given set of the interesting attributes. The
output system of an execution is the set of equations of the
form: «.a = t, where £ is a term with no variable, and
a € R.

With such a definition, a program transformation is safe
(or correct) if and only if, for all input system, the output
systems of the original program and of the transformed one
are equal. Thus, additional computations may exist and in-
ternal computations may change, but the final results have
to remain identical.

7 Transformations

7.1 Partial Evaluation

Applying deduction rules and collecting the new equations
produced stands for a kind of partial evaluation. For in-
stance, suppose that we have the following program:

test —
a.r = (+ o1 a.Lg.result)
a.Lg = (factorial 3)

Then from the initial system z = (test z.1) it is possible
to obtain the following equation:

zor = (+2.16)

This equation can be generalized on the variable z since
we only use the fact that z = (test . ..). Thus, a new prop-
erty on the constructor test can be added, and finally we
obtain the new program:

test —
ar = (+ala.Ly.r)
ar = (+ a.l6)

a.Lg = (factorial 3)

Now, there exists two properties associated to the vari-
able a.r for the constructor test. The two properties are
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correct according to section 6. The proof of such a cor-
rection comes from two ideas. Firstly, the property a.r =
(+ .1 6) only comes from the original program. Secondly,
adding this new equation does not modify the execution of
the original program, but some equations will be deduced
with less applications of .

Actually, partial evaluation is the real kernel of the other
transformations we define in this paper.

7.2 Reduction

In a program, there are often several properties for a unique
variable. In the previous example test, there are two prop-
erties for the variable a.r (the original and the generated
one). In this case, it is interesting to eliminate the first one
which involves too much other equations to be computed.
To get benefit from a program transformation, many prop-
erties must be eliminated.

It is not always possible to eliminate a property. More
precisely, an elimination will be safe if and only if it never
produces undefined variables during an execution.

In most cases, many solutions exist and we have to
choose an efficient one. Reaching optimality is a very
difficult problem. However there are simple and intuitive
heuristics (which were implemented in our prototype) to
obtain reasonable results. In the previous example test the
reduction leads to:

test —
ar =(+al6)

7.3 Specialization

With functional notations, this transformation is defined
as follows: suppose that f is a function of n parameters
Z1 ... Zn, the specialization of f when the parameter z; is
equal to the constant K is the new function A defined by :

(hzo...zp) = (f Kx2...20)

This is the first step of the transformation, where a new
definition is introduced. The second step of the transfor-
mation consists in recognizing where f can be replaced
by h. More precisely, it consists in the following term-
replacement everywhere in the program:

(fKtl...tn_l) = (htl...tn_l)

These two steps can be translated into equational seman-
tics in a systematic way. For the first step, a new attribute
is introduced for the computation of k and new attributes
are introduced for its parameters. Additional properties are
automatically generated in order to link the new attributes
to the old ones. For the second step, a new deduction rule
is added to the basic kernel, which simply translates the old
attributes into the new ones whenever it is possible.

For instance, consider the example of mapping the func-
tion factorial to a list. Let mapf be the new attribute that
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computes this specialization of map. Since the attribute
map is defined on the constructors cons and nil, the prop-
erties verified by mapf must be reported on these two con-
structors. The additional program corresponding to the
first step is then:

(Ve € {cons, nil})

c—
a.mapf = a.L,,.map
&Ly f = (fact_ho)

a.L, =«

The local variable «a.L,, must be fresh for each addi-
tional program, that is, not already used. The second step
automatically produces the new following deduction rule :

Pspe(X) = {z.map = z.mapf |
z.f = (fact_ho) € T}

At this point, the specialization of the attribute map in
the special case where f is equal to (fact_ho) is done
and safe. The interesting point is now that partial evalu-
ation and reduction will get benefit from the introduction
of these new attributes, properties and deduction rules. For
instance, let us describe how simplifications occur for the
constructors cons. We only report some equations pro-
duced by partial evaluation and related to this specializa-
tion :

z = (cons z.1z.2)

z.mapf = x.L,,,.map [prog]
z.Ly, = (cons 2.1 2.2) [prog, subst]
Z.Lp.f = (fact_ho) [prog]
2.Ly.omap = [prog]
(cons x. L. Ly.call z.L,.2.map)
z.Ly Ly.arg =z.1 [prog,...]
z.Ly. Ly = (fact_ho) [..]
x.Ly.Ly.call = x. L, Ly La.r [prog,...]
x.Lim.Ly.Lz = (factorial z.1) [...]
Z.Ly.2.f = (fact_ho) [prog,...]
z.Ly.2.map = z.L,,.2. mapf [spe]

The two last blocks show how the constant fact_ho is
propagated, and how the map attribute is transformed into
mapf. After generalization and reduction, the following
properties are generated for the constructors cons and nil :

cons —»
a.mapf = (cons a.Lig.r a.2.mapf)
a.L1o = (factorial z.1)
nil —
a.mapf = (nil)
The new local variable o.. L1 has been introduced to re-
name (safely) the local variable «.L,y,.L4.L3.

7.4 Deforestation

In functional terms, this transformation occurs when func-
tions are composed. Basically, the problem involves two
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functions: f with parameters z; ...z, and g with param-
eters y1 ...4m. If f and g are composed, for instance
through the first parameter of f, a new function h is de-
fined:

(hyr o ymZ2--zn) = (f (Gy1-- - YUm) T2 ... Tn)

This is the first step of the transformation, where a new
definition is introduced. The second step of the transforma-
tion consists in recognizing when f is composed with g and
then in replacing such a composition by a call to k. More
precisely, it consists in the following term-replacement ev-
erywhere in the program:

(f (gsl...sm) tl---tn——l) = (h §1...8m, tl---tn—l)

From an equational semantics point of view, this trans-
formation is performed in two steps as like as for special-
ization. In the first step, we introduce a new attribute for
h and new attributes for its (2 + n — 1) parameters. New
properties (a new program) are also automatically gener-
ated to link the new attributes to the old ones. For the sec-
ond step, a new deduction rule is added to the execution
kernel, which simply translates the old attributes into the
new ones.

As a preliminary remark, a composition is detected in
equational semantics when the variable z.b is used while
the equation or property = y.a holds. In such a case, the
composed attributes are a and b.

However, there are actually two kinds of deforestation.
In the first kind, named upward deforestation, the attribute
a is the result of a computation. In the second kind, named
downward deforestation, the attribute a is a parameter of a
computation.

We choose an example which involves these two kinds
of deforestation : the reversion of the reversion of a list. For
this purpose, the following program is specified :

foo —
a.r = a.Liy.rev
a.Lyy.accu = (nil)
a.Li1 = al.rev
a.l.accu = (nil)

We present now the two steps of the two kinds of the
deforestation transformations.

Upward Deforestation: The composed attributes are rev
and rev. We denote by r3 the attribute for the result of the
composition, and by a; and ag the two attributes needed
for the two accumulators of rev and rev. The first step
defining these new attributes corresponds to the following
program:
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[for ¢ = cons and ¢ = nil]
C =
a.ry = a.Ly.rev
a.Ly.accu = a.a;
oL, = a.Lg.rev
a.Lg.accu = a.az
oL, =«

where L, and L, are fresh. This requirement is impot-
tant to safely add these properties to the original program.
The second step produces automatically the new follow-
ing deduction rule which detects where r» could replace a
composition :

‘pdefo_up(z) = {
z.rev = T.Ly,.To
z.Ly,.a1 = x.accu
. Lpy.a9 = y.accu
z.L, =y
| z=yreveX

where L., is a fresh variable for each application of the
deduction rule. The deforestation definition is done and
safe. Now, partial evaluation and reduction will perform
the expected simplifications. For instance, for the construc-
tor foo, the following equations are deduced:

z = (foo z.1)

.= .Lyy.rev [prog]
z.Li1 = z.2.1ev [prog]
z.L11.accu = (nil) [prog]
z.2.accu = (nil) [prog]

z.L11.rev = x.L11. L. [defo_up]
z.Ly1.Lyy.ay = z.Lyy.accu  [defo_up)
z.L11.Ly.a0 = z.2.accu [defo_up)
z.Li Ly, =22 [defo_up]

After generalization and reduction, the following prop-
erties are obtained :

foo —
ar =a.l.rs
a.l.a; = (nil)
a.l.ag = (nil)

In the same way, for the constructors cons and nil we
obtain:

cons —
Q.19 = a.2.7‘2
a2.a1 = a.o0q
a.2.ay = (cons a.l a.az)
nil —
a.rg = a.Lyg.rev
a.lyg.accu = a.aq
a.ng = (.42

L. Correnson

Downward Deforestation: After the deforestation
above, the second kind of deforestation appears on the
constructor nil. The composed attributes are a, and
rev, where ay is a parameter-attribute instead of a result-
attribute.  Such a deforestation through accumulative
parameters is known to be difficult [4], but is naturally
handled in equational semantics.

Let r3 be the new attribute introduced for the result of
the composition, and a3 the new attribute introduced for the
related accumulative parameter. The first step still consists
in the automatic generation of the program which defines
these- attributes : everywhere the attribute ay is computed,
the attribute r3 must be equal to rev on az with accu being
equal to a3. In the example, ag is computed on a.2 for the
constructor cons, and on a.1 for the constructor foo. So the
first step corresponds to the following additional program:

cons —
a.2.r3 = . Ly,.rev
a.Ly.accu = a.2.a3
oL, = a2.a

foo —
a.los = o.lp.rev
a.Lyp.accu = a.l.a3
a.Ly, = a.las

where L, and L, are fresh local variables. The second
step of the transformation is the automatic generation of
the following deduction rule which detects where r3 could
replace a composition:

Sodefo,down(z) = {
T.TeV = Y.T3
Y.03 = T.GCCU
|z =y.a9

}

Multiple applications of this deduction rule on the same
variable y is not allowed. This technical point is not ex-
plained here since it is too specific to this kind of deforesta-
tion. After partial evaluation and reduction, the following
program is obtained :

foo —
a.r =a.lrg
a.lrs =a.l.ag
a.l.a; = (nil)
cons —
a.ro = 2.1y
a.2.r3 = Q.T3
a.az = (cons a.1 a.2.a3)
a.2.a = a.ay

nil —
Q. T = (X.T'3
a.az = .41

Notice that the deforestation really succeed since only
one list is constructed. Moreover, the result is a copy of the
first list, as it is expected to: in fact ry is always equal to
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r3, and a3 appends a; (initialized to nil) to the end of the
list.

7.5 Elimination of Identity

Consider the properties about r and a3 on the constructor
nil. They are both equalities. The elimination of iden-
tity try to prove whether these equalities are verified for
all constructors or not. The transformation is performed
in two steps. First, the equality is automatically proved or
refuted by induction. Second, for the proved equalities, a
new deduction rule is automatically defined.

In the example below, the induction proof on the con-
structor cons consists in assuming the properties on vari-
able .2, and prove them on variable a.. The proof will be
automatically performed by partial evaluation. Assuming
the induction hypothesis on «.2 corresponds to the follow-
ing system:

z = {cons .1 z.2)
z.2.r9 = x.2.13
z.2.a3 = x.2.aq

The partial evaluation produces the following execution:

z.ry = 2.2.19 [prog]
273 =113 [prog]
z.a3 = (cons .1 z.2.a3) [prog]
z.2.01 = x.0y [prog
T.T2 = 2.2.73 [subst
z.a3 = (cons x.1z.2.a1) [subst
T.T9 = I.T3 [subst
z.a3 = (cons z.1x.a1)  [subst]

The inductive hypothesis is verified for the equality
a.ry = @.rz, but the other equality is not verified. So,
for the second step of the transformation there is only one
new deduction rule defined :

wia(E) = {z.r2 = 273 |  appears in T}

After partial evaluation, we obtain the following pro-
gram:

foo —
ar =qa.l.as
a.ay = (nil)
cons —
a.az = (cons a.l a.2.a3)
a.2.a1 = &.a)
nil —
o.a3 = a.a;

Now, we have succeed in proving automatically that re-
verse composed with itself is equal to the function copy,
which duplicates its input list.
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let flat x h = match x with
node a b -> flat a (flat b h)

| leaf n -> cons n h

let flatten x = flat x nil

let £ x = reverse (flatten x)

Figure 1: flatten and reverse

let £ =
fun t_27 -> (((fpfun_1 t_27) nil))

let fpfun_1 =
fun t_42 -> ( _
fun t_43 -> (match t_42 with
| node t_44 t_45 ->
((fpfun_1 t_45) ((fp-
fun_1 t_44) t_43))

| leaf t_51 -> ((cons t_51) t_43)

))

Figure 2: flatten and reverse deforested

let append x y = match x with
cons a b -> cons a (append b y)
| nil ~-> y
let £ x y z = (append (append x y) z)

Figure 3: Wrong composition with append

let fpfun_2 =
fun t_38 -> {
fun t_39 -> {(match t_38 with
| nil -> t_39
| cons t_41 t_42 ->
({cons t_41) ((fpfun_2 t_42)
))

t_39))

let £ =
fun t_16 -> (
fun t_17 -> (
fun t_15 -> (
((fpfun_2 t_16)
1))

((append t_17) t_15))

Figure 4: Better composition with append
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let revho x = match x with
cons a b ->
let k = (revho b} in
(fun h -> k (cons a h))
| nil -> (fun h -> h)

let reverse x = {((revho x) nil)

Figure 5: reverse with higher order

let fpfun_1 =
fun t_11 -> {
fun t£_12 -> (match t_11 with
| nil -> t_12
| cons t_14 t_15 ->
((fpfun_1 t_15) ({cons t_14)
))

t_12))

let reverse =
fun t_3 -> (((fpfun_1 t_3) nil))

Figure 6: reverse with h.o. deforested

8 Additional Results

In section 4 we presented few examples of equational pro-
grams. Of course, we would never claim that programming
directly with equational semantics is easy. Actually, it is
more interesting to translate existing programs into equa-
tional programs. We have found two methods, one for
translating functional programs to equational ones, and one
for the backward transiation. Technical details and correc-
tion of these translations are too long to be exposed in this
paper. But we would want to briefly present interesting ex-
amples to illustrate the power of our transformations. All
these examples come from the implementation of our sys-
tem.

Reversed flatten: the function £ given in figure 1 takes
a binary tree, flattens its leaves, and then reverses the ob-
tained list. After four steps of deforestation, the program
in figure 2 is obtained. One can observe that it is a vari-
ant of the function £1at where the tree is flattened in the
reversed direction. So, our analysis and deforestation meth-
ods are able to completely modify the control flow of a re-
cursive function.

Inefficient composition: figure 3 presents the function
append which appends two lists, and the function £
which appends three lists. Actually, the expression (ap-
pend {(append x y) z) should be translated into
(append x (append y z)) toavoid oneduplication

L. Correnson

of each list x and y. Deforestation performs the transfor-
mation automatically as shown in figure 4.

Removing continuations: As a last example, we trans-
form the reverse function written with a continuation, given
in figure 5. The data deforested is the continuation. The re-
sult in figure 6 is equal to the standard function rev with
accumulator. This result shows the power of dealing with
a system which does not include function calls. In equa-
tional semantics, functional values are encoded like other
values, and thus, they could be treated in a same way. Here
, the elimination of the continuation is performed by the
standard deforestation for equational programs.

9 Conclusion

This work comes from a large comparative study of vari-
ous existing methods to perform deforestation and partial
evaluation in various programming paradigm. Historically,
we compared [5, 4, 3] the deforestation of attribute gram-
mars [7, 8, 14], the Wadler deforestation [18, 15, 9] in
functional programming, many works about folds [6, 11]
and hylomorphisms [12, 17]. In each of these formalisms,
there were many interesting ideas. But they were some-
times restricted to one particular class of algorithms but
sometimes more powerful than another method on the same
class. However, attribute grammars seems to provide a kind
of declarative notation able to gather all of them in an ho-
MOZeneous way.

Actually, we think that the key of our approach is to de-
fine a program only by the set of the properties it verifies.
Functions, procedures, data types, control statements of
real programming languages are here considered as syntac-
tic sugar to define properties as equations. In this context,
Equational Semantics is a minimal but powerful framework
to manipulate these properties and translate them back into
a more efficient program.
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The notion of approximation coverage is developed. It is applicable to first-order declarative programs
(e-g., logic programs, constructive algebraic specifications, and attribute grammars) in two dimensions in
a natural way. For an attribute grammar, for example, there is a syntactic dimension corresponding to the
underlying context-free grammar, and there is also a semantic dimension corresponding to the attributes,
conditions, and computations. The coverage notion is based on an abstract interpretation scheme. The
paper also develops a generator algorithm for test sets achieving coverage. The coverage notion facilitates
testing of declarative programs, and assessment of test sets. The test set generator facilitates automated
testing. A language definition based on an attribute grammar specification is used as an illustrative example.

1 Introduction

Testing declarative programs Testing is useful to gain
confidence about the correctness of a specification or a pro-
gram. The paper provides concepts for testing first-order
declarative programs. The presentation is tuned towards
attribute grammars (AGs), but the concepts are also appli-
cable to other formalisms and languages, e.g., constructive
algebraic specifications, and logic programs. Let us mo-
tivate the necessity of testing in terms of a major appli-
cation area for AGs, that is language definition, prototyp-
ing and implementation. Developing, extending and tuning
real-world AG specifications are non-trivial tasks. Thus,
testing and verification should form a standard activity in
the corresponding software engineering processes. Verifi-
cation has been addressed in the literature to a certain ex-
tent (cf. [12, 21]). By contrast, testing is poorly developed
for AGs. Standard testing technology (cf. [23, 3]) is not
applicable to a large extent.

Two-dimensional approximation coverage An impor-
tant observation is that the declarative programs, which we
want to test, usually exhibit two dimensions. For an at-
tribute grammar, for example, there is a syntactic dimen-
sion corresponding to the underlying context-free gram-
mar, and there is a semantic dimension corresponding to
the attributes. As another example, one dimension in a

logic program corresponds to proof tree skeletons, and an-
other one corresponds to the parameters of the literals in
proof trees. The coverage notion we are going to develop
applies to the two dimensions in a uniform way in separa-
tion. Coverage in both dimensions can be lifted in a sen-
sible way to a two-dimensional coverage. Approximation
coverage is defined in terms of the structure underlying the
dimensions, say context-free grammars and attribute type
definitions for AGs. For the syntactic dimension of AGs,
for example, approximation coverage separates the various
occurrences of nonterminals, and it is also sensitive regard-
ing the recursion involved in the underlying grammar. We
will also demonstrate that negative test cases can be accom-
plished in this setting. Approximation coverage is useful to
assess test sets or existing test suites (cf. [5]). Other ap-
plications relying on test set generation will be pointed out
below. ’

Research context For attribute grammars, essentially
only the syntactic dimension has been explored in the
sense of rule coverage for context-free grammars (cf. [26]).
Approximation coverage goes very much beyond rule
coverage—even if it is restricted to the syntactic dimen-
sion. Coverage of the semantic dimension, and the combi-
nation of both dimensions has not been investigated at all
in the literature. We will argue that two-dimensional ap-
proximation coverage covers the aspects of a given declara-
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tive program in a more exhaustive manner than such simple
notions as rule coverage. Previous research addressed the
generation of correct derivation trees (cf. [19, 16, 15]), i.e.,
trees which can be decorated in accordance to the compu-
tations and the conditions. Randomized test set generation
has been suggested by several authors. There is no guaran-
tee for randomized test sets to cover all aspects of the cor-
responding program. For logic programs, Jack (cf. [17])
introduced a sophisticated coverage notion based on anti-
unification. We will comment on its relation to our two-
dimensional approximation coverage in the conclusions.

Test set generation Our coverage notion is effective in
the sense that test set generation is feasible. A correspond-
ing algorithm is developed in the paper. Generated test sets
are useful in automated testing. Consider, for example, a
language definition specified by an AG. By generating and
applying test cases for the language definition, the devel-
oper can check if his intuitions regarding the language are
met, and if the behaviour of the executable language defini-
tion is as expected. This process can be conceived as a kind
of white-box debugging of language definitions. Test sets
generated from an AG are also useful for a kind of black-
box testing of language implementations where the AG is
considered as the reference. In this case, the actual imple-
mentation does not need to be based on AGs at all. Even if
it is (partially) based on compiler compiler (say AG) tech-
nology, the actual specification used for the implementation
might not be accessible, or it might deviate from the refer-
ence specification for practical reasons. In any case, if a
reference and an implementation need to be compared, at
least testing is desirable if verification is not considered as
an option. Here, generated test sets are indeed useful since
they obviously automate testing in such a comparison sce-
nario. The coverage notion is configurable to put the focus
on a certain aspect, and thereby, the generation of test sets
can be controlled accordingly. Test set generation is not
straightforward because full coverage might be infeasible,
and it is in general not decidable if a current coverage can
be improved. This may cause the generation not to termi-
nate. We will discuss techniques to recover feasibility of
coverage such as more precise attribute types.

Structure of the paper In Section 2, our testing ap-
proach is motivated. An AG describing syntax and (part of
the) static semantics of a language with blocks and jumps
serves as an example. In Section 3, the new notion of cover-
age is developed. In Section 4, approximation coverage is
instantiated for AGs. A non-trivial test set for the motivat-
ing AG satisfying approximation coverage in one sensible
configuration is given. Opportunities for the configuration
of the coverage notion are explained. In Section 5, test set
generation is discussed. The goal is to generate test sets
achieving full coverage. In this context, termination and
search space problems need to be addressed. In Section 6,
the paper is concluded.

J. Harm et al.

2 Motivation

In this section, we want to discuss a few aspects of testing
AGs along the scenario that an AG is supposed to provide
the reference specification for some implementation of an
acceptor A.

We will argue that the simple coverage of all productions
in the context-free grammar is not sufficient. The other di-
mension of AGs, that is the attributes with conditions and
computations also need to be taken into account. Actually,
rule coverage is not even sufficient in the syntactic dimen-
sion. We also will comment on negative test cases, espe-
cially in the semantic dimension.

2.1 Preliminaries

We assume basic knowledge of context-free grammar the-
ory and attribute grammars as covered by surveys like
[28, 1, 25, 20]. For convenience, some glementary termi-
nology is provided in the sequel.

A context-free grammar G is a quadruple (N, T, s, P)
as usual, i.e., N and T are the disjoint finite sets of nonter-
minals resp. terminals. s € [V is called start symbol. P
is a finite set of productions or {context-free) rules with
P C N x (NUT)* We resort to the common nota-
tion ! — r for a production (I,7) € P withl € N and
r € (N UT)*. For simplicity, we assume reduced and
terminated context-free grammars in the sequel.

An attribute grammar AG is a quadruple
(G, A,CM,CN), where G is the underlying context-free
grammar, A associates each z € N U T with finite sets of
synthesized attributes A, (z) and inherited attributes A;(z),
CM and C'N associate each production p of G with finite
sets of computations C'M (p) and conditions CN(p). We
assume well-formed, non-cyclic attribute grammars in not-
mal form. Given a productionp = 2o = 21+ -, € P,
with zg € N, z1,...,2.,, € N UT, a computation ¢

from C M (p) is of the form rg.aq := fe{ri.a1,... ,7x.ax)
where 0 < r; < m, and z,, carries an attribute a; for
7 =0,...,k;similar for conditions.

2.2 Rule coverage

Let us motivate rule coverage by the following test sce-
nario. We want to test an acceptor A which is supposed
to accept some language L(G) generated by a context-
free grammar G. Later we generalise this scenario from
context-free grammars to AGs. We take some finite set
TS C L(G) and check if A accepts each w € TS. We
want to gain confidence that the language accepted by A
actually is L(G). Thus, we have to ensure that T'S expe-
riences to a certain degree all aspects of L{G). Actually,
TS should cover G to some extent. The bare minimum of
coverage is to require that every production of G is applied
in the derivation of some w € TS.

Figure 1 shows an excerpt of a context-free grammar for
a Pascal-like programming language. In the derivation of
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[prog] Prog — Block.

[block] Block — Decls begin Stms end
[nodecl] Decls — ¢

[decls] Decls — Decl Decls

[decl] Decl — 1labelid;
[onestm] Stms ~— Stm i

[stms] Stms — Stm; Stms

[skip] Stm - e

[goto] Stm — gotoid

[ldef) Stm — id:Stm

[if] Stm  — if Exp then Stm
[localb] Stm - Block

[true] Exp — true

Figure 1: Productions for a Pascal-like language

the program

label a;

begin

a: goto a;begin if true then skip end
end.

all productions of the context-free grammar of Figure 1 are
used.

If A is assumed to implement an AG rather than just a
context-free grammar, the above scenario needs to be re-
fined. The conditions and partial computations of an AG
usually enforce that the language generated by the AG is
only a subset of L(G) where G is the underlying context-
free grammar. Thus, we should preferably consider only
semantically correct programs in the test set 7'S. For any
decent AG, rule coverage should remain feasible. More-
over, if the aim is just to test the context-free parsing as-
pect of A w.r.t. the reference grammar G, we can even con-
sider possibly semantically incorrect test programs. From
a practical perspective, we only had.to be able to separate
syntactic and semantic errors while applying A to TS.

2.3 Beyond rule coverage

Rule coverage is by far too simple. More complex criteria
than simple rule coverage are sensible to enforce certain
kinds of combinations of productions. Focusing, for exam-
ple, on declaration parts of blocks in the sample language
from Figure 1, the following aspects were not reflected in
the sample program above:

1. The declaration part of a program block may consist
not only of one, but also of zero or more than one
declaration.

2. Alocal block statement may have a non-empty decla-

ration part.

The first problem suggests that we need a coverage notion
which treats recursion in a sensible manner. The second
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problem is an indication that a more context-dependent no-
tion than just rule coverage is useful. Actually, both sce-
narios are somewhat context-dependent. In the first case,
we are concerned with program blocks, and in the second
case with local block statements. Thus, two different oc-
currences of the nonterminal Block or the corresponding
declaration part resp. are considered.

Approximation coverage suggests a layered definition of
coverage for the nonterminals. The central idea is to take a
configurable number of recursive unfoldings into account.
As a first attempt, for a nonterminal n with n — w as one
of its alternatives, we can say that this alternative is covered
by a test set TS if all grammar symbols in w are covered.
Contrast that with rule coverage which just enforces that
the rule n — w is used once for the derivation of some
program in T'S. We have to explain what it means to cover
grammar symbols. Terminals like begin are trivially cov-
ered if the alternative is used. For terminals, which actu-
ally correspond to a terminal class, e.g., id, coverage might
be achieved by using one or two different representatives
for the corresponding occurrence in w. A nonterminal is
covered if all alternatives for this nonterminal are covered.
Of course, this definition of coverage has to be refined to
cope with recursively defined nonterminals in a sensible
way. We say that a nonterminal n is covered at a level A.
In particular, n is covered at level Q if it is used in some
derivation; n is covered at level A if all its alternatives are
covered, at level A — 1 as far as recursive occurrences of
n are concerned. In this way, the A restricts the number of
recursive unfoldings.

Two recursive unfoldings are already quite useful. This
is somewhat similar to testing loops in an imperative pro-
gram, that is tests are usually required for zero, one, and
more than one iterations. Indeed, for the first problem
(see 1. above), which we used to illustrate the weakness of
rule coverage, a test set with programs with zero, one and
more than one declarations in the program block was re-
quired. Note that the kind of context-dependency of cover-
age needed to address both problems is achieved by defin-
ing coverage for all rules in separation, namely by decre-
menting A in a context, that is for a particular occurrence
of a nonterminal. In the formalisation, we will consider a
different A,, for each nonterminal n.

2.4 The semantic dimension

So far we considered syntactic aspects of an AG, as repre-
sented by its underlying context-free grammar or language.
It is also conceivable to consider aspects which are for-
mulated in the semantic dimension. They could be con-
cerned, -for example, with (attributes for) symbol tables,
label tabels, and types. Therefore, we take a look at the
attribute part of an attribute grammar. For our Pascal-like
programming language, the attribute part is concerned with
the static semantics of the language. In the attribute gram-
mar fragment in Figure 2-Figure 3, we focus on scope rules
for labels. We use lists of identifiers, that is the domain
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ID_LIST, for the representation of sets of labels.

Type definitions:

ID = {a,..,2}*
ID_LIST = [+ ZD|ID_LIST]
Attributes:

Ai(Block) = A;(Stms) = A;(Stm) = {TL}
As(Stms) = A;(Stm) = {DL,LTL}

A, (id) = {Name}

As(Decl) = {LN}

A, (Decls) = {L}

Attribute types:

Name : ZD name of the identifier

LN:ID name of the declared label

L:ID_LIST list of declared labels

TL : ZD_LIST target labels reachable from inside the
block, statement list, or statement

DL:ZD_LZIST labels with a defining occurrence inside

the statements of a block

LTL : ZD_LIST labels with defining occurrence inside the
statement list or statement which are
reachable by goto statements on the same
stalement nesting level

Figure 2: Attributes for checking jumps

The coverage notion for context-free grammars can be
lifted to attribute grammars if we assume that the base
grammar can be covered with a subset of the language de-
fined by the attribute grammar. That does not yet imply that
we have a coverage notion for the semantic dimension. It
just means that coverage in the syntactic dimension is re-
garded in a way that the semantic dimension is respected.
We can go one step further by taking the structure of the
attribute values into account. The idea of a layered cov-
erage notion spelled out for context-free grammars above
can be used for attribute type definitions in a similar way.
Thereby, we get a coverage notion for possibly recursive
domain equations.

Let us illustrate this idea with the domains from Figure 2.
Suppose that the basic domain ZD is covered by two differ-
ent representatives. We can cover the domain ZD_LZST
in the case of recursion level 2 by lists of the length zero,
one, and greater than one where at each position at least
two different ZD values occur. Two sensible test sets are
the following:

= {11 [al(11; (alfel{11], (blC2lC11}
= {0 [al1); Talfal (110, eIBI000

Now, we can say a subset 7'S of the language defined by
an attribute grammar AG covers an attribute of a produc-
tion of AG, if the values associated with this attribute in the
derivation trees of the elements of T'S cover the domain of
the attribute.

While the coverage notion for context-free grammars
forces the application of grammar rules in meaningful syn-
tactic contexts, the domain coverage forces meaningful se-
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[prog] Prog — Block.
1.TL := []

[block] Block — Decls begin Stms end
3TL := (0.TL\1.L)U3.LTL
3DL = 1L

[nodecl] Decls — ¢

0L = []

[decls] Decls — Decl Decls
0.L := [LLN|[2.L]

1LN ¢ 2L

[decl] Decl — labelid;
0.LN := 2Name )
[onestm] Stms — Stm
1.TL := 0.TL

0.DL := 1DL

0.LTL := 1LTL

[stms] Stms — Stm; Stms
1TL = 0.TL )
3TL := 0.TL

0.DL := 1.DLU3DL
0.LTL := 1.LTLU3LTL
1.DLN3.DL =[]

[skip] Stm — ¢

0.DL = ]

0LTL := []

(goto] Stm — gotoid
0DL = []

0LTL = []

2.Name € O0.TL

[ldef] Stm — id:Stm
3.TL = 0.TL

0.DL := {1.Name|3.DL]
0LTL := [1.Name|3.LTL]
1.Name ¢ 3.DL

[if) Stm - if ... then Stm
4TL := 0.TLU4.LTL
0.DL := 4DL

0.LTL :=

[localb] Stm — Block
1.TL := 0.TL

0.DL = []

0.LTL := [}

[true] Exp — true

Figure 3: AG for checking jumps

mantic contexts. Applied to the domain equation of Fig-
ure 2 and to the nonterminal Stm, for example, the domain
coverage criterion enforces the use of the various alterna-
tives of Stm in different contexts covering its attributes TL,
DL, and LTL.

For both the syntactic and the semantic dimension, full
coverage often cannot be achieved for a given AG specifi-
cation because of two related problems:

— Full coverage for the context-free grammar may not
be achieved because the conditions on the attributes
rule out some syntactic combinations.

~ Full coverage may not be achieved for some attributes
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because in every decorated derivation tree the attribute
values are of a special form.

These problems are somewhat similar to the well-known
problem of unexecutable paths in testing imperative pro-
grams. An example of infeasibility of coverage in the syn-
tactic dimension is that a program block cannot just consist
of a goto-statement because the target label could not be
defined in this program block. An example of infeasibil-
ity of an attribute’s type is the 0.TL attribute of production
[Idef] in Figure 3 which is always a non-empty list because
at least the label defined by the alternative itself will be in
the list due to remote dependencies. Later we will explain
how to relax coverage accordingly.

2.5 Negative test cases

For the discussed scenario of testing an acceptor A w.r.t. an
AG, negative test cases also have to be taken into consid-
eration. Otherwise, the incorrectness of A might not be re-
alized. A might accept a richer language than the intended
language. In general, negative test cases are quite useful
in testing language processors, to see if incorrect programs
are rejected, and proper error messages are produced. As
for positive test cases, we would like to reason about cov-
erage of negative test cases, and generation of negative test
cases is very useful for automated testing.

For language processors implementing AGs, there are
two kinds of negative test cases to be considered due to
the two dimensions involved. One kind of negative test
case should cause syntactic errors. The other should violate
context conditions. In the syntactic dimension, we can con-
sider an adapted context-free grammar which is meant to be
incorrect w.r.t. the original one. Assuming a test set gener-
ator for positive test cases, the very same generator could
be applied to the adapted grammar to generate negative test
cases. It has to be defined how the incorrect grammar is
obtained. One option is to use ideas from mutation test-
ing [24, 13]. We do not discuss negative test cases for the
syntactic dimension in more detail. We will explain how to
accomplish negative test cases in the semantic dimension
in a systematic way.

Let us assume that the computationsin a given AG do not
fail, although is not difficult to lift this restriction. Then,
a negative test case can be conceived as a derivation tree
where some associated conditions are not satisfied. Sup-
pose we have a test set generator for positive test cases. The
same generator can be used for the generation of negative
test cases, if it is applied to an modified AG with negated
conditions. Violations of context-conditions are indeed en-
forced by the negated conditions.

To avoid confusion of different violations, each negative
test case should be generated from a modified AG with just
one negated condition. There are different useful coverage
criteria conceivable. The minimum is, of course, that the
production p with the negated condition is covered at all.
Approximation coverage is useful to enforce different con-
texts for the nonterminal on the left-hand side of p. There
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is one requirement, which is specific to negative test cases,
that is in a given derivation tree, the affected production p
should probably covered exactly once. This requirement
induces a unique error location.

Instead of negating conditions, we might also remove
conditions, and check afterwards that a generated deriva-
tion tree is not correct w.r.t. the original grammar.

There is another conceivable approach to generate a test
set with negative test cases. It is based on the simple idea
to ignore the semantic dimension in the generation phase.
The algorithm for test set generation proposed in Section 5
generates in an intuitive sense smallest programs. Thus, by
ignoring the semantic dimension we get smallest programs
achieving syntactic coverage. Afterwards the test set could
be filtered to contain only such programs which are not ac-
cepted by the attribute grammar, that is only the programs
violating some context conditions remain in the final test
set. The approach based on negating conditions deals ex-
plicitly with semantic coverage.

3 Approximation coverage

In the sequel a general notion of approximation coverage
will be introduced. In Section 4, we will derive a cover-
age notion for AGs. The notion of approximation cover-
age is applicable to other first-order declarative programs
as well. To abstract from the particular declarative lan-
guage and dimension at hand, approximation coverage is
defined for equational systems of a certain form. The idea
is that these equational systems capture the essence of the
common dimensions involved in the declarative programs
to be tested. Focusing on AGs, for example, equational sys-
tems are meant to abstract from context-free grammars and
attribute type definitions. For logic programs, equational
systems abstract from proof tree skeletons and functor sig-
natures.

First, we define equational systems. Afterwards, an ab-
straction scheme for equational systems to model coverage
is developed. Finally, the scheme is instantiated to obtain
the desired notion of approximation coverage based on a
finite unfolding technique.

3.1 Equational systems

An equational system S over variables Xi,... ,X, and
constants C1,...,Cpn consists of n equations X; =
t1,...,X, = tu, where the {; are terms over 1,
X1,...,Xn, C1,...,Cp composed with x and +. A
set-theoretic interpretation is assumed, i.e., C1,...,Cp
are predefined sets, 1 is a dedicated singleton set, x and
+ correspond to Cartesian product and disjoint union re-
spectively. We assume a well-formedness property for S in
the sense of the termination property for context-free gram-
mars. The solutions for the X; are denoted by [X;].

It should be clear that these equational systems can be
used to study context-free grammars and attribute types
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in a unified setting. For convenience, we list a few sup-
porting arguments. Attribute types can directly be mod-
clled with equational systems if they are defined as prod-
ucts, and sums over some basic datatypes. If we as-
sume instead (first-order and non-parameterized) algebraic
datatypes, such a definition can easily be transformed into
an equivalent equational system by encoding constructors
as sums of products. Context-free languages can be defined
in various ways, e.g., by using context-free grammars, or
by resorting to (possibly extended) BNF notation, or to an
algebraic interpretation. The relation between these for-
malisms or notations is well understood. The kind of equa-
tional systems we propose is semantically best conceived
as BNE The terminals of a context-free grammar corre-
spond to the C;, whereas the nonterminals are the vari-
ables X;. A union in a BNF (the set of alternatives for a
nonterminal in a context-free grammar) is represented with
+, whereas x models concatenation. 1 models e. For
(the dimensions involved in) other first-order declarative
programs, the above notion of equational systems can be
adopted likewise.

3.2 Coverage by abstraction

The [X;] for an equational system S are potentially infi-
nite sets. Thus, an exhaustive test exploring all elements
of [X;] is impractical. We need to perform abstraction to
derive a feasible coverage notion. Abstract interpretation
concepts are used in the sequel (cf. [14, 11, 27, 18}).

The basic idea is that the X; are associated with abstract
domains X; modelling coverage for X;. Actually, we also
need such abstract domains for the C; and 1. Abstract do-
mains are supposed to obey the following structure:

They are posets of the form (z, 1L, T, <).

Z is a (not necessarily finite) set.

< is a partial order on Z.

There ts a smallest element L € Z.

1

There is a greatest element T € Z.

For all a,b € Z, the supremum a U b is defined.

There are only finite chains.

L models no coverage whereas T models full cover-
age. Another requirement for the abstraction scheme will
be added later. In the same way as the X etc. are asso-
ciated with abstract domains, the v € [X;] are associated
with abstract values U. Furthermore, usually abstract coun-
terparts X and + for the concrete domain constructors X
and + are needed as well, since the abstract domains X;
are most likely to be defined according to the structure of
the equations in the underlying equational system S.

The finite chain property required above ensures that a
finite test is sufficient to reach T. In test set generation,
indeed, we go along chains. To require finite abstract do-
mains would be unnecessarily restrictive. For the natural
numbers Ay, for example, one useful (infinite) abstract
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domain can be described as follows. Coverage of natu-
ral numbers is achieved by % different natural numbers.
For £ = 2, for example, we take the flat domain with
1l <z <Tforallz € M.

At this point, we can define some central terms for test-
ing. The definitions given below are based on the follow-
ing intuition. The coverage of a test set is computed by
taking the supremum of the corresponding abstract values.
In principle, minimal test sets should be enforced. To re-
flect the incremental generation of a test set based on a cur-
rent coverage, sequences of test values as opposed to sets
might be considered. Each element in the sequence should
improve coverage. This does not imply that the sequence
forms a minimal test set. On the other hand, a subsequent
minimalisation is always possible.

Definition 1 (full coverage)
Given a finite (test) set TS C [X;], TS fully covers X;, if
Uue 7sT=T.

Definition 2 (minimal test set)
TS C [Xi] is a minimal test set (w.r.t. X;) if there is no
TS8' C TS such that | |,e s @ = Uye s T-

Definition 3 (increasing coverage)

A sequence (vy,...,ug) withvy,... vy € [X;] strictly
increases coverage (w.rt. X;), if U2=1 7 < Ui:} v; for
{=1,...,k—1

We want to mention another desirable property of the
abtraction scheme. Given a set z and the corresponding
abstract domain Z, abstract values arising from concrete
values in z should exactly correspond to the smallest non-
bottom values in Z. Actually, for every smallest non-bottom
value in Z, there should be (at least) one associated concrete
value in z. For brevity, this requirement is not formalised.
Without this property, the Z could contain *“‘unreachable”
values, i.e., abstract values which cannot be obtained by
taking the abstraction of a concrete value, or the supremum
of abstractions of concrete values.

3.3 Coverage of constants

We assume that 1 denotes the

For the C;, there is no generic way to define them.
Their definition is usually specific to the equational sys-
tem at hand, and to the particular test scenario. However,
there are some common methods to define the C;. Often
C; = 1is appropriate, e.g., for terminals. For finite sets Cj,
C; = P([Ci]), is practical, e.g., for the Booleans. Here,
P(z) denotes the poset for the powerset of the set z, i.e.,
{P(2),0,2,C). Methods to separate several equivalence
classes are also sensible in many occassions. For integers,
for example, it is sometimes useful to consider negative and
positive numbers, and 0.

special  poset
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3.4 Finite unfolding

We will present one particular definition of the abstract do-
mains C;. Other definitions are conceivable, but a discus-
sion of pros and cons is beyond the scope of the paper. The
preferred approach is based on abstract domains which ap-
proximate the concrete domains in the sense of a finite un-
folding technique for the equational systems. This explains
the name for the coverage notion: approximation coverage.
Before we present the ultimate definition, we want to
illustrate two extremes. One extreme is the following:

>

;=1fori=1,...,n

-7=Tforve[X],fori=1,...,n

This means that coverage can be achieved with just one
concrete value. Interestingly, if we adopt that definition for
a context-free grammar in the way that we require such a
coverage for all nonterminals, we get a notion of cover-
age which is even weaker than rule coverage. It would be
enforced that all nonterminals are used at least once in a
derivation. There is another extreme, which is not feasible
due to infinity of the [X;]:

- X =P([Xi]) fori=1,...,n
-v={v}forve[X] fori=1,...,n

There are several ways to derive the X; by observing
somehow the structure of the definition for X; in the under-
lying equational system S. Figure 4 presents the choice for
approximation coverage. The definition uses a special pa-
rameter 7] to keep track of remaining unfolding steps for the
various X;. The initial number of unfolding steps (1g) is
configured by some natural numbers A y,—one parameter
for each X;. As already pointed out in Section 2, Ax, = 2
is usually sufficient. We might indeed want to supply dif-
ferent Ax, for the different X;. This would be useful to
put the focus on certain X; while relaxing the coverage for
other X;.

There are two ways how the X ; are handled in the defini-
tion of ATg. Either (X ;) = 0, then unfolding is stopped,
or n(X;) > 0, then the equation for X; in S is traversed
with an updated 7 so that the counter for X; is decre-
mented. Decrementing is encoded as updating the function
n at X; as denoted by n[n(X;) — 1/X,]. For F resp. X
we assume an interpretation as (normal) Cartesian product
resp. strict product on posets with L. Recall that the dif-
ference between a non-strict and a strict product on posets
with L is the following. In the normal Cartesian sense, L
of the product corresponds to the tuple {1, ..., L). In the
strict case, all tuples containing at least one L are unified.
This choice is sensible, because the tuples induced by +
model coverage for the several alternatives in a sum. Some
of the alternatives might be covered, others not. On the
other hand, the tuples induced by X model coverage for tu-
ples. Non-strict products as abstract domains do not make
sense here because each concrete tuple will immediately
cover all components to a certain extent (more than L).
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Note that the defined abstract domains have the finite
chain property, since they are constructed from such do-
mains (the C;, T) just in terms of product operators which
preserve the finite chain property. The recursion involved
in the definition of A’Tf; is harmless, since the decrementa-
tion of 1 ensures that the number of unfoldings of equations
is limited to a finite value. ’

In Figure 4, the definition of the abstract domains is ac-
companied with the abstraction function for concrete val-
ues. For ./—Wg(v + X;) with n(X;) = 0, coverage is triv-
ially satisfied (T). So every value is fine. For n(X;) > 0,
values experiencing more structure of X; are enforced.
Given a tuple, coverage is a tuple, too. Coverage is com-
puted component-wisely. Given a value (v, j) from a sum
domain arising from the j-th alternative, coverage for the j-
th component for the abstract value is equal to the coverage
of v. For all the other alternatives, no coverage is achieved
(L). This treatment of sums enforces that all alternatives of
a sum have to be experienced in order to achieve coverage.
Finally, note also that the given definition of abstract do-
mains and values satisfy the requirement regarding small-
est non-bottom values.

4 Attribute grammar coverage

We are going to instantiate the notion of approximation
coverage for the syntactic and the semantic dimension of
attribute grammars. The interesting part is the actual com-
bination of the dimensions resulting in a two-dimensional
coverage. At the end of the section, it is discussed how
coverage can be configured. It should be conceivable that
a similar instantiation is feasible for other declarative lan-
guages, e.g., logic programs and constructive algebraic
specifications.

4.1 Preliminaries

T denotes the set of context-free derivation trees. 74C
denotes the set of derivation trees with associated compu-
tations from C'N and conditions from CN according to
AG. It is common to rely on the Dewey-notation for at-

. tribute references within the associated computations and

conditions. DTC denotes the set of decorated derivation
trees. Attribute evaluation means to map a derivation tree
t € TAC 1o a decorated derivation tree dt € DTC in ac-
cordance to the computations and conditions in ¢. In other
terms, t induces an equational system on attributes further
constrained by the conditions in ¢t. The solution of the sys-
tem (if there is any) provides the decoration in dt.
Derivation trees for context-free and attribute grammars
are usually rooted by the start symbol. From a practical per-
spective of testing, we can indeed not assume that we can
directly test a certain nonterminal n by using derivations
starting from n. Language processors, for example, expect
a complete program. Conceptually, decoration or attribute
evaluation is usually only considered for complete deriva-
tion trees. However, as far as coverage is concerned, we
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X; = ATS,(Xi)fori=1,... ,n, where

no:{Xl,... ,Xn}—-)./\fowithr]o(Xj)=/\xj E./\/oforj=1,... )7,

AT§(1) = 1
AT (C5) = G
ATZ(XJ) = Tifp(X;)=0
AT (X;) = ATS[,,(X].)_I/XJ_](C) ifp(X;)>0and X; =e€ S
ATi(el X oor X ek) = ATg(el); . -;(-ATZ(GIC)
ATler+---+ex) = ATy (er)+-- -4—-/17—7, (ex)
T=AVS (v:X;), forv € [X;],i=1,...,n, where
AVI(v:1) = T
AV C;) -
Avg(v:Xj) = Tifp(X;)=0
AV%(v : X5) = Avf[n(xj)—l/x,-](v ce)ifn(X;)>0and X; =e€ S
AVE((vl,.,. JUR) ter X - Xeg) = (AVi(v1:er),... L AVS (ur @ ex))
AV ({v,7) ter + - +ex) = {e1,-..,ck) where
Jje{1,... Kk},

c;=AVs(v:iej)a=Lforl=1,... kl+#j

Figure 4: Abstract domains AT,? and values AV,S;

would like to reason about particular nonterminals. There-
fore, we introduce a notation to access subtrees rooted by a
certain nonterminal.

Letbet € TC. ASUB,, () denotes the set of all subtrees
rooted by n in t. Let us also consider maximum subtrees
MSUB,(t) C ASUBL(). A treet’ € ASUB,L(2) is
a maximum subtree of ¢, if all its ancestor nodes in ¢ are
different from n. We can also derive subtrees of derivation
trees with associated computations and conditions (TAG),
and decorated derivation trees (DTAG).

4.2 Two dimensions

The notion of equational systems and approximation cov-
erage is applicable to the two dimensions of an attribute
grammar. In the dimension induced by the context-free
grammar, the variables correspond to the nonterminals,
whereas in the dimension induced by the attribute type def-
initions, the variables correspond to the names of the type
definitions. Now, we will join the abstract domains for both
dimensions in a sensible way. We should point out that this
join is actually independent of the details of approximation
coverage. It only depends on the abstraction scheme. Note
also that for other first-order declarative programs, a two-
dimensional coverage notion can be derived in a similar
way. However, this genericity is not explored in the paper.

Let AG be an attribute grammar with the context-free
base grammar G and attribute types defined by the system
D of domain equations. In the sequel, we identify G with
the equational system corresponding to its productions. 7%
is used to describe the syntactic coverage of the nontermi-
nal n of G. Therefore, we call it syntactic abstract domain.
Similarly, 7P for a type 7 defined in D is used to describe
the semantic coverage of attributes of type 7. Thus, we call

it semantic abstract domain. Now, we build the combined
abstract domain for a nonterminal in three steps:

1. Construct a semantic abstract domain 52 for each pro-
duction p of G.

2. Combine the semantic abstract domains for the pro-
ductions defining a nonterminal n to a semantic ab-
stract domain 7P,

3. Combine semantic and syntactic abstract domains for
each nonterminal n of G to an abstract domain ZAC,

Letpbe aproductionof G and ry.a;1 : Ty,... ,Tk.Gk : T
the attributes associated with p in the attribute grammar
AG together with their types. It is clear that the type pP
of the decorations of p in a decorated derivation tree is
pP =72 x ... x 7P. Thus, the semantic abstract do-
main pP for pis defined as P = 7P X -+ X 7P, The
definition means that each attribute of p has to be covered
individually. Furthermore, the choice of X reflects that the
application of a production in a derivation covers each at-
tribute to a certain extent. If py, . .. , py, are the productions
of G defining the nonterminal n, then we can encode dec-
orations of the various productions for n as a sum. This is
modelled by the concrete domainisn? = pP + ... + p2.
The corresponding semantic abstract domain @2 for n is
defined as 72 = 5P F -+ F pm?. The two-level ap-
proach to the definition of @” enforces that semantic cov-
erage of non-terminals separates the different occurrences
of n in the various rules. A relaxed definition of @” could
also be conceived. Finally, we define the combined abstract
domain 7% = 7% X 7P,

It remains to define the abstraction function for attribute
grammars. Here the consideration of subtrees turns out

to be essential. Given a decorated derivation tree dt €
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DTAG, and a nonterminal n, the corresponding abstract
value w.r.t. n is denoted by dt". Itisa pair of values for
abstract syntactic coverage and abstract semantic coverage
defined as follows:

n

dt = (syn,sem)
syn. = Udt'eMSUBn(dt) T (dt')
sem = | |yeasus, (ar) T0(dE')

where mg(dt') denotes the derivation subtree obtained
from dt' by removing its decoration, and 7 (dt') € n? de-
notes the decoration of the top-level production of dt’. This
definition of abstraction for decorated trees means that syn-
tactic coverage for 7 is derived by taking the fundamental
approximation coverage of all maximum subtrees rooted by
n. To consider other than maximum subtrees rooted by n
would be in conflict with the desired treatment of recursion.
By contrast, semantic coverage is derived from all subtrees
rooted by n because we want to observe the decoration of
all nodes with nonterminal n and their successor nodes.

There is a fundamental problem with two-dimensional
coverage. In many cases, full coverage according to the
above definition is not feasible. In the syntactic dimen-
sion, coverage has sometimes to be relaxed due to seman-
tic constraints. Dually, through syntactic dependencies,
full attribute coverage is sometimes not feasible, i.e., in
all derivation trees some attributes always take values of
a special form. Opportunities to relax the coverage notion
are discussed later.

4.3 A test set sample

In Figure 5, a represantative test set for the example AG in
Figure 3 is shown. The test set achieves greatest possible
coverage according to the following criteria. In the struc-
tural dimension, 1jo(n) = 1 is assumed for nonterminals n.
In the semantic dimension, 79(r) = 2 is assumed for at-
tribute types 7. Thereby, all attributes of type ZD_LIST
are enforced to appear in derivation trees in which they get
the empty list, a singleton list, and a list with at least two
elements as values, if possible. The programs were actually
generated by the algorithm described in the next section.

For example, test programs are generated where non-
local labels are reachable from a block, i.e., the inherited
attribute TL of the nonterminal Block has to be nonempty.
Note that full coverage is not feasible because there are
attributes of type ZD_LZST which cannot be associated
with the empty list, e.g., the attribute TL of the left-hand
side of rule [Idef].

4.4 Configuration

Approximation coverage can be configured in various
ways. This is convenient to enforce a desired precision
of the approximation of the concrete domains. Configu-
ration might be essential to recover feasibility of coverage
as pointed out above.
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begin skip end.

begin if true then skip end.

begin skip; skip end.

begin begin skip end end.

begin if true then skip; skip end.

label a; begin a : skip end.

begin begin skip end; skip end.

label a; begina: goto aend.

begin begin skip; skip end end.

label a; begin a: skip; skip.end.

label a; begin skip; a : skip end.

label a; begin if true then a: skip end.

label a; begin a: if true then skip end.

label a; begin goto a; a : skip end.

label a; begin a: skip; goto a end.

label a; begin a : begin skip end end.

begin label a; begin a : skip end end.

label b; label a; begin b : a: skip end.

label a; begin a : begin goto a end end.

label b; label a; begina: b: skipend.

label b; label a; begina: b: goto a end.

begin label a; begin a: skip end; skip end.

label b; label a; beginb : a: skip; skip end.
label b; label a; begin skip; b: a: skip end.
label b; label a; begin if true thenb: a: skip end.
label b; label a; begina: b: if true then skip end.
label b; label a; begina: b: begin skip end end.

Figure 5: A test set for the AG from Section 2

First of all, we can use different unfolding parameters
10(X:) = Ax, for the various variables in an equational
system. In the two-dimensional setting of attribute gram-
mars, thereby both the nonterminals and the attribute types
can be controlled. There are further opportunities to con-
figure the coverage. The way how the semantic domain 5
for the production in an attribute grammar is constructed,
specific coverage can be enforced for the various attributes.
One useful extreme is to assume the trivial domain T rather
than T3P for a certain attribute r;.a; : T; when construct-
ing the product defining 5. Thereby, we express that the
testing scenario is not concerned with r;.a; : 7;.

To recover feasibility of coverage, further techniques are
needed. In some way or another, full coverage needs to
be relaxed by excluding certain subsets of the full cover-
age set. In the semantic dimension, we can give more pre-
cise types to the attributes, that is subtypes of the attribute
types. In the syntactic dimension, we can resort to a refac-
tored context-free base grammar which explicitly reflects
the permitted structures.

5 Test set generation

In this section, we give an algorithm for the generation
of test sets providing coverage. The presentation is tuned
towards AGs, that is we are concerned with (decorated)
derivation trees, and words generated by an AG. In prin-
ciple, the technology is also applicable to other first-order
declarative programs. We presume that the coverage cri-
terion is fulfilled by rather a larger set of small test cases
than a smaller set of large test cases. Since small test cases
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tend to test the aspects of the described language more sep-
arately, such test cases are more suitable for debugging pur-
poses. This assumption is illustrated by the generated test
set in Figure 5.

First, we set up some terminology. Then, we present
the heart of the test set generator, that is an algorithm
for completion of partial derivation trees. The algorithm
derives—in some sense—smallest completions, and only
correct trees regarding the AG at hand. Afterwards, we
describe how coverage of the abstract domains for an AG
can be achieved. Finally, the two concerns of rule comple-
tion vs. abstract domain coverage are intertwined, that is
we describe how the search algorithm can be guided rely-
ing on the coverage notion. Otherwise, test set generation
would be too inefficient. Also, we comment on termina-
tion problems resulting from the potential infeasibility of
full coverage.

5.1 Preliminaries

We adapt the commeon algebraic interpretation of context-
free grammars to be able to cope with partial derivation
trees. Test set generation relies on the stepwise completion
of partial derivation trees.

Given a context-free grammar G = (N, T, s, P), a sig-
nature ¥ is derived as follows. N U T provide the sorts
of ¥. We need to include T because we want to rep-
resent terminals in the decorated derivation trees, since
they may carry (synthesized) attributes. The productions
in P are considered as function symbols in X, i.e., given
ap =1z = T T, € P, there is a function symbol
Py X X Iy — g € L. Since we included terminals
in £, we need to declare a term representation for termi-
nals. We assume a special constant symbol leaf , : = z for
each z € T in 3. Without further effort, the set of com-
plete derivation trees 7 can be regarded as the set 7,(X)
of terms of sort s.

The representation of partial derivation trees is not so
straightforward. One option to cope with “holes” in deriva-
tion trees is to consider terms with variables. Then, a par-
tial derivation tree derived from a nonterminal n would
be a term from T,,(X, X) over some N-sorted family of
variables X. This option is not quite usable. Variables
are rather non-intuitive representations of holes in a par-
tial derivation tree, since there is no natural interpretation
for multiple occurrences of one variable in a context-free
derivation tree. We resort to another option, that is we as-
sume a constant symbol leaf , : — = foreachz € N in Z.
Recall that for terminals, leaf , denotes a leaf in the sense
of a complete derivation tree. By contrast, for nontermi-
nals, leaf, denotes a hole in the derivation tree. Extension
of partial trees is meant to replace such holes.

Derivation trees might be obtained essentially in two
ways. First, a rule can be represented as a partial derivation
tree. Second, partial derivation trees can be extended by
replacing holes by further derivation trees. We will present
these two fundamental concepts. For convenience, we also
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assume that leaf , for each z € N is an elementary partial
derivation tree.

Given a productionp = 29 = x1 -+ - Ty, € P, the corre-
sponding partial derivation tree is represented by the term
p(leaf ;...  leaf . ). We assume a notation for select-
ing or addressing subterms in the spirit of VDL (cf. [29]).
Given a term ¢t € T,,(X) and a selector sequence ¢* € N,
selection of the subterm in ¢ addressed by ¢* is denoted by
S(t, g*). In a similar way, the extension of t by t’ € T}, (%)
at the leaf addressed by ¢* is denoted by £(¢, ¢*,t'). Selec-
tion and extension are defined in Figure 6.

It is easy to cope with derivation trees with associated
computations and conditions. Using the standard Dewey
notation as for selection, attributes are made unique.

5.2 Completion of derivation trees

We want to develop that part of the test set generator which
completes a given incomplete derivation tree aiming at—in
some sense—smallest completions. Later we also explain
how to take the current coverage into account to guide the
underlying search algorithm.

Let AG be an attribute grammar with G = (N, T, s, P)
as its context-free base grammar. Starting from elementary
derivation trees of the form ¢, = p(leaf,,,... ,leaf, ) €
Ty, (X) for a production p = g — 1, ,Zm € P, we
can construct all derivation trees using the extension func-
tion £. The derivation tree ¢ corresponding to a derivation
s gg wy %G wy Bg - p:%; wy, can be constructed
in top-down manner as follows:

E(E(- o E(E(tm ’qf’tm):q;atps) T ):Q:x—latpn)

for appropriate g}, - - - , ¢%_;. Of course, we can also con-
struct £ in bottom-up manner:

g(tpl ) qIT’ g(tpz ) q’;: 5( t E(tpn—-x ) q/:z—latpn) e )))

for appropriate ¢'7,--- ,q'5_,. Actually, ¢ can be con-
structed in any order of derivation steps. Every partial
derivation tree t € T,,(Z) can be completed by

— atree ts € T5(X), where the only nonterminal leaf in
t, is of sort n, and

- atree tpy € T, (X) without nonterminal leaves for
every node leaf ,, int.

For the search algorithm used below, we need a measure
for the size of a derivation tree ¢ that is strictly increasing
with the length of a derivation yielding £. Let us review
possible options:

1. the number of nodes of ¢ not of the form leaf , where
z € N UT (this corresponds directly to the length of
the derivation yielding t),

2. the number of terminal leaves of ¢, i.e. nodes of ¢ of
the form leaf, where z € T (for complete deriva-
tion trees this corresponds to the length of the derived
word),
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t, ifg" = ()
N S(ti, (g2, ... ,q)), iftisofthe formp(ty,...,1x),
Sitq) = . led ok
q ——(q17"'7ql))q1_le{ EE ] }
undefined, otherwise
t, ift = leaf 0, q" = ()
p(t1, ...y tic1, b, tigr, ..., tg), iftisofthe form p(ti,... , ts),
g(t7q*7tl) = q*=<q17"')ql)7q1=i6{17"'Yk},
* t;=g(ti!(q2a"- 7ql)7t1)
undefined, otherwise

Figure 6: Derivation trees: Selection and Extension

3. the total number of nodes in ¢, and

4. the sum of 1 and 2, i.e. the nodes of ¢ not of the form
leaf, wheren € N.

The second choice is not strictly increasing because the
extension with elementary derivation trees corresponding
to rules without terminals on the right hand side do not
introduce terminal leaves. The third choice is not strictly
increasing because the extension with elementary deriva-
tion trees corresponding to rules of the form n — ¢ only
replaces one node by a new one. Thus, in the sequel, the
size |t| of a derivation tree ¢ refers to 1 or 4.

Definition 4 (smallest term. deriv. tree)

A derivation tree t € T,,(%) without nonterminal leaves is
called a smallest terminal derivation tree of sort n, if for
all derivation trees t' € T, (Z) holds that |t| < [t'|.

Smallest terminal derivation trees can be calculated
searching T, () starting from leaf , with a best first search
algorithm (cf. [30]) using the extension with elementary
derivation trees representing productions as successor rela-
tion.

Definition 5 (context tree)

A derivation tree t € T5(X) is called a context tree of sort
n, if t has at least one nonterminal leaf of sort n. t is called
a terminal context tree, if t has exactly one nonterminal

leaf.

Definition 6 (smallest context tree)

A (terminal) context tree t of sort n is called a smallest
(terminal) context tree, if for all (terminal) context trees t'
of sort n holds that |t| < |t/ '

As for smallest terminal derivation trees we can use best
first search for the calculation of smallest context trees.
Combining smallest context trees and smallest terminal
derivation trees in an appropriate manner we can construct
smallest terminal context trees.

Definition 7 (smallest completion)
A complete derivation tree t is called a completion of a
derivation tree t', if there is a subtree t'' of t which can be

obtained from t' by replacing the nonterminal leaves from
t' by appropriate derivation trees of the corresponding sort.
t is called a smallest completion of t', if for all completions
t" of t' holds that |t| < |t”|. 1t/ |min is the size of a smallest
completion of t'.

This definition also makes clear that a smallest comple-
tion t of a derivation tree t' can be constructed from ¢’ it-
self, a smallest terminal context tree, and smallest terminal
derivation trees for all the nonterminal leaves. It is interest-
ing to notice that we could achieve rule coverage by taking
words represented by smallest completions of the elemen-
tary trees for the various productions as test set. However,
for an attribute grammar, we also need to take the semantic
dimension into account. We are interested in proper words
generated by the AG at hand, and not just by its base gram-
mar. Thus, the notion of a smallest completion is not di-
rectly useful as is. In our motivating example, if we start
from the production for the goto statement, a smallest com-
pletion is a derivation tree encoding the following program:

begin goto a end.

This is not a valid program, since the label a is neither de-
clared nor defined.

Definition 8 (correct compl. deriv. tree)

A complete derivation tree t is called correct, if the equa-
tional system on the attributes of t induced by the compu-
tations of t has a solution where the conditions of t hold.

Thus, we have to search for not necessarily smallest, cor-
rect completions in a systematic manner. QObviously, the
enumeration of all completions, and testing of correctness
until a correct completion is found suffices. To conclude
the example above, a correct completion of the production
for the goto statement is the following:

label a; begina: goto a end.

We are now in the position to discuss details of the algo-
rithm for completion. Since we have a lower bound for the
size of a completion |.|;min, We can use a heuristic search
algorithm like A* (cf. [6, 30]). The iterative deepening vari-
ant IDA* is more practical regarding space requirements.
The algorithm is sketched in Figure 7.
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dnew := ‘tlmin

repeat
l:=[t];d = dnew; dnew := 00
repeat

ct := head(l);1 := tail(l)
if ct is complete then
if ct is correct then
return ct
endif
else
select a position p of ct for extension
build the |.|min-sorted list
of all extensions of ct at p
1:= append(lcy,l);
dnew = Min(dnew, |15 almin)
endif
until I = {]
until dpew = 00
return fail

derivation tree to be completed
list of candidate trees
actual tree size limit

QA ML T~ o

new limit for the next iteration (the size of the smallest trees
not considered so far)

ct derivation tree currently selected for extension
l<qg  prefixof ! (all t with [t|min < d)
Is>qg  postfix of [ (all £ with |t|mirn > d)

minimum of the |.|m:n Of the elements of the list I. If [
is the empty list then |l],nin = 0o

|l|min

J. Harm et al.

5.3 Abstract domain coverage

In this section, we assume some definition of the abstract
domains A€ for (decorated) derivation trees of sort n ac-
cording to an AG. Basically, a test set achieving coverage is
generated by repeated application of the search algorithm
from above, where the derived program is only added to
the test set if it improves coverage. This is done until full
coverage is achieved. Here, we do not rely on approxima-
tion coverage and the kind of combination of the two di-
mensions as proposed in Section 3-Section 4. In practice,
we rely on a specific coverage notion in order to guide the
search in an efficient manner.

In Figure 8, we present the procedure to construct a test
set achieving full coverage (provided it exists). Suppose
we want to cover the nonterminal n according to 7A€,
Thus, a test set T'S = {t1, ..., t;} has to be derived which
achieves coverage forn, i.e.,f; U---U%" = T. Thet; are
derived as follows. Starting from the empty test set, and L
as the current coverage C, the search algorithm is applied
to generate a correct completion t for leaf,, (which is of
course a derivation tree of sort s), and we require that ¢ has
to increase the coverage C, i.e., t* € C. The generation
step is iterated with C := C 1" while C' < T. For sub-
sequent nonterminals, we start with the coverage reached
by the test set generated so far. The generation forces the
current coverage to strictly increase. Recall that this does
not imply that the generated test set is minimal.

Figure 7: Completion of derivation trees

For each step of the search algorithm we have two ways
to extend the current derivation tree ¢ by an elementary
derivation tree t':

— if ¢ has a leaf of sort n, ¢t can be extended at this leaf
by a derivation tree t' of sort n through £(¢, ¢*, ') for
an appropriate ¢*;

— if ¢ is of sort n, £ can be extended at the root by
a derivation tree ¢’ with a leaf of sort n through
E(t', g%, t) for an appropriate ¢*.

The freedom to choose where to extend the current deriva-
tion tree can be used to tune the search algorithm. Since
we can evaluate computations and conditions in a stepwise
manner, derivation trees can be rejected as soon as it be-
comes clear that a condition fails, or the result of a com-
putation is undefined in the case of partial functions. A
possible heuristic for the selection of the extension posi-
tion (root vs. one of the nonterminal leaves) is the most-
constraint heuristic, i.e., the position with the greatest num-
ber of computations and conditions is selected for exten-
sion. This heuristic tries to build the tree in a direction that
as many as possible computations and conditions become
evaluable as soon as possible.

-T5={}
— For all n:
-C:= I_ILETS "
—WhileC < T
— Generate a correct completion ¢
from leaf, whereI" £ C
~TS:=TSU{t},C:=Cut"

Figure 8: Procedure for test set generation

5.4 Guidance of search and termination
problems

Due to the structure of the abstract domains as defined by
approximation coverage we can use the current coverage to
guide the search algorithm. As soon as it becomes clear that
no completion of a derivation tree will increase the cover-
age, we remove it from the candidate list. Actually, this sit-
uation arises, if the tree is already covered by the syntactic
part of the current coverage, and the attributes contributing
to the semantic part of the coverage criterion are already
fully covered or bound to values not increasing the cover-
age. This way, the search space is more and more reduced
with the coverage increasing.

Additionally, we can select as position for extension the
one with the greatest number of attributes, which contribute
to the coverage criterion, depending on its attributes. The
selection of the position might also be driven by incomplete
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coverage in the syntactic sense. This way, the search algo-
rithm is guided into a direction increasing the coverage as
soon as possible. If the current derivation tree is known to
increase the coverage but it is not yet complete, the usual
search algorithm can be used to find a correct completion.
If full coverage is possible, the search algorithm will ter-
minate, since it essentially enumerates the derivation trees.
If full coverage is impossible, the search algorithm may
not terminate. A guided search as proposed above may re-
duce the search space to become finite, and thus make the
search algorithm terminate. Due to the expressiveness of
AGs, it is in general not decidable, if the search may lead to
correct derivation trees improving coverage. Thus, termi-
nation cannot be guaranteed. The means of configuration
discussed in Section 4.4 need to be used to recover feasi-
bility of coverage. Ultimately, we can enforce termination
by restricting the search depth. For most decent attribute
grammars it should be possible to limit the search depth,
e.g., by restricting the number of recursive unfoldings.

6 Concluding remarks

Results The first contribution of the paper is a general
and intuitive notion of coverage for attribute grammars and
other kinds of declarative programs. The notion of ap-
proximation coverage takes the context-free part and the
attributes in an attribute grammar into account, and it goes
strictly beyond syntactic rule coverage. It covers more as-
pects of the program to be tested in an intuitive manner. A
certain complexity of derivation trees and attribute values
is enforced relying on an unfolding technique to cope with
recursion.

The second contribution of the paper is an algorithm
for test set generation complementing the coverage no-
tion. Only correct decorated derivation trees are generated.
The generator algorithm relies on some kind of breadth-
first search, and it starts from an elementary derivation tree
which is then completed. The generated test cases are in
some sense as small as possible. Therefore, redundancy
is reduced. Termination cannot be ensured in general, but
means to recover termination have been indicated. Also,
non-termination can be observed to a certain extent, if a
certain search depth is considered as harmful.

Related work In[26], Purdom gives an algorithm to gen-
erate a small set of short words from a context-free gram-
mar where each production of the grammar is used in the
derivation of at least one word. There are some attempts to
extend Purdom’s approach in different ways in order to take
context conditions into account so that correct programs are
generated. However, more sophisticated coverage notions
than rule coverage for context-free grammars or attribute
grammars do not exist in the literature.

In [9], a special grammar formalism with actions work-
ing on the internal data structures of a generator is used.
If during the generation process a violation of the context
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conditions is encountered, the actions cause that text is in-
serted in or deleted from the generated word at dedicated
positions. Thereby, it should be guaranteed that the result-
ing word respects the context conditions.

A more declarative approach is pursued in [2] using
context-free parametric grammars. The parameters asso-
ciated with the grammar symbols can take values from
context-free languages. When a parameter value is needed
and not yet defined during the generation process, a value
has to be generated or provided by the user. Only words
derivable with respect to the generated or user-provided pa-
rameter values can be generated. A survey of further ap-
proaches used in test set generation for compiler testing is
givenin [7].

Some authors resort to randomized test set genera-
tion (cf. [4, 22, 8]) hoping that the resulting test sets—
if large enough—will include all interesting language as-
pects. Note also that only generation is facilitated. Us-
ing our approach coverage measurement of test suites or
manually provided test cases can also be performed. There
are other approaches to coverage measurement for test pro-
grams which are not based on a reference AG. In [10, 5],
program instrumentation is used to gather coverage infor-
mation from prototypical language implementations.

In [17], Jack gives a coverage notion and an algorithm
for test set generation for logic programs based on anti-
unification. The main problem with the given form of anti-
unification is that sums are not treated in a sufficiently pre-
cise manner. Two terms with different functors suffice to
get full coverage even if there are further functors of the
same sort. In that sense, approximation coverage provides
a useful notion for testing logic programming. Jack also
assumes that the test sets are generated on a per predicate
basis. Translated to the AG context, this means that each
nonterminal would have to be tested separately. This is
not compatible with the concept of a start symbol. From
a practical perspective, for attribute grammar implementa-
tions, e.g., compilers and interpreters, usually only words
derived from the start symbol can be used for testing.

Future work We have reasonable experience in generat-
ing test sets for simple rule coverage while aiming at cor-
rect derivation trees (cf. [15, 16]). The technique is fea-
sible for non-trivial language definitions. Using the more
general notion of approximation coverage blindly, the gen-
erated test sets tend to get too complex to be helpful in
actual testing. Thus, a primary subject for future work is a
feasibility study to apply the technique to a Pascal-like lan-
guage, and to work out some pragmatic properties of the
technique back-to-back. We mentioned some techniques
to focus on rules, nonterminals or attributes. The ultimate
goal in this respect is a test case generation language.
Another subject for future work concerns the termina-
tion problems discussed in the paper. A substantial part
of the termination problems can be resolved if the gram-
mar and/or the attribute types are refined. We believe that
most decent AGs can be completed in this way to achieve



368 Informatica 24 (2000) 355-369

normal termination. However, such refinements put a bur-
den on the programmer. Also, it had to be ensured that the
grammar refinements preserve the generated language, and
that type refinements are sound. One possible direction for
improvements is to derive the refinements (e.g., in the form
of annotations) largely automatically by a kind of type in-
ference.

There is a related problem, that is to say, the complexity
of test set generation. Especially, in the semantic dimen-
sion, too little information is used to guide the search dis-
cussed in this paper. The conditions and computations are
regarded as black boxes. Also, attribute dependencies are
not yet used for guidance. A white-box approach, where
conditions and computations are specified, for example, as
recursive functions, and attribute dependencies are taken
into account, could be used to guide the generator algo-
rithm.

The type inference proposed above also relies on the
white-box setting. We want to infer, for example, that a
function implementing a computation from an AG is only
defined on certain parameter patterns. A particular way to
implement the white-box approach and to take attribute de-
pendencies into account is based on constraint-logic pro-
gramming. The computations and conditions are imple-
mented as constraints. We have done very promising ex-
periments in this direction. The constraint system cuts off
many parts of the search space, and cases, where full cov-
erage is not possible, are often identified.
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This paper presents a parallel implementation of a variant of the () R method for the eigenelements prob-
lem. This method consists in factorizing a symmetric matrix A in the form A = QX QT where Q is an
orthonormal matrix and X has nonzeros components only on main and cross diagonals. We present a
multi-phase parallel implementation of this method onto a reconfigurable machine. We decompose this
method into a series of standard parallel computations and for each of them we choose the best inter-
connection topology in order to speed up the communication time. Numerical tests corroborate nicely a

theoretical evaluation of our parallel algorithm.

1 Introduction

The numerical solutions of the eigenelements of a large
matrix arise in numerous scientific applications. The most
popular methods used to solve this problem are the Jacobi’s
algorithm, the @ R method or the Housholder’s transforma-
tion and the methods based on projection techniques onto
appropriate sub-spaces such as Lanczoz’s and Davidson’s
methods. To speed up the associated computations, many
parallel algorithms have been presented and their imple-
mentations present some particularities depending on the
target parallel architecture [18, 13, 2, 10, 12, 15, 9].

This paper focuses on the method presented in [4] for
computing the eigenvalues and the corresponding eigen-
vectors of a symmetric matrix A. It consists in factorizing
A into the form A = QX QT where @ is orthonormal and
X is a symmetric matrix having nonzero components only
on main and cross diagonals. The method takes ideas from
the generalized W Z factorization [5, 6, 8] in which the
associated sequence of computational operations is more
suitable for parallel processors than the classical methods.

Our second aim is to expose a parallel implementation of
this algorithm on a dynamically reconfigurable machine. A
parallel machine is called dynamically reconfigurable if its
interconnection network can be altered during the execu-
tion of the same application [5, 3]. This yields a variety
of possible topologies for the network and allows a pro-
gram to exploit this topological variety in order to speed up
the computation. A possible network topology is any one
in which the number of connections per processor is less
than or equal to a constant d. The underlying algorithmic
model for reconfigurable machines is called multi-phase
model [19, 1]. This model relies on the idea that a paral-
lel algorithm can be decomposed into series of elementary
data movements. So, programs are designed so as to exe-

cute a series of phases. Each phase uses its own topology
which suits in the best way communication requirements
and phases are assumed to be separate from one another,
by synchronization-reconfiguration points [1]. In this way
the communication cost of an application is reduced and
designing a multi-phase algorithm consists in finding the
best phase decomposition and the best topology for each
phase.

This paper is organised as follows. We first present
the sequential method for the eigenelements computation.
Next we show how this method can be divided into a se-
ries of parallel phases, each of them corresponding to stan-
dard parallel computations. We also analyse how to choose
the best topologies (i.e. the topologies which minimize the
communication cost) to perform these computations. Sec-
tion 4 presents a theoretical evaluation of the multi-phase
algorithm and some numerical experiments and a compari-
son with the sub-spaces.

2 The sequential algorithm

Let A be a symmetric matrix of order n with n real
eigenvalues A1, Az, ..., A,. We assume that the multiplic-
ity of each A; is < 2 and that [A1| > [A2] > ... > |Anl
Let < w,v > denote the scalar product of « and v and
[lu]| the Euclidean norm of u. The method, introduced
in {4] for computing the eigenelements of the matrix A4,
consists in computing an orthogonal matrix 1 such that
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AWM = @, AQT with AM) symmetric of the form :

agll) (1) 0 (1) a&)
Goq A3 n—1
A=10  am 0
1
afll-)-1,2 agz—)l,n—l
all) ali)

Let (aS)) denote the elements of A(), then ag) =
ag) = asllj) = a(-}l) =0for2 < j <n-1 Let
Q1 = (q1,-.. ,qn) where ¢g; € R", denotes the i-th col-
umn of Q;. In this way, A = Q; AVQT implies the fol-

lowing two systems

Aq = aﬁ)fh +a§1n)qn
1 1
(Sl) AQn = a(1n)q1+a$uz%1
<gug> = 0
ol = llgal] = 1
= o
($2)4 A9 =D aa
k=2

V2<ij<n-1

Thus (S1) is a non-linear system of 2n + 3 equations and
2n+3 unknowns (aﬂ), agln) ) a$%) and the 2n components of
g1 and ¢y,). The following algorithm (derived from the sub-
space method) is proposed in [4] to get a solutions ¢, and
gn of system (S;). Others solutions for (S;) are obtained
by applying a rotation to vectors « and v. Further we show
how to deduce A1, Az, and the corresponding eigenvectors
from the solutions of (5).

Algorithm for solving (S;)

Let w(® and v two orthonormal vectors of R™;
For k=0,1,... until convergence do

Yk = [|Au®;

Yok = [|Av®|[;

y3x =< Aulk)) Ay(®) >,

Ve = A/ RT3k — Vi ki
Y.k |

Vg F W

_ 1 .

cos gk - 4/ 1+tan? Gk’

sinfy, = ——2nfs .

V 1+tan2 8, ’

. 1
By = < cosfr —sinby ) ;—“-%kk mok .
sinf;  cosby i e
u(k+D)
pk+D)

Au®)
) =2 )

tan ek =

Done

According to the definition of 87, By is symmetric, in-
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versible and

lm Bl =5 = | %
im = = n
k— 00 k aﬁl) a1(1112

The eigenvalues of B! are A; and Ag and

g1 = lim ul®) , @n = lim e
k—00 k—o00

are a solutions of (S1). On the other hand,
e1 =q +71q2, €2 = q1 +7T2q2 N
where

asll,z - aﬁll) + (A1 — A2)
2a(1)

in

™ =

ol —alD — (A = A)

2a§1n)

Tr9 =

are two orthogonal eigenvectors respectively associated
with A; and As.

The angle 8y of the algorithm is defined in such a
way that the B matrix is symmetric. Nevertheless, to
determine this angle, other choices are discussed in [4].
If we take 6 = 0,Vk > 0 in the algorithm, then we
find the sub-spaces method for computing the two dom-
inant eigenvalues of A. The introduction of the rotation
( cosf, —sindy

sinf, coséy
factor of the sub-spaces method allows an acceleration of
the algorithm’s convergence (see [4] for details).

) which is, as it was, a relaxation

Having computed (g1, gn, aglll), a&), a.sll,z), the other vec-

tors g;,2 < j < n — 1 can be determined using the Gram-
Schmidt method. Next, we get from (S2))

agj) =< qi,Ag; >, V2< j,k<n—-1

and

Qpnj = Ojn = Q15 = Gj1 :0, V2SJSTL-—~1

Similarly the symmetric matrix Ay = (ag;))ggi,js,,_l
of order n — 2 can be decomposed into the form A; =
Q24P QT and so on. This process results after g = [ 251 ]
steps in an orthonormal matrix ) and a matrix X having
nonzero elements only on main and cross diagonals such
that A = QX Q7.

Note that a decomposition A = JX J T can be achieved,
using a variant of the Jacobi method [17]. In this case the
problem size remains unchanged, equal to n, during the
execution of the algorithm.

Our aim is to compute the eigenelements of A. So, to
avoid the use of Gram-Schmidt method, we use the defla-
tion technique to implement this algorithm in this way :
after the execution of the first step, i.e. the computation of
aﬂ’, aﬁ}, a%l,z, @1, 92, A1, A2, we consider the matrix

A1 =A- )\1616'1 - /\26285
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The eigenvalues of A; are 0,0, A3 ... A,, each of multi-
plicity < 2 and the two dominant eigenvalues of 4 are A3
and A4. So A; satisfies the same hypothesis as A. There-
fore the method can be applied to 4; in order to compute
Az and A4 and the corresponding eigenvectors. These two
steps (computing two eigenelements and updating A by de-
flation) are repeated ¢ = |25+| times. Note that in the
Gram-Schmidt method, the size of the A matrix does not
decrease.

3 The multi-phase parallel
algorithm

In this section, we present a multi-phase parallel analy-
sis for the method previously exposed. First we present
the computational model and next we detail the different
phases.

3.1 Computational model

The computational model used throughout this work is the
multi-phase model. in this model an algorithm is imple-
mented as a series of phases, so that, each phase is effi-
ciently executed on the processor graph (of degree d) that
exactly reflects the need of the current data transfer pattern
[6]. Phases are assumed to be separated from one another,
by synchronization-reconfiguration points. This model as-
sumes a reconfigurable machine where physical intercon-
nections are set before the beginning of a phase. Let a
reconfigurable machine with p identical processors, each
of them own d bidirectional communication links. We as-
sume that it is possible to perform in parallel on the same
processor, bidirectional data transfers on each link. In or-
der to refer a node, the p processors are viewed as a ring.
A processor located at the ¢-th position (0 < ¢ < p—1)1is
labelled P;.

>From an algorithmic point of view, the multi-phase
model provides two main advantages:

— Improvement in the performance of an application.
Indeed, for a parallel distributed memory machine,
communications are often a restrictive factor. Then,
the performance of a parallel algorithm depends on
how well its communication graph matchs the inter-
connection network of the target parallel machine. In
this way, parallel systems with static interconnections
require to adapt algorithms to the architecture. The
conception of such algorithms is often difficult be-
cause there is no ideal topology for a set of algorithm
and because of the intractable problem of mapping an
algorithm onto a parallel system. The use of a router
can remove the designing problems but in any case,
the effects of the architecture limitation involve an in-
crease of the communication costs. Reconfigurable
machines overcome this problem because they allow
to adapt the topology of the interconnexion network
to the needs of the specific application.
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— An informal approch (like the sequential top-down
analysis) allows to conceive efficient multi-phase par-
allel algorithms. This approch was presented in [6, ?]
and it consists in decomposing a problem by succes-
sive refinements in order to get a sequence of elemen-
tary sub-routines which solves the problem. In the
multi-phase model we propose to apply, to the com-
munication scheme of a parallel algorithm, a succes-
sion of refinements steps in order to get elementary
topologies (of degree d at most) and sub-problems
corresponding to phases. In the remainder of this pa-
per we propose to illustrate this methodology.

3.2 Principles

This section presents a phases decomposition of the se-
quential method. This decomposition is based on the com-
putation needs of the algorithm. In the next sections we
discuss the choice of an adequate topology for each phase.

The inner loop (fork = 0,1... until convergence) of the
sequential algorithm allows to compute two eigenelements.
At step k we begin by computing the two matrix-vector
products Aulf) and Av(*). Next we compute the different
values v1. k. Y2.k» ¥3,ks Yk, tan i, cos 6§ and sin 65,

After convergence we update the A%) matrix by defla-
tion and we start the computation of the next two eigenele-
ments (step k£ + 1).

Hence, for each &, the parallel multi-phase algorithm is
naturally composed of the following phases :

— computing Aul®) and Av(F),

— computing y1 &, ¥2,x and ¥ ,

— updating A®*) by deflation.

It is clear that the most time consuming process is the
matrix-vector products of phase 1. So, the initial data dis-
tribution must be performed in order to get the best paral-
lelization of this process. We have choosen the contiguous
row decomposition scheme in which each row is stored en-
tirely in one processor and, starting with the first row, every
contiguous r = Z rows are stored in the same processor.
This data distribution is illustrated in figure 1.

Note that at step & of the outer loop, the size of the prob-
lem is n —2(k —1). Thus, it is necessary to include another
phase which performs a load balancing of the remaining
data.

3.3 Au®® and Av®) computation

For the sake of simplicity, we let u(®) = u = (ui)o<icn
and v = v = (v)ocicn, T = (Tocicn, ¥ =
(yi)o<i<n- This first phase computes the product (z,y) =
A.(u,v) of an x n matrix A by two vectors u and v of size
n. The parallelization of this problem has been extensively
studied in the literature [14].
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Figure 2: The multi-phase matrix-vector product for p = 8
andd = 4

We propose a new algorithm for the matrix-vector prod-
uct on a dynamically reconfigurable machine. This algo-
rithm assumes the data decomposition of figure 1 and runs
in [P;—l] phases. The topology of each phase is a chordal
ring of degree d (see figure 2). First, each processor F;,
0 €% < p—1computes A;a and A;¥ while it sends its
blocks @ and ¥ to the set S of its neighbors processors.
Then each processor can compute A;% and A;% forj € S.
Clearly the algorithm ends after [2=*] steps which corre-
spond to the different phases. Figure 4 illustrates this algo-
rithm forp = 8 and d = 4.

We point out that communications and computations can
be overlaped during the entire execution of the algorithm
and that the number of step is d times smaller than those
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of the algorithm presented in [14]. We do not focus on
the reconfiguration cost because it is negligible and further-
more it can be overlaped by computations too. The optimal
packet size for which communications are entirely over-
laped by computations, can be computed using techniques
presented in [11].

34 71k, 72, and 3, computation

As shown in section 3.2, the computation of 7y, z, y2,% and
v3,x allows to compute u®) and v*). This phase con-
sists in computing three scalar products. In fact, v ; =<
z,r >, ’)’2L =< y,y > and v =< z,y > where
z = Au® and y = Av*) have been processed in phase
1 and are distributed among the processors. Furthermore,
these scalar products must be broadcasted to all the net-
work in order to compute %(*+1) and v(*+1), So this phase
can be summarized as follows :

— All the processors P; for 0 < ¢ < p — 1, compute in
parallel
1 +1 1.
( ) — Z(t_ ")r

2(z+1 yr—-1 _2

=1r
(3) (i+1)r—1 o -
Yi Zj:ir Tjy;-
— Perform a reduction operation in order to lead the pro-
cessor Py to compute v, vz, and v

— P broadcast 1 &, v2,x and 7y3 & in the network.

The reduction operation is defined as follows. Each

processor P, 0 < i < p— 1, holds three data item
(1) _(2) @3y,

v, 7,y and ;" and processor Fy has to compute
=20

Yo =AW+

(3)

T3k = 733) L e

Recall that computation and communication can be over-
laped and that communications can occur in parallel on all
links. A simple strategy for performing reduction opera-
tions uses a tree-based interconnection network [16]. Each
node sends the result of the reduction operation of its own
subtree to its father. Intuitively, given p, the larger the de-
gree of the tree, the smaller the levels in the tree, hence the
less costly the communication.Moreover, the larger the de-
gree of the tree, the smaller the number of processor that
perform arithmetic operations in parallel (leaf processors
do not perform any arithmetic) [16]. There is a tradeoff
to be found that depends upon the ratio between the com-
munication time and the computation time. It is shown in
[16] how to determine the best tree-based topology of de-
gree d as a function of p and of the communication and
computation times. Particularly, when the ratio commu-
nication/arithmetic is high (which is the case of our test
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!

Figure 3: A communication tree: d = 4, p = 13

machine), they defined a tree-based topology, called com-
munication trees as follows. For p € {w; : t > 0} where
wo = 1, weyr = (d — Dwy + 1 for ¢ > 0, the construc-
tion consists in concatening {d — 1) communication trees
of height ¢ to get a communication tree of height ¢ + 1 (see
figure 3). Clearly, the reduction operation can be optimaly
performed on a communication tree of degree d, with p
processors, so that Py computes 1 x,7ve2,x and vz ;. The
broadcast of these values can be performed on the same
tree-based topology in an optimal way.

Remark that in [7], we propose a multi-phase broadcast
procedure better than the tree topology, for large messages.
Here we broadcast messages of small size, so this proce-
dure is not suitable.

The phases 1 and 2 are repeated until ||z — u(*)|| + |jy —
v®)|| < & where ¢ is the accuracy. After this step, each
node computes the two dominant eigenvalues v; and 7,
and the associated eigenvectors according to Section 2.

3.5 The deflation phase

In this phase the matrix A is updated in this way : A =
A—Xerel —Azezel where eg and eg are defined by (1), (2)
and are distributed among the processors. Using the strat-
egy presented for the phase 1 the outer products e;et and
eael can be easily computed on a chordal ring topology of
degree d. Then, in parallel, all nodes are able to update the
matrix A.

We have exposed the multi-phase algorithm for the first
step of the sequential method. The same analysis holds for
steps 2,3,... 252 ]. Atstep 1 the problem size is equal
to n and a step 2 it becomes equal to n — 2 and at step k
it becomes equal to n — 2(% — 1) inducing that processors
Py and P,_,; will become inactive. Thus, it is necessary to
balance the data distribution. This could be done on a ring
topology with a shifting of rows as shown in figure 4.

The three phases are iterated | 252 | times. The multi-
phase algorithm is summarized in figure 4.

3.6 Complexity analysis

Letg = [ﬂglj and I* be the number of iterations required
to get the convergence of the algorithm with an accuracy e
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For K=1 to |n-1/2|
Do until convergence
Compute A.uand Ay

Done

Compute 2 eigenelements
Update A by deflation

End For

Figure 4: The multi-phase algorithm ford =4 andp = 8§
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atstep k. Letm = n—2(k—1) and t(L) be the time needed
to transfer a message of L floating numbers between two
physically connected processors.

Let ... be the time needed to reconfigure the inter-
connection network between two consecutive phases. As
phases 1 and 2 are repeated until convergence of the total
reconfiguration cost is ([25+] + 1)I¥ + 2)gt cc.

As exposed in section 3, during the first phase of the
multi-phase algorithm (matrix-vector products) communi-
cations are overlaped by computations and thus, we can as-
sert that communication costs of phase | are null. In phase
2, both reduction and broadcast operations are performed
with a communication cost of log pt(3)I¥q. Phase 3 con-
sists in the same strategy as phase one and consequently
this phase presents no communication cost. Moreover, the
load balancing process has a communication cost of O(m).
Therefore, the total communication cost of the multi-phase
algorithm is O(n log p).

The number of floating operations for the matrix-vector
product phase is O(mTz). For computing -y k,y2,x and
73,k €ach processor executes O(%}) floating operations (3
local scalar products to compute). During the data re-
duction 4 log pI. additions are necessary. So, the number
of floating operations for the norms computation phase is
O(Z + log p).

For the deflation phase, the number of floating opera-
tions required is O(mTz). Finally the computation of two
eigenelements and the updating of the A matrix has a cost
of O(2).

4 Numerical tests and concluding
remarks

We report in this section, numerical experiments for 8, =
6% and 8;, = 0, on a SuperNode machine with p = 16 and
d = 4, running with the C_Net programming environment
[1]. Because of memory limitation (1 Mo per processor) n
is limited to 256. The test matrix is A = (as5)o<i,j<n-1
wherea;; =n—iifj <ianday; =n—jifi > j.
Figure 5 shows the speed up of the multi-phase algorithm
for different values of p and n. Recall that the communi-
cation time grows as O(nlogp) while the execution time
grows as O(”?f). So, for a given value of p (respectively of
n), the larger n is (respectively the smaller p is), the more
the communication time becomes insignificant. These re-
marks explain the shape of the different curves of figure 5
and explain why the speed up is not optimal for p = 16 and
n = 256 and optimal for p = 4 and n = 256. According
to this discussion, one can say that for larger values of n
and p for which the communication cost O(n log p) is neg-
ligible compared to the execution time O(%z) the speed up
becomes optimal. As expected the shape of the different
curves shows a polynomial growth in O(’;—-;z-) of the speed-
Up of this parallel program. In the same way, the com-
munication time illustrated in figure 6 grows as O(n log p)
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and corroborate the theoretical predictians of the previous
section.

Finally, we underline that the experiment tests reported
in [4] show that the case 8, = 0 requires, for n large, ap-
proximatively the double number of iterations and the dou-
ble execution time than the case 8 = ;. We do not know,
theoretically, the relation between the convergence factors
in the two cases. On the other hand, the case 8, = 0, re-
quires a very fine accuracy e. For instance, for n > 64
only precisions superior to 1076 give correct results. On
the contrary, for 8, = 65, ¢ < 107! is sufficient. Also
in that case, the problem of the numerical stability of the
algorithm has to be studied. Nevertheless, theses numeri-
cal experiments show that with a fine accuracy (¢ = 1078),
the algorithm is stable and converges more rapidly than the
sub-spaces method.
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DD-Mod is 2 Modula-2 library for teaching concurrent and distributed programming. The use of this
library, together with Modula-2, instead of the traditional socket interface and C, makes it possible to
propose programming projects in a distributed programming course. Teaching tools based on high-level
languages, such as DD-Mod (based on Modula-2), allow students to focus on the main topics of the course.
In this way, it is avoided the waste of time with details related to the low-level interface of C and Unix.
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1 Introduction

Concurrent programming courses are very common nowa-
days in undergraduate curricula, and not just a topic on op-
erating system courses. There are also some experiences in
distributed systems courses, but they are mainly included
as a laboratory on the referred operating system courses,
where students practice with the Unix socket library. Here,
an extension of Modula-2 suitable for a concurrent and dis-
tributed programming course in undergraduate curricula is
proposed.

In our University, Modula-2 [16] is taught as the first
programming language and it is used in CS1 and CS2
courses. An extension of it, CC-Modula [13, 15], de-
veloped in our department, is used in a concurrent pro-
gramming course. Finally, as part of an operating systems
course, the students experiment with the Unix socket li-
brary.

Our goal is to provide a library suitable for a dis-
tributed programming course (placed between the concur-
rent programming and the operating systems courses). In
this course, students have to face unreliable communica-
tion problems, timeouts, etc. High-level languages used
for concurrent programming courses, like SR [1] or CC-
Modula, are not suitable because they only provide reliable
communication. On the other hand, the Unix socket library
is too low level for our purposes, because of its unfriendly
interface.

The best way to obtain programming skills in this area
is writing network applications using a standard high-level

language, which must be well known by the students. This
approach implies that they do not need to learn a new pro-
gramming language and they are free from the details and
peculiarities of Unix system calls. DD-Mod [14] has been
developed as an extension of Modula-2 because it is the
language known by our students, so they can concentrate
on the topics of the course and not on other details. Other
libraries like XDP [2] do not suit our necessities because
they imply’ learning a new language, or are oriented to a
different kind of course. For instance, XDP is oriented to-
wards a workstation-programming course.

The rest of the paper is structured as follows: Section 2
shows our system model; Section 3 describes the different
primitives provided by DD-Mod. In Section 4, we compare
our approach with other appeared in literature and Section
5 describes our experiences with this and other approaches;
Section 6 gives the source code for a complete example us-
ing DD-Mod. We finally present our conclusions in Section
7.

2 System Model

DD-Mod system model is composed of several hosts con-
nected by a communication network. All the hosts of the
system run concurrently the same application program, but
not all of them have the same processes running.

A distinguished host, referred to as the main host, is in
charge of distributing the available resources among all the
hosts of the running system. The rest of the hosts are called
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remote hosts. The main host is identified at the beginning
of the application with the MainHost primitive.

In order to run concurrent processes in remote hosts, on
every host of the current system there is a special process
called local manager of remote processes (LMRP). The
LMREP is the only process authorized to create and launch
concurrent processes on his local host when remotely in-
voked.

The LMRP works as follows (Fig. 1): whenever a con-
current block is executed at a host! (by a parent process),
it is necessary to launch the different concurrent processes
that are inside the block on their corresponding destination
hosts. If the destination host of a process is the master host,
then the process is created as a local child process of the
parent process (processes A, B and D in 1).

However, when the destination host is a remote one, the
parent process sends a message with the process name to
the LMRP at the destination host. The LMPR will cre-
ate a concurrent process as his local child at the request
(processes C and E in 1). The communication between the
parent process and the LMRP is done using a special com-
munication channel (the inter-host channel). An inter-host
channel for every pair of hosts is automatically created at
the beginning of the application in the current system.

After having launched all the processes of the concurrent
block, the master host suspends the execution of the parent
process until the end of all the child processes.

Whenever a local process ends its execution, it directly
informs the parent process. On the other hand, when a re-
mote process ends, it informs his local LMRP (his parent
process), who in turn sends a message to the parent process
at the master host informing of this event.

When all the processes (local and remote) of the concur-
rent block have ended, the parent process at the master host
resumes its execution.

3 The DD-Mod library

As we have previously said, DD-Mod is an extension of
Modula-2 implemented as a library, so to use it in a pro-
gram, the student just has to import the library as he does
with any Modula-2 library. It is also necessary to pro-
vide a configuration file called alias.tab. The library
provides the necessary primitives for concurrent and dis-
tributed execution of processes and their communication
and synchronization across the network.

A DD-Mod distributed program is very simple: it only
consists of an executable program and a configuration file.
The executable program runs in all the hosts specified in the
configuration file; these hosts will be the execution system.

Processes can be started at any host of the system, just
indicating the host name where we want to execute it. Two
kinds of schemas for host naming are provided: a logical
name schema and a physical name schema. The use of the

This host is called the master host, as it will direct the execution of
the processes of the block.
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physical name schema implies to give the real name of the
host on every call, and we have to modify the code and
recompile it if we want to change the configuration of the
execution system.

On the other hand, the use of the logical name schema
allows program reconfiguration without the need of recom-
piling it as the program use logical names provided by the
configuration file alias. tab. To reconfigure the system
we only have to change the alias assignment from physical
to logical hosts in the configuration file.

If we are using a logical name schema, the primitive
ReadAlias must be called to read the current configu-
ration file. Then, whenever a physical host name is needed,
it is obtained via the primitive Al ias that translates a log-
ical name to the corresponding physical name.

After reading the configuration file, if needed, the pro-
gram has to create two tables at every host, one with the
hosts where the program is going to run and the other one
with the processes that can run concurrently. Al the hosts
that are not included in the host table, or in the process
table are ignored during execution. The host table is cre-
ated calling the InitHost primitive for each host of the
execution system. The process table is created calling the
InitProc primitive with the name and local address of
the process.

The Fig. 1 shows a system with two hosts and the two
tables mentioned before, the process and host tables.

The services provided by the library are comprised of
two groups of primitives: process management and com-
munication primitives (that can be plain or selective). In
the following, we describe both sets of primitives.

3.1 Process management primitives

BEGIN
CoBegin;
StartPro-~-

cess (Proc_name_1, Host_1);

StartPro-
cess (Proc_name_N, Host_M);
CoEnd;

END Main_program.

Figure 2: DD-Mod process creation

Process execution model is based on Dijkstra’s cobegin
construction [9]. The CoBegin primitive starts the con-
current execution of processes and the CoEnd primitive
synchronizes the flow of the parent process with the end
of all the child processes and resumes the parent process.
Processes are dynamically created at the chosen host call-
ing the StartProcess primitive, this can only be done
between a CoBegin and a CoEnd call. The StartPro-
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MAIN PROGRAM

MainHost {(HOST_1}:
CoBegin;

. HOST_1);

NTER-HOH
CHANNEL

MAIN PROGRAM

MainHost ({HOST_1)

):

MAIN HOST - HOST_ 1

REMOTE HOST - HOST_2

Figure 1: Process creation using LMRP

cess primitive takes two parameters: the name of the con-
current process and a host where to run the process. Fig. 2
shows the DD-Mod code needed for process creation.

DD-Mod processes are structured as parameterless pro-
cedures identified by their names, which are kept in the
process table maintained on every host along with their lo-
cal address.

3.2 Process interaction primitives

As we are dealing with distributed systems, we cannot use
shared memory for inter-process communication purposes,
SO processes in our system interact by means of message
passing. The messages are sent via communication chan-
nels, which are declared as variables of the abstract data
type ChannelType. Channels always have a proprietary
process, which is the only one that can receive messages
from it. On the other hand, any process can use a chan-
nel to send messages to the owner process (i.e., DD-Mod
provides N:1 communication).

Channels are created using the InitChannel primi-
tive, this primitive takes as parameters the channel vari-
able, a communication port and the destination host. Any
process willing to send or receive messages via a channel
must create a channel. In addition, a process willing to re-
ceive through a channel must call GetChannel with the
channel variable in order to get the property of the channel.

Messages are sent using the Send primitive naming the
channel used. DD-Mod provides two kinds of reception
mechanisms: a plain reception mechanism and selective

BEGIN (* Sender *)

InitChannel (chan-
nel, port, destination_host);

Send (channel, message);
END Sender;
BEGIN (* Receiver *)

InitChannel (chan-
nel, port, destination_host});

GetChannel (channel) ;

Receive {(channel, buffer[, timeoutl]);

ReleaseChannel {channel);

END Receiver;

Figure 3: DD-Mod communication schema

reception mechanism?. The plain reception is used to re-
ceive a message from a particular channel by calling the
Receive primitive providing the channel and a buffer
where to put the data received. Once the channels are no
more needed they are destroyed with the primitive Re-
leaseChannel, and so their resources are released and

2In both cases, the receiver must have the property of the channels
before receiving messages.
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used in other channels. The DD-Mod code for channel cre-
ation and plain send-receive is shown in Fig. 3.

Selective reception, on the other hand, allows waiting
messages on a set of channels for a given condition (this
schema is explained in Section 3.3). Both communication
schemas allow including a timeout.

As it can be seen, the interface used for communication
and synchronization through the network is easy to use and
friendlier than that of Unix sockets. Fig. 4 shows a snap-
shot of a running program. The figure shows the creation of
local and remote processes® and the use of the plain com-
munication schema where the receiver processes use their
own channels.

3.3 Selective reception

The DD-Mod selective reception schema is similar to the
CSP guarded command [11] or the CC-Modula select
statement [15].

To use selective reception, the first thing to do is to build
the list of channels and the guarded conditions to be used.
The list is provided as an abstract data type (GuardList-
Type) and it is initialized with the primitive Create-
GuardList providing a guard list. Each branch of the
selective reception (a pair of Boolean conditions and as-
sociated channel) is inserted in the list using the primitive
InsertGuard indicating the list*, the condition and the
reception channel. When a list is no more needed, it is de-
stroyed with the DestroyGuardList primitive.

Once the guard list is built, a call to the Select prim-
itive is made. This primitive will block the process until
a message is received in one of the channels whose con-
dition is true, or the timeout is reached (if a timeout is in-
cluded). The Select primitive returns the position in the
list of the chosen branch to complete the reception of the
pending message calling ReceiveGuardChannel with
the channel and a buffer for the message. If the timeout is
reached, then the Select primitive returns MAXCARD and
a default action can be taken.

The Select primitive combined with the CASE state-
ment can be used to build Dijkstra’s alternative construct
[10] and using this structure inside a LOOP block we get
Dijkstra’s repetitive construct. Fig. 5 shows the code for
the repetitive construct using the selective reception and the
CASE statement inside a LOOP block.

Although selective reception is more complex than plain
reception, it is still simpler to use and less prone to er-
rors than the socket interface. For instance, the channel
list is an abstract data type and we have shown that build-
ing complex constructions using the DD-Mod primitives is
very easy. What is more important, the creation and de-
struction of communication channels is dynamic and this
improves system resources’ utilization.

3This is done sending messages to the LMRP through the inter-host
channel.

4This is necessary because it is possible to have several lists at the
same time.
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4 Comparison with other
approaches

Other approaches for including distributed courses in un-
dergraduate curricula have been presented in literature, but
they do not fulfill our necessities.

The library XDP presented in [2] is oriented for a work-
station programming course, rather than a “general” dis-
tributed course and faces the communication services us-
ing a low-level approach. DD-Mod, on the other side, is
oriented towards general distributed courses and provides a
high-level interface for communication services.

In [6] a package, ST-Threads, is introduced for its use in
a concurrent programming course. The package is a simpli-
fication of the interface provided by the operating system.
It does not cover unreliable communication services, which
is one of the targets of our approach; and it forces students
to face the peculiarities of system calls.

The Ben-Ari Concurrent Interpreter, or BACI, is the
topic of [7] for concurrent programming course. BACI is
based on the approach presented in [3]. As in DD-Mod,
the CoBegin—CoEnd block is introduced to delimit con-
current blocks. As in [6], unreliable communication and
distributed execution are not covered. Moreover, it im-
plies the learning of a new language, which is one of the
things that we wanted to avoid by using DD-Mod. Re-
cently, a distributed version of BACI has appeared, Dis-
tributed BACI, which extends BACI to allow the develop-
ment of distributed algorithms by adding communication
primitives (send, receive and broadcast). However, it does
not support selective reception as in DD-Mod.

Ben-Ari, itself, has developed a software package,
DPLab [5], for supporting the teaching of distributed pro-
gramming. It is an extension of Pascal with primitives and
constructs for distributed programming. The package has
a proper environment and compiler, this limits its capabili-
ties as it does not support pointers, and the communication
schema used is broadcast. Our approach extends Modula-2
with concurrent and distributed primitives and constructs,
but does not limit the standard capabilities of the language
and it provides selective reception.

An integrated course on parallel and distributed process-
ing is presented in [8]. This course does not only include
distributed systems, but also transactions and parallel sys-
tems. Many theoretical topics are included and the PVM
system is used as a tool for practical sessions. Lectures
cover a wide range of knowledge and not just distributed
systems, which are the aim of our approach. The labs im-
ply the learning of the PVM programming interface and the
use of C as programming language. We have avoided this
by extending the language the students know (Modula-2)
with a library suitable for distributed programming.
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MainHost (HOST_1);
CoBegin;
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MAIN HOST - HOST_1

REMOTE HOST - HOST_2

Figure 4: Snapshot of a running system

5 Experimental evaluation

Before choosing DD-Mod as a language for teaching dis-
tributed programming, we used different approaches, some
of them similar to the ones described in the previous sec-
tion, and evaluated the results we got.

The first thing to take into consideration is that stu-
dents already know the used programming language, which
avoids the need of teaching a new language for the course
and the time required to obtain the necessary skill with this
language. Second, by using a high level library, students
do not have to face the special characteristics of the oper-
ating system calls and can concentrate on the topics of the
course.

The main advantage obtained is the gain in time. It is
not necessary to waste time (around one month) in teach-
ing the language and getting the appropriate skill with it.
Therefore, it is possible from the beginning to put in prac-
tice the topics of the course.

6 An example using DD-Mod

As a practical example of distributed programming us-
ing DD-Mod, we provide the code for a solution of the
Bounded Buffer problem (see Fig. 7 - 13).

The -problem is a variation of the producer-consumer
problem. Two processes share a common (bounded) buffer
for communication purposes. The producer process puts
data items on the buffer and the consumer gets the stored
data items from the buffer to consume them.

The bounded buffer is constructed as an array with two
indices: one index indicates the next free slot on the array
and the other indicates the slot containing the next object
to be removed. As the array is of a finite size, the indices
must around the array, i.e., the buffer is a circular buffer.

The producer-consumer problem arises when the pro-
ducer tries to put a new item in the buffer when there are no
free slots on it or the consumer wants to get an item from
the buffer, when is empty.

The proposed solution uses three processes (Fig. 6): one
for the producer, another one for the consumer, and other
one to manage the (circular) bounded buffer. Hence, the
bounded buffer is an active process and not just a passive
abstract data type. As this is a distributed solution, we have
placed every process at different (logical) hosts, as seen in
Fig. 12.

The explanation of the example follows. The producer
(Fig. 7) runs an infinite loop that is always creating new
data items and putting them in the buffer (i.e., it sends
the items to the buffer process, which stores them in the
buffer). The consumer (Fig. 8) runs also an infinite loop
that retrieves data items from the buffer (asks the buffer
process for items who sends them to the consumer), to con-
sume them.

The Bounded Buffer process (Fig. 9) also runs an in-
finite loop that receives items from the producer to store
them in the buffer and requests from the consumer to send
it the buffer items. Therefore, the buffer process has two
functions:

1. If there is free space in the buffer, it has to allow the
reception of data items from the producer.
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VAR
list : GuardListType;
BEGIN

LOOP
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CreateGuardList(list);

InsertGuard{list,

channel_0,

condition_0});

InsertGuard(list, channel_N, condition_N);

CASE Select(list,

timeout) OF

0: ReceiveGuardChan-

buffer_0);
. Action 1

nel (channel_0,

-

N: ReceiveGuardChan-

nel (channel_ N, buffer_N);

. Action N ...
ELSE
Timeout action
END; (* CASE *)

DestroyGuardList (list);

END; (* LOOP *)

END Selective_process;

Figure 5: DD-Mod selective communication (repetitive construct)

2. If there are data items in the buffer, it must send these
items to the consumer when this is ready to receive
them (i.e., it sends request to the buffer asking for
items).

We provide these two functions by using the selective
reception schema in a repetitive construct. The running of
the selective reception in the bounded buffer process is as
follows:

— If there is free space in the buffer, the reception of new
data items from the producer is allowed.

~ If there are data items in the buffer, the consumer is
allowed to take them.

— If there is no free space in the buffer, the only admis-
sible operation is the sending of data items to the con-
sumer.

— If the buffer is empty, it is only possible to receive
items from the producer.

Using selective reception, the accidental destruction of
un-consumed items and deadlocks is prevented. The
bounded buffer process cannot receive items from the pro-
ducer if there is no free space, thus the items are safely
stored until they are consumed. In addition, if the buffer is
empty, it is not possible to receive requests from the con-
sumer.

The main program is divided into three blocks for clarity:

Initialization block, Fig. 11, where the configuration file
is read to make it possible the use of logical names
instead of physical ones to designate the hosts. After-
wards, we create the host and the process tables and all
the communication channels, this way they are avail-
able for all the processes. The initialization ends with
the definition of the main host.

Concurrent execution block. (Fig. 12) This is the main
block of the distributed program and only the main
host executes it. It has the first “CoBegin—CoEnd"
block and here the concurrent (or distributed) process
execution begins using the StartProcess primi-
tive naming the host where the process is going to be
executed.

Termination block. (Fig. 13) As the concurrent execution
block, only the main host executes this block. It is
used to terminate the execution of the remote LMRP
using the StopHost primitive, and so could end the
execution of the program.

7 Conclusions

We have presented a library of intermediate level suitable
for distributed programs courses using Modula-2. The use
of this library helps the students to concentrate on the as-
pects of building distributed programs, as it is just an ex-
tension of Modula-2 the language they know.
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» Buffer
Process
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Buffer [BUFFOUT)

Consumer
Process

Bounded
Buffer

Figure 6: Bounded Buffer processes schema

PROCEDURE Producer;

(* The producer process i1s an infinite loop that creates *)
(* data items and sends them to the bounded buffer process. *)

VAR
item : CARDINAL;
BEGIN
LOOP
(* PRODUCE A DATA ITEM *)

Send (buffer [BUFFIN], item);

END; (* LOOP *)
END Producer;

Figure 7: Bounded Buffer problem: Producer processes code

- The library provides a clean and typed interface, and its
services include the process management, and the sending
and reception of messages, either selective or plain. The
hardest aspects of communication, like channel or guard
list declaration, are solved providing abstract data types.
Other proposals presented in literature do not suit our ne-
cessities because they imply the learning of new languages,
the use of low-level interfaces, or even C and Unix services.
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PROCEDURE Consumer;

(* The consumer process is an infinite loops that, when *)
(* ready, asks the buffer for items to consume. *)

VAR
item : CARDINAL;

BEGIN
(* The process becomes proprietary of his channel: *)
(* buffer [BUFFOUT] channel. *)
GetChannel (buffer [BUFFOUT]);
LOOP

Send (consume, item);
Receive (buffer [BUFFOUT], item);
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END; (* LOOP *)
ReleaseChannel (buffer [BUFFOUT]);
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Figure 8: Bounded Buffer problem: Consumer processes code
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PROCEDURE Bounded_Buffer;

(* The bounded buffer is implemented using a repetitive *)
(* selective communication schema with two branches: *)
(* 1. Receive data items from the producer and store them *)

(* in the buffer when there is free space. *)
(* 2. Send items, if there are any stored in the buffer, *)
(* to the consumer when it request them. *)
VAR

item : ARRAY [0..MAXITEM-1] OF CARDINAL;
head, tail, size : CARDINAL [0..MAXITEM-1];

msg : CARDINAL;
list : GuardListType;
BEGIN
(* Initially the buffer is empty. *)
FOR head := 0 TO MAXITEM - 1 DO
item [head] := NONE

END; (* FOR *)
head := NONE;

tail := NONE;
size := NONE;
(* The process becomes proprietary of his channels: *)
(* buffer [BUFFIN] and consume. *)

GetChannel (buffer [BUFFIN]);
GetChannel (consume) ;
LOOP
CreateGuardList (list);
InsertGuard (list, buffer [BUFFIN], size < MAXITEM - 1);
InsertGuard (list, consume, size > NONE) ;
CASE Select (list) OF
0 : ReceiveGuardChannel (buffer [BUF-
FIN], item [tail]l);
tail := (tail + 1) MOD MAXITEM;
INC (size);
1 : ReceiveGuardChannel (consume, msg);
Send (buffer [BUFFOUT], item [head]);

item [head] := NONE;
head := (head + 1) MOD MAXITEM;
DEC (size);

END; (* CASE *)
DestroyGuardList (list)
END; (* LOOP *)
ReleaseChannel (buffer [BUFFIN]) ;
ReleaseChannel (consume) ;
END Bounded_Buffer;

Figure 9: Bounded Buffer problem: Bounded Buffer process code

387
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MODULE Bounded_BRuffer_ Problem;

FROM kerneldd IMPORT (* The DD-Mod primitives are imported *)
ReadAlias, Alias, InitHost, InitProc, Main-

Host, StopHost, CoBegin,
StartProcess, CoEnd, ChannelType, InitChannel, GetChannel,
Receive, ReleaseChannel, GuardListType, CreateGuardList,
InsertGuard, Select, ReceiveGuardChannel, DestroyGuardList;

CONST (* Declaration of the different constants used *)
MAXITEM = 5; (* Max number of items in the buffer *)
NONE = 0; )
BUFFIN = 0;
BUFFOUT = 1;
BUFFINPORT = 5400; (* BUFFINPORT, BUFFOUTPORT and CONSUME-
PORT *)
BUFFOUTPORT = 5411; (* are the addresses of the ports used by *)
CONSUMEPORT = 5420; (* the communication chan-
nels. *)

VAR (* Declaration of communications channels and other vari-
ables *)

buffer : ARRAY [BUFFIN..BUFFOUT] OF ChannelType;

consume : ChannelType;

name : ARRAY [0..20] OF CHAR;

Figure 10: Bounded Buffer problem: Declaration code

BEGIN (* MAIN PROGRAM *)

(* INITIALIZATION BLOCK: *)
(* The configuration file is read to use logical names *)
(* instead the physical ones, the Host table is built *)
(* {(notice the use of the primitive Alias to get the *)
(* physical name from the logical ones). The Process *)
(* table is built with three entries: Bounded_pBuffer, *)
(* Producer and Consumer. All the communication channels *)
(* are created and the main host (’'alpha'’) is declared. *)
ReadAlias;

Alias ('alpha‘’, name);

InitHost (name);

Alias (’'beta’, name);

InitHost (name);

Alias (’gamma’, name);

InitHost (name);

InitProc (’Bounded_Buffer’, Bounded_Buffer);
InitProc (’Producer’, Producer);

InitProc (’'Consumer’, Consumer);

Alias (’alpha’, name);

InitChannel (buffer [BUFFIN], BUFFINPORT, name);
Alias (‘gamma’, name);

InitChannel (buffer [BUFFOUT], BUFFOUTPORT, name) ;
Alias {('alpha’, name);

InitChannel (consume, CONSUMEPORT, name);

Alias (’alpha’, name);

MainHost (name);

Figure 11: Bounded Buffer problem: Main program, initialization block



DD-MOD: A LIBRARY FOR DISTRIBUTED PROGRAMMING

(* CONCURRENT EXECUTION BLOCK:

(* The distributed execution (CoBegin-CoEnd block) begins
(* launching the processes in the desired destination

(* host: Bounded_Buffer at ’'alpha’, Producer at ’'beta’

(* and Consumer at ‘gamma’. Afterwards, the main host

(* waits the end of the concurrent processes (CoEnd

(* sentence).

CoBegin;
Alias ('alpha’, name);
StartProcess ('Bounded_Buffer’, name);
Alias ('beta’, name);
StartProcess ('Producer’, name) ;
Alias (‘gamma’‘, name);
StartProcess (’'Consumer’, name) ;
CoEnd;

(* TERMINATION BLOCK:

(* When the main host finishes the Concur-

rent Block, it has *)

(* to tell the remote hosts to end their LMRP daemons and
(* finish the program. The LMPR daemon of the main host
(* dies automatically when the main host process ends.

Alias (’beta’, name);
StopHost (name);
Alias (’gamma’, name) ;
StopHost (name)

END Bounded_Buffer_Problem.

Figure 13: Bounded Buffer problem: Main program, termination block
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Figure 12: Bounded Buffer problem: Main program, concurrent execution block
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The new watermarking scheme in this paper solves the problem of digital copyright protection in computer
network society. The proposed scheme coalesces both the technique of vector quantization (VQ) and the
technique of principal component analysis (PCA). Therefore, it can effectively embed and extract water-
marks. The proposed scheme is an invisible, robust, secure, multiple and blind watermarking technique.
After various attacks such as JPEG lossy compression, blurring, cropping, rotating, and sharpening, the

proposed scheme still provides robust watermarks.

1 Introduction

With the development of digital multimedia data, a large
quantity of information may exchange faster and faster
through Internet. People can easily download other’s data
within shorter time. Thus more and more digital multime-
dia are illegally distributed. This leads to more tension in
intellectual property protection. With the easy access to
copying, modifying and forging, the fake copies not only
cause the author’s economical loss, but also invite legal dis-~
putes because people may clone the image and modify it
for illegal use. Therefore, researchers are working hard
to protect the image authentication. Digital watermark-
ing technique is the most common method to solve this
dilemma in intellectual property protection. With recent
published research results [1-4,7-11,14-16], digital images
have promised a brighter future with the use of digital wa-
termarking technique.

Basically, digital watermarking techniques include wa-
termark embedding process and watermark extracting pro-
cess. First, the watermark embedding process can embed
copyright information like an owner’s logo or label into
an original image and produces watermarked image when
published. One may also use secret keys to enhance the
security. Second, the watermark extracting process is used
to extract the embedded watermark from the watermarked
image. It helps people to recognize the ownership and
to prevent plagiarism. Besides, the authentication center
can be the judge whenever the dispute of ownership oc-
curs [15,16]. This requires that the owners register their
watermarked images and watermarks at the authentication
center. Then the authentication center can have the secret
key from the owner to distinguish the copyright through the
watermark extracting process.

To protect the intellectual property in digital images, an
effective digital watermarking technique must contain the

five characteristics as follows:

1. Invisibility - The image shouldn’t be different after be-
ing watermarked.

2. Security- When the watermark extracting process re-
veals the watermark for legal owner, the embedded
watermark shouldn’t be removed by the attacker with-
out the secret keys and parameters.

3. Robustness -When the watermarked image goes
through the image processing to enhance the image
quality, or if the watermarked image has been de-
stroyed on purpose, but its PSNR is still above 30,
the watermark should be recognizable when extracted.
Of course, the recovered watermark may perceptually
have been lossy.

4, Blindness- The watermark can be recovered without
the original image. This prevents the use of additional
spaces.

5. Multiple Watermarking - It allows several cooperators
to embed their respective watermarks into an image,
simultaneously.

In this paper, the proposed scheme fulfills all the require-
ments in digital watermarking. That is the coalition of vec-
tor quantization (VQ), which is often used in image com-
pression, and principal component analysis (PCA), which
is used popularly in pattern recognition. This coalition
technique can embed and extract watermarks.

In the proposed scheme, the original image is a gray-
scale image and the watermark is a binary image. Every
watermark pixel is possible to be O or 1. Before embedding
the watermark of binary image into an original image, it
is necessary to choose a VQ codebook and sort the code-
book with the technique of PCA. Each watermark bit will
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randomly match with one block in the original image. Af-
ter searching the codebook, which finds the most similar
codeword for the block and returns the codebook index of
the codeword, the watermark bit and index may cooperate
to produce a matched index for a watermark table. When
all the bits in binary image are processed, the watermark is
embedded. On the other hand, one may recover the water-
mark when using codebook and index to match the block.
The experimental results have shown that the correct rate of
the recovered watermark’s bit exceeds 86 % after the digital
images go through the process of JPEG lossy compression,
blurring, rotating, cropping, and sharpening,.

This paper is organized as below. Section 2 will intro-
duce the technique of VQ and PCA. Section 3 will explain
the proposed scheme of coalition technique (VQ and PCA).
Section 4 shows the experimental results and discussions.
Section 5 will be the conclusions.

2 Relates Works
2.1 Vector Quantization (VQ)

VQ is a technique of lossy image compression. It mainly
compresses images with vectors. About original image
OI, VQ includes vector encoding phase and vector
decoding phase. First, OI represents as a set of vec-
tors 01,03,...,0,,. Let each Oi's dimensionality be
V,i = 1,2,...,m. Then it is necessary to find a proper
codebook CB for OI. C'B is composed of codewords. Let
CB = (1,0y,...,Ch. Cj is one of the vectors and its
dimensionality is also V,j = 1,2, ... ,n.

When the vector encoding phase is managing every O;,
it finds a codeword Cj and makes minimum distortion
between O; and C. One may call that C}, the most similar
codeword of O;. It is possible to measure the distortion
between O; and Oy with Equation (1). Equation (1) is
used to compute the squared Euclidean distances between
two vectors.

v
d(0:,Cr) = 10; = Cil* = 3 (04 = Cig)* (1)

=1

,where O;; and C; are the j-th components of O; and Cy,
respectively.

In the following, VQ will represent O; by index k. After
all the O]s are processed, O is encoded as an index table.
In vector decoding phase, each encoded index in the index
table is used to retrieve the corresponding codeword from
CB according to the index value itself. The retrieved
codeword is utilized to restore a vector of the original
image. When all the encoded indices have been processed,
the most similar image with the original one is restored.
VQ can effectively compress and decompress images by
the search of codebook. Today, many published research
results [5,6] may make the search of codebook faster. The
way that the proposed scheme uses VQ technique will
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be shown in the following. One may choose a proper
codebook for the original image. In watermark embedding
process, every watermark bit will match with a random
block in original image and searches for the codeword,
which is the most similar to the block. If the watermark
bit is 1, the index of the most similar codeword will be
stored in the watermark table. On the contrary, the index
of a dissimilar codeword will be stored in the watermark
table when the watermark bit is 0. To reach a standard of
coherence and reasonableness, PCA is utilized to sort the
codebook beforehand. PCA softens the dilemma when a
dissimilar codeword is stored in the watermark table. We
will detail the procedure in next section. In the following
subsection, the technique of PCA will be described.

2.2 Principal Component Analysis (PCA)

PCA [12] is a quite popular dimensionality reduction
technique in Pattern Recognition area. Along the direction
of maximum variance, PCA projects the data into a linear
subspace with a minimum loss of information. In other
words, all the projection points obtained from subspace
still keep the characteristics of the original information.
For the given n information Ry, Rsy,... , R, every R;
is represented by an n-dimension vector. PCA can find a
direction D, D = (dy,da, ... ,dy) such that }_;_, d? = 1.
This makes the projection points keep their largest differ-
ence between each other after being projected to D as n
information. The following steps will be exemplified to
find D.
Algorithm: [PCA][12]

1. Normalize all R;,7 = 1,2,...,n. This produces the
corresponding R,i = 1,2,... ,n.

2. With normalized R},7 = 1,2,... , n, calculate the co-
variance matrix M, which has dimensionn X n.

3. Find all eigenvalues Ay, Ag, ... , Ap, if A; 2> Ay, =

1,2,...,n — 1. And let Dy,D,,...,D, be the
matched eigenvectors of A1, Aa, ... , An, respectively,
where |D;| = 1.

4. Let D = D, (called the first principal component di-
rection). D = D is called the second principal com-
ponent direction, ... D = D,, is called the n-th prin-
cipal component direction.

With the use of PCA, the first principal component direc-
tion can keep the largest difference in data. This technique
makes the similar points closer after projection, and makes
the dissimilar points farther after projection. This dis-
tinct characteristic makes it possible to sort data of multi-
dimension. The way to project data to D is to multiply the
data by D.

Using the technique of PCA can sort all the codewords
in the codebook. PCA finds the first principal component
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direction and then projects all codewords to D. Accord-
ing to the order of the projection points, the matched code-
words of the corresponding projection points compose a
new codebook. This is the so-called sorted codebook.

3 The Proposed Scheme

The proposed scheme can satisfy all current requirements
in image watermarking. The watermark embedding pro-
cess can hide the watermark without modifying the original
image. In initial process, it must have a codebook to repre-
sent the original image. This can be done with Linde-Buzo-
Gray (LBG) [13] algorithm often seen in VQ. For images
partition, and for fixed size rectangle blocks, let each of
them be composed of & x k pixels. Then the process exe-
cutes LBG algorithm, so that all the blocks can be trained to
produce some image blocks, which can be typified. These
blocks are named "codewords". When n = k x k, all the
codewords can compose a codebook C'B. One may regard
every codeword as an n-dimension vector. Finally, the pro-
cess utilizes PCA to find first principal component direc-
tion D of codewords in C'B, and projects every codeword
to D. All the projection points on D are corresponded to
their matched codewords. These codewords are operated
in order and stored in another codebook CB’. The CB’
is named after "sorted version of CB". Let C'B have m
codewords. In the proposed scheme, the original image is
a gray-scale image O with N1 x N3 pixels. Digital wa-
termark W, which represents copyright information, is a
binary image with w x h pixels. Every pixel is possible
to be 0 or 1. When the process of embedding watermark
or extracting watermark occurs, the codewords in CB’ are
used to obtain the relative information about W. The next
subsection will explore more methods definitely.

3.1 Embedding Watermark

Before embedding every watermark pixel WPt =
1,2,...,w x h, the process chooses a matched block
OB; with a size of k x k pixels from the original image
0. Using the secret key S as the seed, pseudo random
number generator PRNG will generate w x h random
integer pairs (z;,¥;:),7 = 1,2,...,w x h. This makes
1 <z, < Ny —k,and1 < y; < No — k. The
coordinate of (z;,y;) is also OB]s coordinate of pixel
at left upper corner. Generally, all coordinates of OB;
are (z; + a,y; + b)’s, where e = 0,1,... ,k — 1 and
b = 0,1,... ,k — 1. Note that OB; and OB; can be
partially overlapped, fori # j,1 < 4,7 < w x h. After
obtaining O B;, the process searches C' B’ for the codeword
C, the most similar to OB;, and then retrieves the index
idz of C in CB'. Embedding WP; and storing the
matched index information depend on whether WF; is
0 or 1. When WP, is 1, the matched index idz will be
stored in the i-th entry of the watermark table WT'; in this
process, the index of the codeword most similar to OB;
will be stored. On the other hand, when W F; is O, let

Informatica 24 (2000) 391-396 393

(a) ®)

Figure 1: (a)Original image of "Lena" (512 x 512),
(b)Watermark of "National Chung Cheng University" (64 x
64)

(a) (b)

Figure 2: (a)Reconstruction of JPEG compression of
"Lena", (b)Recovered watermark from Figure 2(a)

@) ©)

Figure 3: (a)Blurred image of "Lena", (b)Recovered water-
mark from Figure 3(a)
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(a) (b)

Figure 4: (a)Rotated image of "Lena", (b)Recovered water-
mark from Figure 4(a)

(@ ()

Figure 5: (a)Cropped image of "Lena", (b)Recovered wa-
termark from Figure 5(a)

@) (b)

Figure 6: (a)Sharpened image of "Lena”, (b)Recovered wa-
termark from Figure 6(a)
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a = idz + J%l, the process stores (¢dz + L’;—ll) in WT
if @ < m; otherwise, the process stores {idx — J%l) in
WT. This process stores the index of the more dissimilar
codeword to O B;. For example, suppose that C B’ has 256
16-dimension codewords, so that m = 256,n = 16,k = 4.
Suppose WF; = 1. When idz = 200, the process stores
200 in WT'. When WPF; = 0, the process will store
(200 — 1281y — 72 in WT. When all the W P!s are pro-
cessed, the watermark image W is embedded. Finally, the
owner registers the codebook CB’, the watermark image
W, and the watermark table WT at the authentication
center. The secret key S is kept secretly by the owner until
the dispute of copyright happens.

Algorithm: [Embedding Watermark]

Input: Original image O with Ny x N; pixels, watermark
image W with w x h pixels and codebook CB'.

Output: Secret key S and watermark table WT with size
w X h.

1. Randomly choose an integer .S as the secret key of O.

2. Use S as the seed of PRNG to generate
w X h random integer pairs {x;,y;) such that
lgxiSNl-—k,ISyiSNg—kandlsiwah.
3. For each watermark pixel W P;, map it to a correspond-
ing k x k block OB; of O and OB; use (z;,y;) as the
position of the left upper corner.

Figure 8: Original image of "Barbara" (512 x 512)
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4. Search codebook C B’ for OB; to find the most similar
codeword C, and let the index of C' be idz.

5. Check WP,. For WP, = 1, store idz to WT(i)
else store (J-%l + idz) to WT'(3), if (idz + J-%l) < m;
otherwise, store (idz — J—’;-L) to WT(3).

6. Repeat from Step 3 to Step 5 until all WP;’s are
processed.

Finally, the watermark is embedded.

3.2 Extracting Watermark

When one claims himself to be the legitimate owner, the
secret key S’ must be presented to the authentication cen-
ter. The authentication center uses S’ to execute watermark
extracting process. At that time, S’is the seed of PRNG,
and w x h random integer pairs (z;,v;),1 <7 < w X h
are generated through PRNG. Then every (z;,y;) corre-
sponds to a k x k block OB; in O. The coordinate of
(zi,:) is at OB!s left upper corner. Because of this, the
coordinates of k x k pixels of OB; are (z; + a,y; + b)'s,
fora=0,1,... ,k—1landb=0,1,... ,k — 1. Through
the search in CB for OB;, the most similar codeword C
obtains the index midz of C. Furthermore, midz and the
corresponding i-th entry in W7 cooperatively determine
the recovered watermark pixel. Setting up a threshold T
determines the pixel to be 1 or O after restoration. When
IWT (i) — midz| < T , the recovered watermark pixel
W F; should be 1; otherwise, W P; = 0. After operating
all OBs in order, the process can generate the recovered
watermark W' and take out the registered watermark
W. Therefore, the authentication center may compare
these two versions to determine whose copyright it is.
In the following, extracting watermark algorithm will be
explained.

Algorithm: [Extracting Watermark]

Input: Secret key S', original image O with N7 x Ny
pixels, watermark image W with w x h pixels, codebook
CB’, watermark table WT with size w X h, and threshold
T.

Output: "Legal owner" or "Illegal owner".

1. Use secret key S’ as seed of PRNG to generate w X h
random integer pairs (z;,v:),1 < z; < Ny -k, 1 < y; <
No—kand1 <i<wxh.

2. Map each (z;,y;) to a corresponding k x k block OB;
of O by using (z;, y;) to be the position of O B; of the left
upper corner, 1 < i < w X h.

3. Search CB’ to find the most similar codeword C for
OB; and let the index of C be midz.

4. Retrieve the i-th entry WT'(i) from WT,

5. If [mide — WT(i)| < T then letrecovered pixel W P; =
1 else let recovered pixel W P;=0.

6. Repeat from Step 2 to Step 5 to generate the recovered
Watermark W',

7. If W = W' then return ("Legal owner”) else return
("Illegal owner").
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4 Experimental Results

In this paper, the proposed scheme can satisfy the current
requirements of robust watermarking. Some experiments
have been done by attacking the image first and extracting
the watermark later. The image attacks include JPEG lossy
compression (compression rate 14:1), blurring (a 5 x 5
neighborhood median filter), rotating (one degree in clock-
wise direction), cropping (1/4 of the image), and sharpen-
ing. These experiments are executed by Photoshop, which
is issued by Adobe. The experimental results are very pos-
itive. One can still extract the watermark after the image
attacks. About the given original image gray-scale "Lena”
with 512 x 512 pixels (shown as Figure 1(a)), LBG algo-
rithm trains a codebook C'B for "Lena." C'B contains 256
codewords indexed by 0,1,...,255. Every codeword is
a 16-dimenion vector; i.e. let m = 256,n = 16,k = 4.
PCA will help find the first principal direction D of all the
codewords and project all the codewords to D. According
to the projection points’ order, the codewords are stored as
a sorted codebook CB’. Afterwards, the embedding wa-
termark algorithm may embed 64 x 64 binary watermark
W (shown as Figure 1(b)) to "Lena." Choosing a secret
key may be thought as seed of PRNG, which is utilized to
generate 64 x 64 random integer pairs (z;,y;). Every co-
ordinate of (z;, ;) in "Lena" represents a 4 x 4 block at
left upper corner of OB;. Therefore, 64 x 64 blocks OB;
in "Lena" are obtained. When embedding watermark pixel
W P;, the process searches for the most similar codeword
and the index idz with OB; in CB'. For WP; = 1, idz is
stored in WT'. For W P; = 0, the process stores (128+idz)
in WT if 128 + idz < 256; otherwise, stores (idz — 128)
in WT. After all the WPi’ s have been processed, the work
of W embedding is done.

Table 1: The bit correct rates of extracted watermark of
different image under various attacks

Image IPEG Blurring Rotating | Cropping | Sharpening
Lena | 99.95% |99.95% |93.65% | 86.40% | 99.78%
F14 [100.00% { 99.90% | 95.53% | 95.60% | 99.41%
Barbara | 99.91% |99.65% | 92.55% | 93.04% | 98.24%

When there is a need to identify the watermark, the au-
thentication center must obtain secret key from the owner
to execute the process of extracting watermark. By us-
ing the proposed extracting watermark algorithm, the pro-
cess extracts watermark. In the experiments, the thresh-
old is set to be 40, and secret key S’ functions the same
as the one in embedding watermark, and this helps ob-
tain 64 x 64 of 4 x 4 block in OB;. From OB; to code-
book, the process searches for the most similar codeword
with OB;, and obtains index midz, which is the code-
word’s index. Both the ¢-th entry WT'(§) in WT and midz
may cooperate to determine the restoration of WF; . If
| WT'(i) — midz |< T, the recovered W P; = 1; other-
wise, the recovered W P; = 0. After all OB;s have been
processed, the embedded watermark is recovered.
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After the original image "Lena” has been through dif-
ferent kinds of attacks, one may still extract the watermark.
The experiments have attacked the images with JPEG com-
pression {(shown as Figure 2(a)), blurring (shown as Figure
3(a)), rotating (shown as Figure 4(a)), cropping (shown as
Figure 5(a)), and sharpening (shown as Figure 6(a)). The
results are shown in Figures 2(b), 3(b), 4(b), 5(b), and 6(b),
respectively.

Another two original images, which are 512 x 512 pix-
els gray-scale "F14" (shown as Figure 7) and "Barbara"
(shown as Figure 8 ), have repeated the same experiments,
respectively. Table I represents Bit Correct Rate (BCR) af-
ter each image attack. These results are gained through the
proportionality of correct recovered watermark pixels and
the original watermark image pixels. The experimental re-
sults have shown that the BCR exceeds 86% in each image.
That is, the watermark can still be clearly recovered after
various attacks.

The experimental results have explained that the pro-
posed scheme is robust without modifying original image.
The security depends on the secret key. With embedding
multiple watermarks, different watermarks will only need
their distinct secret keys for security. Besides, every wa-
termark pixel is independent in embedding and extracting.
Therefore, parallel process may be used to accelerate the
pace.

5 Conclusions

In this paper, the proposed technique of digital image
watermarking can satisfy the current requirements of the
watermarking technique,which is invisible, secure, ro-
bust,multiple and blind.

The proposed scheme can effectively embed watermark
without modifying the original image. With multiple wa-
termarks, only different secret keys are needed. Because of
the distinct characteristics, multiple watermarks can be em-
bedded and each of them can be extracted independently.
The proposed scheme is truly robust under various attacks.
The experimental results have also supported the proposed
scheme that BCR exceeds 86% in each attack.
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An operation often performed by optimizing compilers for higher-level languages is common-
subexpression elimination. Traditionally, common-subexpression elimination is performed on a directed,
acyclic graph representing the expression or program. This paper shows how common-subexpression
elimination can be expressed algebraically, using a “program algebra” incorporating the syntax of typical
higher—level language expressions plus A—expressions from the A calculus and functional programming.
This approach has two major advantages—it is intuitive and easy to understand and it uses transformations

for which correctness-preservation is easy to prove.

1 Introduction and Motivation

An operation often performed by optimizing compilers for
higher-level languages is common—subexpression elimina-
tion. In common-subexpression elimination, an arithmetic
or other expression that appears to be computed more than
once (and that would produce the same value each time)
is computed just once and assigned to a temporary vari-
able; this temporary variable then replaces the multiple
occurrences of the expression. The goal of common-—
subexpression elimination, of course, is to reduce execu-
tion time; not only is the number of arithmetic operations
reduced, but also the number of memory fetches to ob-
tain operand values are reduced. Finally, in many cases
the value of the common subexpression can be held in a
hardware register, further reducing computation time.

Although at first thought it may seem unlikely that a
programmer would write out a non-trivial expression more
than once, he or she may do so for reasons of clarity.
Moreover, a significant number of common subexpressions
arise implicitly; for example, from repeated occurrences of
a subscripted variable, such as a[i,j], whose address
computation requires the evaluation of an addressing poly-
nomial.

Traditionally, common-subexpression elimination is
performed on a directed, acyclic graph (DAG) representing
the expression or program [1, Section 9.8]. The purpose
of this paper is to show how common-subexpression elim-

ination can be expressed algebraically, using a “program
algebra” incorporating the syntax of typical higher-level
language expressions plus A-expressions (see Section 2)
from the A calculus and functional programming.

In contrast to the more usual approach to common-—
subexpression elimination based on DAGs, the algebraic
approach has a number of advantages:

— Itis based on familiar programming and mathematical
notation, which facilitates human description and un-
derstanding of the process of common-subexpression
elimination.

— The manipulations necessary to eliminate common
subexpressions can be expressed in the high—level no-
tation of program transformations, which can be ap-
plied by TAMPR [3], a fully automatic rewrite—rule
based program transformation system.

— Because the meaning of a program transformation de-
pends on the meaning of the programming language
in which the expressions are written (in this case, aug-
mented with A—expressions), it is easy to prove that
the program transformations preserve the correctness
of the programs being transformed.

These advantages of the algebraic approach also apply to
solving other types of problem, see [3, 5, 4].

It is the latter advantage that provides one of the principal
motivations for the work described here; the development
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of the common-subexpression elimination transformations
is a step in the development of a trusted compiler—one that
can be proven to correctly compile any correct program it
receives [6].

Common-subexpression elimination arises in designing
the transformations for the register—allocation phase of
such a trusted compiler. We have found that, with the right
notation, common-subexpression elimination can be per-
formed as a natural, and almost incidental, step in register
allocation.

1.1 Problem Statement

We examine the problem of identifying common subex-
pressions in arithmetic expressions of the sort found in typ-
ical programming languages such as Fortran or C.

To expose the essence of the common~subexpression
elimination problem, we make three simplifying assump-
tions that eliminate unnecessary detail from the presenta-
tion without materially affecting the generality and appli-
cability of the techniques we discuss:

1. We assume that the expressions considered do not in-
volve side—effects on the state of the computation. (If
the language defines the meaning of expressions that
have side effects, transformations can be written to in-
troduce temporary variables and break up such expres-
sions into a sequence of assignments that captures the
order of operations involved and that ensures that the
side—effects behave according to the requirements of
the language semantics.)

2. Further, we assume that all variables involved in the
expressions are simple variables, without subscripts
or structure qualifiers. (It is trivial to expand our ap-
proach to handle the commoning of expressions ap-
pearing in subscripts and the evaluation of address
polynomials; there is no point in complicating the dis-
cussion by including them. We do remark, however,
that the use of subscripted variables can lead to syntac-
tic aliasing (a[1] is a syntactic alias fora[j] if i =
J)» which increases the difficulty of detecting common
subexpressions, but has no effect on the correctness
of commoning for those common subexpressions that
are detected.)

3. Finally, we attempt to common only syntacticly iden-
tical subexpressions; we do not consider commutative
and associative variants, nor variants clouded by alias-
ing. (Finding all possible common subexpressions
based on algebraic identities for commutativity and
associativity is a complex problem [1, Section 9.10].
Moreover, such identities do not hold unconditionally
in program algebra; for example, even the integer ex-
pression i — 7 -+ k may not be equivalent to the expres-
sion ¢ + k — 7 in computer arithmetic because, when
i, j, and k are positive integers, the second may over-
flow when the first does not.) We reconsider this topic
briefly in Section 5.
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2 Notation and Motivation for the
Algebraic Approach

The algebraic approach to common-subexpression elim-
ination relies, both conceptually and notationally, on al-
gebraic manipulations involving A-expressions. In the
usual mathematical notation, a typical A—expression is
Az . f(z).e. In this expression z is called the A-variable,
f(z) the A-body, and e the A-argument. The A—expression
without the argument is called a A-abstraction, which is
a (nameless) function; like a function, a A-abstraction
can be applied to an argument (see [2], p. 6). The A-
expression gives a name (z) to the value of its argument;
this name can be used to represent that value through-
out the expression that is the A-body. To perform auto-
mated program transformation using TAMPR, an ASCII
representation of A—expressions is required; for the pre-
ceding expression, the corresponding TAMPR notation is
lambda x @ f(x) end (e).

The basis for the algebraic approach is the observation
that A—expressions can be used conveniently to model the
hardware operations required to evaluate programming-
language expressions. For example, if one wishes to gener-
ate near—optimal assembly code for a RISC computer, ap-
plication of a A—abstraction can be used to represent the
command to load the value of a variable into a register.
In this case, the A-variable represents a hardware register,
and the argument of the A—application is the variable whose
value is to be loaded:

lambda r0 @ r0 := a
end (a)
Similarly, a RISC arithmetic operation (which computes

a value and deposits it into a register) can be represented
by a A—application whose argument is a binary operation:

lambda r2 @ r2 := r0 + rl

end (r0 + rl)

Combining these two representations, the RISC evalua-
tion of the expression

a+b
can be represented by
lambda r0 @ r0 := a
lambda rl1 @ rl := b
lambda rl @ rl := x0 + ril
rl
end (xr0 + rl)
end (b)
end (a)

For most hardware architectures, it is advantageous to
avoid unnecessary reloads of registers from memory in
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generating code for expressions. In the algebraic nota-
tion it is natural to perform this optimization by expanding
the scope of the A—abstraction representing the load of the
value of a program variable to include all references to that
variable (assuming sufficient hardware registers are avail-
able). Thus, for the expression

ata
we wish to obtain
lambda r0 @ r0 := a
lambda r0 @ r0 := r0 + r0
ri
end (r0 + r0)
end (a) ;

which requires one memory access, rather than

lambda r0 @ r0 := a
lambda rl @ ,orl := a
lambda rl @ rl := r0 + rl
rl
end (r0 + rl)
end (a)
end (a)

which requires two.

Common subexpression elimination is simple to imple-
ment in the algebraic approach because only a slight gen-
eralization of the algebraic manipulations that minimize
memory fetches for program variables is required to mini-
mize the re-computation of non—trivial expressions.

3 An Algebraic Approach to
Eliminating Common
Subexpressions

Taking advantage of the correspondence between M-
expressions and RISC instructions, our objective is to trans-
form any arithmetic expression into a A—expression in a
canonical form that is the precursor of near—optimal code
for a RISC machine. As discussed in the preceding sec-
tion, each A—expression in our final canonical form, which
we call a “A—nest”, can then be transliterated into a machine
instruction in the target assembly-language program. More
specifically, each A—expression represents a load of a reg-
ister from memory, an arithmetic operation, or a store of a
register value to memory.
Consider the expression

(b+(a—c))*(a~c ()

Our goal is to transform this expression into the A-
expression shown in Figure 1(a); In this form, new tempo-
raries (A—variables) have been introduced for each variable
reference and arithmetic operation in the expression, and
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common subexpressions have been eliminated. Such an ex-
pression greatly simplifies register allocation—careful al-
location of registers to each A—variable and assignment of
A—arguments to them results in the three—address machine
instructions shown in Figure 1(b).

The creation of this canonical form, from which RISC
code can easily be generated, depends on transforming an
expression through a sequence of intermediate canonical
forms, each of which captures a part of the compilation
process. (The role of canonical forms in program trans-
formation is also discussed in [4].) The following sec-
tions discuss the transformations and intermediate canoni-
cal forms necessary for elimination of common subexpres-
sions in complicated arithmetic expressions.

3.1 Introducing Identity A—expressions into
Expressions

For common subexpressions to be eliminated, the value of
each program variable, constant, and result of an opera-
tion in an expression must be associated with a temporary
variable name that represents that value. The following
definition simplifies discussion of the introduction of these
names.

Definition 1 Given an expression meeting the restrictions
discussed in Section 1.1, the set of subexpressions of
that expression consists of the expression itself, plus all
operands of operators in that expression.

A consequence of this definition is that each variable or
constant in an expression is considered a subexpression, as
is the entire expression.

A simple and correctness-preserving way to associate
temporary variable names with subexpressions is to replace
each subexpression of the original arithmetic expression by
an identity A—abstraction applied to that subexpression as
argument. These applied identity A—abstractions have the-
form

lambda tempID @
tempID
end ( <expression> )

As discussed later, transformation is simplified if each in-
troduced identity A-expression has a unique A—variable
name (tempID).

The syntactic properties of the expression in this form,
which we call canonical-A—form~1, can be expressed
more formally by the BNF (Backus-Naur Form) rules:

canonical—A-form—1 — identity—A—op-expression
identity—-A—op-ezpression —
simple—identity—A—expression
| lambda <ident> @
<ident>
end ( identity—A-op-expression
<op>
tdentity—A—op—expression )
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lambda a_2 @ r0 := a
lambda c_3 @ rl := ¢
lambda t_4 @ rl := r0 - r1
lambda b_1 @ r0o := Db
lambda t_5 @ r0 := r0 + ri
lambda t_9 @ rl := r0 * rl
t_9
end ( t_5 * t_4 )
end ( b_1 + t_4 )
end ( b )
end ( a_2 - ¢c_3 )
end ( ¢ )
end ( a )
(a) (b)

Figure 1: Final forms for Expression (1)

simple—identity—A—expression —
lambda <ident> @
<ident>
end ( <ident> )
| lambda <ident> @
<ident>
end ( <const> )

with the restriction that the identifier in the body of
an identity—A-op—expression or simple—identity—A—
expression be the same as the identifier of the A-variable
of that A-expression. (See Appendix A for a listing of por-
tions of the TAMPR subject-language grammar relevant to
these examples.)

The TAMPR transformation list that converts Fortran
or C expressions to this first canonical form is shown in
Figure 2. TAMPR applies transformations to the parse
tree of a program or expression, constructed according
to the grammar in Appendix A. This parse tree consists
of nodes labeled with the appropriate terminal and non-
terminal symbols from the grammar. Each transformation
consists of a pattern—the part between .sd. and arrow
(==>)—and a replacement—the part between the arrow
and .sc. TAMPR applies the transformations by visit-
ing each node in the parse tree for the expression in post—
order (bottom—up, left-to-right), attempting to match each
transformation in a transformation list in turn at each node.
When the pattern of one of the transformations matches the
part of an expression at that node, the matching transforma-
tion is said to apply, and its replacement describes how to
assemble a syntactically legal expression parse tree to sub-
stitute for the matched non-terminal.

The first three of these transformations describe how
to convert a Fortran or C binary—expression, identifier,
or constant, respectively, into an identity A-expression.
The fourth transformation describes removal of unneeded
parentheses from the resulting expression. (Parentheses
may have been necessary in the original expression to ob-
tain the required order of operation. Once A—expressions
have been introduced, the order of operations has been

fixed and the parentheses are no longer needed; remov-
ing them simplifies later transformations.) Again, the
productions from the TAMPR subject—language grammar
needed to understand these transformations are shown in
Appendix A.

Consider the first transformation in the list in Figure 2.
The pattern matches any subexpression that involves a bi-
nary operator, represented by <op>, in an <op expr>.
(Syntactically, what we refer to informally as expressions
are called <op expr>s in the grammar of Appendix A.)
The replacement of this transformation assembles an iden-
tity A—expression defining a new temporary A-variable
(<var>"1"), this A—expression has the original subex-
pression (<op expr>"1")as its argument. (The .gen-
erate. clause of the transformation asks TAMPR to cre-
ate a new identifier by suffixing the identifier t with an
integer to make the new name unique.)

The pattern of the second transformation matches any
identifier in a <primary>, which represents either
operand in an <op expr>. Its replacement assembles an
identity A—expression as in the first transformation, with
the Fortran or C identifier (<ident>"1") as its argument.
The third transformation behaves similarly for a constant.

Figure 3 shows the results of applying these transforma-
tions to Expression (1). This form of the expressions con-
forms to the BNF grammar for canonical-A—form-~1.

Of course, one usually intends that a program transfor-
mation produce a result that is not only syntactically legal
but also semantically valid. That is, one wants to show
that the transformation is correctness—preserving—that the
replacement subexpression generated by the application of
the transformation is a refinement [7] of the subexpression
matched by the pattern of the transformation. (One frag-
ment of a program, ps, is a refinement of another, py, if
they produce the same result, are both undefined, or if p; is
undefined and ps is defined.) In the case of the transforma-
tions that introduce identity A—expressions, the proof that
they preserve correctness is based on an algebraic law for
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.transform 1. {
<op expr> {

.sd.

<0op expr>"1" {<op expr> <op> <primary>}
.generate. <var>"1" .like. <var> { t }
==> .stop.

lambda <var>"1" @

<var>"1"
end ( <op expr>"1" )
.sc.

}

<primary> {
.sd.
<ident>"1"
.generate.
==> .stop.
lambda <ident>"2" @
<ident>"2"
end ( <ident>"1" )

<ident>"2" .like. <ident>"1"
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lambda t_9 @
t_9
end (
lambda t£_5 @
t_5
end (
lambda b_1 @
b_1
end ( b ) +
lambda t_4 @
t_4
end (
lambda a_2 @
a_2
end { a ) -
lambda c_3 @
c_3
end ( ¢ )

) *

.sC. lambda t_8 @
t_8

.sd. end (

<const>"1" lambda a_6 @
.generate. <var>"1" .like. <var> { const } a_»6
==> .stop. end ( a ) -
lambda <var>"1" @ lambda c_7 @

<var>"1" c_7
end ( <const>"1" ) end ( ¢ )
.8C. )
)
.sd.

(<lambda abstrac-
tion"l" <pending args>"1")
==>

<lambda abstraction"l" <pending args>"1l"

.sc.
}
}

Figure 2: Transformations for the first canonical form

identity A—expressions from the A calculus:
Az.z.(e) = e

Normally, TAMPR applies transformations fo exhaus-
tion; that is, after a transformation applies, the nodes of
the replacement parse tree are recursively visited with the
transformations in another post-order traversal (see Sec-
tion 3.1). Application terminates when the entire (possibly
modified) parse tree has been traversed without any trans-
formation applying. This method of application would lead
to infinite re—applications for the transformations in Fig-
ure 2, because in each of these transformations, the replace-
ment contains a copy of the symbols matched in the pattern.
TAMPR therefore provides a mode for applying transfor-

Figure 3: Expression (1) in canonical form 1

mations that performs a single post—order traversal of the
parse tree, visiting each node just once; this mode is indi-
cated by . transform 1. andthe .stop. that follows
the arrows in the transformations.

3.2 Commoning Subexpressions

Once the transformations have caused each subexpres-
sion of an expression to become the argument of a A-
abstraction, the next step is to eliminate syntactically—
identical common subexpressions. Given that the expres-
sion is in the first canonical form, common—subexpression
elimination is easy to understand and verify in the algebraic
approach.

The fundamental observation is that syntactically
identical common subexpressions lead to duplicate A—
expressions. We call one A—expression a duplicate of an-
other if both A—expressions have syntactically identical ar-
guments.

The general idea of this step is to expand the scope of
each A-abstraction in turn, one step at a time, checking
whether the newly expanded scope now includes a du-
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plicate A—expression. If so, each duplicate A—expression
within the scope is removed, taking care to replace in-
stances of the A-variable of the deleted A—expression with
the variable of the remaining, outermost A—expression. Or,
stated in another way, common subexpressions are elim-
inated by systematically increasing the scope of one A-
expression “over” another in order to compare and elim-
inate one of the expressions if they have identical argu-
ments. When all A—expressions have been examined in this
way, any subexpression that appeared more than once in the
original expression will appear only once in the final text,
the multiple instances of that subexpression having been
replaced by multiple instances of the A—variable to which
it is bound.

An examination of the grammar for canonical-A—
form~1 and Figure 3 reveals that two transformations are
required, corresponding to the two operands of a binary op-
erator. These transformations are shown in Figure 4. Each
of these transformations matches a A—expression, lambda
<var>"1l", having an argument that is an expression
with a binary operation, <op>"2"; call this matched A-
expression the “outer A—expression”. Each transformation
then looks for a A—expression in one operand of the bi-
nary operator and expands its scope, performing common
subexpression elimination if necessary.

Transformation 1 matches a A—expression, lambda
<var>"2", the “expandable A—expression” that appears
as the first operand in the argument of the outer A-
expression. Transformation 1 expands the scope of the ex-
pandable A-expression to include the outer A-expression.
(The application of transformation 1 to an intermediate
form that arises during the transformation of Expression 1
is shown in Figures 5 and 6.) The expansion of the
scope of lambda <var>"2" brings all A-expressions in
the second operand, <primary>"2", within the scope
of the A-variable <var>"2". A A-variable name in
<primary>"2" cannot be the same as (“clash” with)
<var>"2" when <primary>"2" is brought with the
scope because there are no A-expressions in the input pro-
gram, a unique variable name is generated for each in-
serted A—expression, and no A—expression is replicated by
the transformations. (In A calculus terms, this statement
means that “a—conversion” is never required to avoid name
clashes.)

The bringing of A—expressions within the scope of the
variable <var>"2" provides an opportunity to detect
common subexpressions. After the transformation in-
creases the scope of the expandable A~expression, a sub-
transformation (the . transform 1. { } fol-
lowing <primary>"2" in the replacement of the trans-
formation) is applied to <primary>"2". This sub-
transformation examines each A—expression within <pri-
mary>"2" for an argument identical to <expr>"3",
the argument of the expandable A—expression. If the two
arguments are syntactically identical, a common subex-
pression has been found. The subtransformation in the
replacement of transformation 1 eliminates the common
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.transform *. {

<entity> {
.sd.
lambda <var>"1" @ <var>"1" end (
lambda <var>"2" @
<entity>"2"
end ( <expr>"3" )
<op>"2" <primary>"2"
)
==>
lambda <var>"2" @
lambda <var>"1" @ <var>"1" end (

<entity>"2"
<op>"2" <primary>"2"
<entity> {
.sd.
lambda <var>"11" @
<entity>"11"
end ( <expr>"3" )
==> .stop.
<entity>"11" .transform 1. {
<entity> { .sd.
<var>"11*"
==> .Sstop.
<var>"2"
.s8c. }

.transform 1. {

)
end ( <expr>"3" )
.sc.
.sd.
lambda <var>"1"
<op expr>"2"
<op>"2" lambda <var>"2" @
<entity>"2"
end ( <expr>"3" )

@ <var>"1" end (

)
==>
lambda <var>"2" @
lambda <var>"1" @ <var>"1l" end (
<Op expr>"2" <op>"2" <entity>"2"
)
end ( <expr>"3" )
.SC.
}
}

Figure 4: Transformations for the second canonical form

subexpression by removing the A—abstraction to which
it is bound in <primary>"2" and replacing all occur-
rences of the corresponding A—variable (<var>"11") by
<var>"2". (The sub—subtransformation, . transform
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1. { } following <entity>"11" in the re-
placement of the subtransformation, accomplishes this re-
placement.) The first operand, <entity>"2", need not
be examined for duplicate A-expressions because the trans-
formations in Figure 4 are applied to the original ex-
pression “bottom-up, left-to-right”, and so any duplicates
within <entity>"2" have already been found. If there
is no duplicate A—expression in <primary>"2", <pri-
mary>"2" is left unchanged.

As an example of of the application of transformation 1,
consider the A-expression shown in Figure 5, which is

lambda t_9 @
t_9
end (
lambda a_2 @
lambda c_3 @
lambda t_4 @
lambda t_5 @
£t_5
‘end ( b 1 + t_4 )
end ( a_2 - ¢c_3 )
end ( ¢ )
end ( a ) *
lambda a_6 @
lambda c_7 @
lambda t_8 @
t_8
end (
end ( c )
end { a )

a6 - c_7 )

Figure 5: A-nest prior to commoning

a fragment from an intermediate form that occurs when
transforming Expression (1) from canonical-A-form-1
to canonical-A-form=2, which will be formally defined
shortly. (One may wonder about the absence of a 1ambda
b_1 expression from this fragment. This A-expression is
present in the complete expression but not in this fragment;
the scope of lambda b_1 has already been expanded to
include the entire fragment shown in Figures 5 and 6.)

Transformation 1 applies to this fragment, and it expands
the scope of the lambda a_2 ... end(a) expression
to encompass the outer (lambda t_9) expression. Then
the subtransformation searches the nest of A-expressions in
<primary>"2" (beginning with lambda a_6) for any
A-expression with the same argument as lambda a_2.
One such (lambda a_6) is found and removed, instances
of its A-variable being replaced with a_2. Figure 6 shows
the resulting expression fragment.

Transformation 2 is similar to transformation 1, but sim-
pler. It matches a A—expression (lambda <var>"2"),
the “expandable A—expression” that appears as the sec-
ond operand of the argument of the outer A-expression.
Transformation 2 expands the scope of the expandable A—
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lambda a_2 @
lambda t_9 @
t_9
end (
lambda c_3 @
lambda t_4 @
lambda t_5 @
t_5
end ( b_1 + t_4 )
end ( a_2 - c_3 )
end ( ¢ ) *
lambda c_7 @
lambda t_8 @
t_8
end (
end ( ¢ )

a_2 - c_7)
)

end ( a )

Figure 6: A-nest after one application of transformation 1

expression to include the outer A—expression. Transforma-
tion 2 is simpler than transformation 1 in that it need not
examine the first operand (<op expr>"2") for common-
ing, because transformation | will have been applied until
no more A—expressions remain in <op expr>"2". Thus,
when transformation 2 applies <op expr>"2" is a vari-
able and no commonable A—expressions can exist within it.

The post—order traversal provided by the TAMPR trans-
formation system causes these transformations to be ap-
plied to the parse tree of an expression from the bottom
up (smallest subexpressions first). Thus, the scopes of var-
ious A—abstractions will be repeatedly increased until all
common subexpressions have been eliminated. The result
of common-subexpression elimination, then, is a nest of
A—expressions in which no A—expression occurs as an ar-
gument of another A—expression. Figure 7 shows Expres-

lambda b_1 @

lambda a_2 @

lambda c_3 @
lambda t_4 @
lambda t_5 @

lambda t_9 @

£_9
end ( t_5 * t_4 )

( b1 + t_4 )

a2 - c_3)

end
end (
end ( ¢ )
(a)
b))

end
end (

Figure 7: Expression (1) after eliminating common subex-
pressions

sion (1) after transformations 1 and 2 have removed all
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common subexpressions, starting from the form of the ex-
pression in Figure 3.

The expression in Figure 7 is in the canonical form
whose formal description is

canonical-A-form-2 — lambda <ident> @
canonical-A~form-2
end ( <expr> )
| lambda <ident> @
<ident>
end ( <expr> )

Here <expr> cannot contain a A-expression (i.e., it must
be an <ident>, <const>, or a simple binary arithmetic
expression involving A-variables), and the second option
must be an identity A—expression (i.e., both <ident>s
must be the same).

3.3 Scope reduction

The form of the expression shown in Figure 7 is valid
for the generation of code. However, from an aesthetic
viewpoint, it is undesirable because the scopes of some A—
abstractions are greater than necessary. For example, the
scope of the A—abstraction binding b_1 could be reduced
to encompass just the A—abstraction binding t_5.

This aesthetically undesirable form has also a practically
undesirable consequence: Recall that the goal is to trans-
form an expression into a form that facilitates near—optimal
generation of RISC machine instructions. In this form, a A-
variable represents a register. Thus, a A—abstraction having
an unnecessarily large scope unnecessarily ties up a valu-
able resource, its register, which could be used for evaluat-
ing another subexpression.

Optimal use of registers requires delaying register loads
until just before the value loaded is needed, which is re-
flected in the requirement to put the expression of Fig-
ure 7 into a canonical form in which each A—abstraction has
minimal scope. That is, the scope of every A—abstraction
should be reduced to encompass just the outermost expres-
sion that references its A—variable. The transformations
discussed so far, which eliminate common subexpressions,
do not, however, result in such a form.

Achieving the minimal-scope canonical form thus in-
volves applying a third set of transformations that “push”
an expression binding a A-variable, say v, into the A—nest
until an expression using v; is encountered. Applying such
transformations to the commoned nest of Figure 7 results
in the more optimal arrangement that was presented in Fig-
ure 1(a), which presents our example expression in the fi-
nal canonical form needed for efficient allocation of regis-
ters. The expression shown in this figure is in canonical—
A-form-=3, which is the same as canonical-A—form~2
with the additional restriction that the A—~expressions bind-
ing the operands for a binary operation should be as close
as possible to the A—expression for that operation.
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4 Proof That All Syntactically
Identical Common Subexpressions
are Commoned

For any sequence of sets of TAMPR transformations, there
are two properties one may wish to prove: that the sets of
transformations preserve correctness and that they achieve
their goal or goals.

Proofs that the common-subexpression—elimination
transformations preserve correctness are not particularly
interesting. These proofs follow immediately from sim-
ple definitions and theorems in the A calculus, such as
those for identity A—expressions and distribution proper-
ties of A~expressions. Provided that the meaning of the A—
expression notation in the Poly grammar is the same as the
meaning of A-expressions in the A calculus, the proofs are
trivial. For more information on a methodology for carry-
ing out a formal verification that TAMPR transformations
preserve correctness, see [8].

Proof that the transformations discussed here achieve
their goal—that they do common all syntactically identi-
cal A—expressions—is more interesting, in part because the
proof illustrates the important role of the canonical forms
discussed in the preceding sections.

Informally, we wish to prove that the transformations
common all syntactically identical subexpressions in an ex-
pression. Given that the final form of an expression after
the three sets of transformations apply is in canonical-A~
form-=3, and that every subexpression is an argument of
a A-expression, the non—-existence of common subexpres-
sions is equivalent to the following statement:

Theorem 1 In canonical-A-form-3, no A—expression
contains (directly or indirectly) in its body another A-
expression whose argument is syntactically identical to the
argument of the containing A—expression.

The concept of A-nest discussed informally in preced-
ing sections plays an important role in the proof; its formal
definition, stated recursively, is

Definition 2 The following expressions are A—nests:
1. A A—variable

2. A A—expression whose body is a A-nest and whose ar-
gument is a program variable, a constant, or a binary
operation connecting A—variables.

(This definition is essentially a restatement of the require-
ments of canonical-A-form~2.) A consequence of this
definition is that no A—expression in a A—nest contains in
its argument, directly or indirectly, another A-expression.

The following definitions simplify the statement of the
theorem:

Definition 3 One A—expression is a duplicate of another if
their arguments are syntactically identical.
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Definition 4 A A—nest is fully commoned provided no A-
expression in the nest contains (directly or indirectly) in its
body a duplicate A-expression.

To prove Theorem 1, it is necessary to use structural
induction on the subexpressions of the expression being
transformed. As stated, Theorem 1 is not strong enough
to permit the induction to go through; we must also show
that applying the commoning transformations produces a
A-—nest:

Theorem 2 In canonical-A—form-3, the entire expres-
sion is a fully commoned A-nest.

Clearly this stronger theorem implies Theorem 1.

Two questions might arise during the proof of this theo-
rem; we discuss them first.

The first question is how, after the initialization trans-
formations have applied, there can be any duplicate
non—trivial A—expressions (A—expressions with binary—
operation arguments) at all; applying the initialization
transformations, which insert identity A—expressions, de-
stroys the syntactical identity of common subexpressions
that are binary operations! Because the A—variable names
of the inserted expressions are unique, two instances of a
common subexpression such as a — ¢ will differ in the A-
variable names bound to a and c. For example, in Figure 5,
the first instance of the common subexpressiona—cis a_2
- c¢_3 while the secondisa_6 - c_7.

But observe that there are still some duplicate A—
expressions after application of the initialization transfor-
mations: the A-expressions whose arguments are simple
program variables or constants, for example, the arguments
aof lambda a_2 and lambda a_6 inFigure 5.

These simple duplicate A—expressions serve to “seed”
the process of identifying all common subexpressions.
The application of the commoning transformations grad-
ually restores the syntactical identity of non-trivial com-
mon subexpressions. For example, after one application of
transformation 1 to the intermediate stage of commoning
shown in Figure 5, the second instance of a — ¢ becomes
a_2 - c_7 (Figure 6). Another application changes it to
a_2 - c_3, which is now syntactically identical to the
first instance. A third application of transformation 1 will
then detect that lambda t_4 and lambda t_8 are du-
plicate A-arguments having the non-trivial expression a__2
- c_3 as argument.

The second question is what guarantees that the A-
variables in a non—trivial common subexpression (such
as a_2, a_6 and c_3, c_7 in Figure 5) are com-
moned before attempting to common the non-trivial ex-
pression itself. The guarantee follows from the fact
that the transformations preserve correctness. To be cor-
rect, the A—expression for a non—trivial expression (such
as lambda t_4 @ end ( a_2 - ¢c_3 ) in
Figure 5) must be within the scopes of the A-expressions
binding any variables it uses (a_2 and c¢_3). Because
transformations 1 and 2 preserve correctness, they preserve
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this scoping property, guaranteeing that the scopes of the
A—expressions for the variables in a non-trivial argument to
a A-expression are expanded and examined for commoning
before the non—trivial expression itself.

Against this background, we can prove Theorem 2.

Proof of Theorem 2:

It suffices to prove the theorem for expressions
in canonical-A—form-2, because the conversion to
canonical-A-form~-3 does not involve §—conversion (the
substitution of the argument of a A—expression for all in-
stances of its A—variable). Thus, the transformation to
canonical-A—f orm~=3 cannot create any new duplicate A—
expressions; if there are any A-expressions in canonical—-
A—form=3 having syntactically identical arguments, they
must be present in canonical-A—-form-2.

To prove the theorem for expressions in canonical-
A—-form~2, assume that the initialization transformations
of Figure 2 have been applied to put the expression in
canonical-A-form~1. The proof is based on structural
induction on the A—nests in this form of the expression.

Ground Case: The only A-nests in an expression in
canonical-A-form~1 are identity A—expressions having
program variables or constants as arguments (for example,
lambda a_2 @ a_2 end ( a ) andlambda c_3
@ c_3 end ( c ) inFigure3). Such a A-expression is
a fully commoned A-nest, because its body is a A—variable,
and its argument is a program variable or constant. More-
over, because there are no A—expressions in its body, there
can be no duplicate A—expression.

Inductive Case: At an arbitrary stage in the applica-
tion of the commoning transformations, the set of transfor-
mations is being applied to an outer A—expression, as dis-
cussed in Section 3.2. In the whole expression, this outer
A—expression is an innermost A—expression that is not part
of a A-nest (for example, lambda t_9 in Figure 5). By
“innermost”, we mean that, while the outer A—expression is
not part of a A—nest, both operands of the binary operator in
the argument of the outer A—expression are A—nests. By the
inductive hypothesis, the A—expressions in both operands
of this binary operator are fully commoned A-nests, so no
A—expression in either operand contains a duplicate.

We need to show that, after the exhaustive application of
transformations 1 and 2 to this outer A—expression, the A—
nesting and fully commoned properties are established for
the resulting A—expression.

Once application of transformations 1 and 2 to a given
outer A—expression starts, TAMPR applies transforma-
tion | repeatedly, until it no longer matches. Then,
TAMPR applies transformation 2 repeatedly until it no
longer matches. At that point exhaustive application to
this outer A—expression is complete, because application of
transformation 2 cannot create any new instances to which
transformation 1 could apply.

Case 1: Transformation 1 applies. It expands the scope
of the outermost A—expression in the first operand (the ex-
pandable A—expression, lambda a_2 in Figure 5) to en-
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compass the outer A—expression, and, in particular, the sec-
ond operand of the binary expression in the argument of
the outer A—expression. The subtransformation in trans-
formation 1 then searches the second operand for a A—
expression that duplicates the expandable A—expression
(lambda a_6 in Figure 5). If such a A—expression is
found, transformation 1 commons it by removing it and
substituting the A—variable of the expandable A—expression
for all instances of the A—variable of the duplicate one. (By
the inductive hypothesis, there can be at most one common-
able A—expression.) At this point, the subtransformations
have restored the fully commoned invariant for the expand-
able A—expression: it contains within its body no duplicate
A—expression.

It is necessary to show that application of transfor-
mation 1 preserves the fully commoned A-—nest property
for the operands of the binary operation of the outer A—
expression after transformation 1 applies (see Figure 6).

Clearly, the application of transformation 1 preserves the
A-nest and fully commoned properties of the remainder of
the A-nest in the first operand of the binary expression that
is argument to the outer A—expression, for this operand is
the body of the A-nest originally at this position, and the
body of a fully commoned A-nest is a fully commoned A-
nest.

The application of transformation 1 also preserves the
A-nest property of the second operand, because either the
second operand remains unchanged (no matching duplicate
A—expression was found) or the change consists only of
eliminating a A—expression and substituting one A—variable
for another.

To show that the transformation preserves the fully com-
moned property for the second operand, it is necessary to
show that the substitution of the A-variable (a_2) of the
expandable A—expression for the A—variable (a_6) of the
duplicate A—expression cannot lead to the creation of two
or more A—expressions having syntactically identical argu-
ments. Suppose, by way of contradiction, that the sub-
stitution could create two such A—expressions. Because
they were not identical before the substitution (by the in-
ductive hypothesis), one of the expressions must already
have contained an instance of the A~variable of the expand-
able A—expression (a_2), while the other had the dupli-
cate A—expression (Lambda a_6) at that position. But
all A—variable names are unique and the second operand
expression was not originally within the scope of the ex-
pandable A—expression, so the second operand cannot con-
tain any instances of the A—variable of the expandable A—
expression prior to the substitution, contradicting the as-
sumption. Thus, the transformation preserves the fully
commoned property of the second operand.

Finally, while the body of the expandable A-expression
(lambda a_2 in Figure 6) may not yet be a A—nest be-
cause exhaustive application of transformations 1 and 2 has
not completed, each application of transformation 1 main-
tains a property that is needed to show that the final result of
the exhaustive application is a A-nest: the expandable A-
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expression, which now surrounds the outer A—expression,
has only a program variable, a constant, or a binary expres-
sion connecting A—variables as its argument. This property
follows from the fact that, by the inductive hypothesis, the
expandable A-expression was part of a A-nest.

Transformation 1 applies repeatedly until it no longer
matches. At that point, the first operand of the binary ex-
pression that is argument to the outer A—expression, which
was initially a A—nest, is a A—variable—the variable of the
innermost A-expression of the original A-nest (t__5 in Fig-
ure 5).

Case 2: Transformation 1 does not apply; transforma-
tion 2 does apply. By the inductive hypothesis, the second
operand of the binary expression argument of the outer A—
expression is a fully commoned A—nest, and this property
has been maintained by applications of transformation 1.
Transformation 2 increases the scope of the A-expression
in the second operand (the expandable A—expression). By
the inductive hypothesis, only the first operand of the bi-
nary operator could contain a A-expression that could du-
plicate a A—expression in the second operand, but the first
operand is now a variable and so contains no such A-
expression.

Clearly, the application of transformation 2 preserves the
A-nest and fully commoned properties of both the first and
second operands of the binary expression that is argument
to the outer A—expression, because it does not alter the first
operand and because the body of the A-nest in the second
operand, which is now the second operand, is a fully com-
moned A-nest.

Finally, as in Case 1, each application of transforma-
tion 2 maintains the property that is needed to show that
the final result of the exhaustive application is a A-nest:
the expandable A—expression has only a program variable,
a constant, or a binary expression connecting A—variables
as its argument.

Transformation 2 applies repeatedly until it no longer
matches. Atthat point, the second operand of the binary ex-
pression that is argument to the outer A-expression, which
was initially a A—nest, is a A—~variable—the variable of the
innermost A—expression of the original A-nest.

Case 3: Neither transformation 1 nor transformation 2
applies. Then neither argument of the binary expression ar-
gument of the outer A—expression contains a A-expression.
Each operand of the binary operand must be a A-variable,
because either it was originally a A—variable or it was the
innermost variable of a A—nest that was transformed away.
Finally, the entire fragment of the expression produced
from this sequences of applications of transformations 1
and 2 is a A—nest, because each expandable A-expression
has the property required of its argument, and what was
originally the outer A—expression is now the innermost A~
expression. Being an identity A-expression, its body is a
A-—variable (t_9 in Figures 6 and 7).

Thus, the result of the exhaustive application of transfor-
mations 1 and 2 is a A—nest and all duplicate A~expressions
in the originally outer A—expression have been commoned.
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QED.

5 Commoning Subexpressions That
Are Not Syntactically Identical

One of the advantages of the algebraic approach is that it
encourages breaking problems such as commoning subex-
pressions into a number of smaller, simpler problems. The
preceding sections have shown how syntactically identical
common subexpressions can be eliminated. With that prob-
lem solved, we can consider the problem of eliminating
common subexpressions that differ by commutativity and
associativity (assuming that the use of commutativity and
associativity are acceptable in terms of the correctness re-
quired of the program).

Again, we use canonical forms to address this problem.
The strategy is first to transform all subexpressions into a
canonical form in which subexpressions that originally var-
ied only by the use of commutativity or associativity are
syntactically identical; then the transformations discussed
in the preceding sections can be used to eliminate the com-
mon subexpressions.

Space does not permit a detailed discussion of the trans-
formations required. However, the basic approach is to
define a lexical order on identifiers and constants and to
use this lexical order to order the variables and constants
in subexpressions (where permitted by commutativity and
associativity). Once the subexpressions have been placed
into the lexically ordered canonical form, commutative-
associative variants are identical except for the possible
appearance of variables in one expression that do not ap-

pear in the other. For example, one might have two subex-

pressions of the form (a +c+d— f+g+h—1i—j)
and (a+b+d~-e— f+h—1i+j— k). The maxi-
mal common subexpression (¢ + d — f + h — i) can be
readily identified in these two expressions once they have
been converted to yet another canonical form, in which
" the non-common variables are pulled to the end of the
expressions: ((a +d — f + h — i) +c+ g — j) and
((la+d—f+h—-i)+b—e+j—k).

6 Conclusions

We have discussed a program-algebraic approach to the
compiler optimization of eliminating common subexpres-
sions. This approach has two major advantages:

. — The approach is formulated in terms of algebraic ma-
nipulations of the expressions of the programming
language (augmented with A—expressions); the ap-
proach is therefore intuitive and both easy to under-
stand and prove.

— The approach is implemented using transformations
for which correctness-preservation is easy to prove;
the approach can thus be used in a trusted compiler.
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A A Portion of the TAMPR
Subject-Language Grammar

<expr> ::= <Op expr> |

<op expr> ::= <primary> |
<Op expr> <op> <primary>

<op> ::= <add op> | <mult op> |
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<add op> =+ | -

<mult op> ::= * | / |

<primary> ::= <entity> |

<entity> ::= <basic entity> <type info>
<type info> ::= <empty> |

<basic entity> ::= <const> | <var> |
<const> ::= <numerical constant> |
<var> ::=

<function app> | <function expr> |

<function app> ::=
<function expr> <pending args> |

<function expr> ::= <ident>

| <lambda abstrac-
tion>

| ( <expr> )
<ident> ::= <identifier> |

<pending args> ::=
<args> | <args> <pending args>

<args> ::= ( ) | ( <expr list> )

<lambda abstraction> ::= lambda <body> end
<body> ::= <bound vars> <expr>

<bound vars> ::= <expr list> @ |

<expr list> ::=
<expr> | <expr list> , <expr>

Note that this is a severely pruned version of the complete
TAMPR subject-language grammar; portions of the gram-
mar deemed not relevant to the understanding of the exam-
ples given in this paper have been removed.
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We report on an extensive experiment to compare an iterative solver preconditioned by several versions of
incomplete LU factorization with a sparse direct solver using LU factorization with partial pivoting. Our
test suite is 24 nonsymmetric matrices drawn from benchmark sets in the literature.

On a few matrices, the best iterative method is more than 5 times as fast and more than 10 times as
memory-efficient as the direct method. Nonetheless, in most cases the iterative methods are slower; in
many cases they do not save memory; and in general they are less reliable. Our primary conclusion is that
a direct method is currently more appropriate than an iterative method for a general-purpose black-box
nonsymmetric linear solver.

We draw several other conclusions about these nonsymmetric problems: pivoting is even more important
for incomplete than for complete factorizations; the best iterative solutions almost always take only 8 to 16
iterations; a drop-tolerance strategy is superior to a column-count strategy; and column MMD ordering is
superior to RCM ordering.

The reader is advised to keep in mind that our conclusions are drawn from experiments with 24 matrices;
other test suites might have given somewhat different results. Nonetheless, we are not aware of any other

studies more extensive than ours.

1 Introduction

Black-box sparse nonsymmetric solvers, perhaps typified
by the Matlab backslash operator, are usually based on a
pivoting sparse LU factorization. Can we design a more ef-
ficient black-box solver that is based on an iterative solver
with an incomplete LU preconditioner? This paper shows,
using extensive experimental analysis, that the answer is
no. An iterative solver with an incomplete LU precondi-
tioner can sometimes be much more efficient than a direct
solver in terms of both memory and time. But in most
cases, the iterative solver is less less reliable and less ef-
ficient than a direct solver.

These conclusions are novel and correct, but one must
keep in mind that they are drawn from a finite set of experi-
ments. The conclusions are novel in the sense that no prior
paper presented a systematic study that supports these con-
clusions. We are aware that our conclusions coincide with

long-held viewpoints of some researchers, but these view-
points were never substantiated by systematic study before.
Hence, the novelty lies not in the conclusions themselves,
but in the fact that they are supported by evidence. Other
researchers hold opposite viewpoints—that preconditioned
iterative solvers are more reliable and efficient that direct
solvers. These viewpoints are typically based on some the-
oretical justification and/or on experimental results. We
point out that there is not much theory on the convergence
rates of nonsymmetric preconditioned iterative solvers, and
that success with some matrices does not invalidate our
conclusions, since our claim that that iterative solvers are
less effective in most cases, not in all cases. To summarize,
we present an experimental study, and we draw conclusions
from our data. 1t is conceivable that a different test suite
would have suggested somewhat different conclusions.

Large sparse linear solvers can be classified into three
categories. Some solvers are problem specific and are of-
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ten built into applications. Such solvers exploit structural
and numerical properties that typify linear systems arising
from a narrow application domain, and many of them use
information about the problem that is not part of the linear
system (for example, geometric information). The second
category of solvers can be described as toolkits (see, for
example, [10]). These solvers, often in the form of numeri-
cal libraries that are designed to be called from application
programs, offer a choice of algorithms that can be com-
bined to create linear solvers. The user must decide which
algorithms to use and how to set tuning parameters that
these algorithms may have. Typical toolkits provide sev-
eral iterative solvers and several preconditioners. The third
category of solvers are black-box solvers. These solvers
solve linear systems using few assumptions on the origins
of the systems and little or no guidance from the user.
Most sparse direct solvers fall into this category. Problem-
specific solvers often achieve high performance but require
considerable effort from experts. Black-box solvers cannot
always achieve the same level of performance, but are ro-
bust and easy to use. Toolkits are somewhere in-between.
This paper evaluates incomplete-LU preconditioners only
as candidates for inclusion in black-box solvers; it is by
now clear that nonsymmetric incomplete-LU precondition-
ers should be included in toolkits and in some problem-
specific applications.

Large sparse nonsymmetric linear systems are often
solved by direct methods, the most popular of which is
based on a complete sparse LU factorization of the co-
efficient matrix. Iterative solvers, usually preconditioned
Krylov-space methods, are sometimes more efficient than
direct methods. Iterative solvers can sometimes solve lin-
ear systems with less storage than direct methods, and they
can sometimes solve systems faster than direct methods.
The efficiency of iterative methods, in terms of both space
and time, depends on the preconditioner that is used. In
this paper we focus on a popular class of so-called general-
purpose preconditioners, those based on incomplete LU
factorization with or without partial pivoting. We do not
consider other classes of general-purpose preconditioners,
such as those based on sparse approximate inverses (see,
for example, Grote and Huckle [8]), and algebraic mul-
tilevel solvers (see, for example, Shapira [12]). We also
do not consider domain-specific preconditioners, such as
domain-decomposition preconditioners for linear systems
arising from discretizations of PDE’s.

Incomplete-factorization preconditioners are con-
structed by executing a sparse factorization algorithm,
but dropping some of the fill elements. Elements can be
dropped according to numerical criteria (usually elements
with a small absolute value), or structural criteria (e.g.,
so-called levels of fill)!. Since some of the fill elements

'We did not include level-of-fill dropping criteria for two reasons.
First, we felt that the resulting preconditioners would be less effective and
robust than those based on numerical dropping criteria. Second, level-of-
fill criteria are more difficult and computationally expensive to implement
in a pivoting factorization than numerical criteria since the level of every
fill element must be kept in a data structure.
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are dropped, the resulting factorization is sparser and takes
less time to compute than the complete factorization. If
this factorization preconditions the linear system well, it
enables the construction of an efficient iterative solver.
We have implemented an algorithm that can construct
such preconditioners. On some matrices, the resulting
preconditioners are more than 10 times sparser than a
complete factorization, and the iterative solution is more
than S times faster than a direct solution. We plan to
make our implementation, which can be used alone or as
part of PETSc (a portable extensible toolkit for scientific
computation [1]), publicly available for research purposes.

This strategy, however, can also fail. The algorithm can
fail to compute a factorization due to a zero pivot, or it
can compute a factorization that is unstable or inaccurate,
which prevents the solver from converging. In other cases,
the preconditioner can enable the iterative solution of the
system, but without delivering the benefits that we expect.
The running time can be slower than the running time of a
direct solver, either because the iteration converges slowly
or because the incomplete factorization is less efficient than
a state-of-the-art complete factorization. The solver may
need more space than a direct solver if the algorithm fails
to drop many nonzeros, especially since an iterative solver
cannot release the storage required for the matrix and needs
storage for auxiliary vectors.

We have conducted extensive numerical experiments to
determine whether incomplete factorizations can yield pre-
conditioners that are reliable and efficient enough to be
used in a black-box nonsymmetric linear solver. Our test
cases are nonsymmetric linear systems that have been used
to benchmark sparse direct solvers; all of them can be
solved by complete sparse LU factorization with partial
pivoting. The matrices range in size from about 1,100
to 41,000 rows and columns, and from about 3,700 to
1,600,000 nonzeros. Our main conclusion is that incom-
plete factorizations are not effective enough to be used in
black-box solvers, even with partial pivoting. That is not
to say that incomplete factorizations never produce effec-
tive preconditioners. In some cases they do. But in many
cases state-of-the-art incomplete factorizations do not yield
efficient preconditioners. Furthermore, in many other cases
the resulting preconditioner is effective only within a small
range of numerical dropping thresholds, and there are cur-
rently no methods for determining a near-optimal thresh-
old. Therefore, current state-of-the-art incomplete fac-
torizations cannot be used as preconditioners in iterative
solvers that can be expected to be about as reliable and ef-
ficient as current direct solvers.

Our incomplete LU factorization algorithms are quite
similar to Saad’s ILTUP [11], but employ some additional
techniques, which are described in Section 2. We describe
our experimental methodology in Section 3. The discus-
sion explains the structure of the experiments, the test ma-
trices, and the hardware and software that were used. A
summary of our experimental results is presented in Sec-
tion 4. We discuss the results and present our conclusions
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in Section 5.

2 Pivoting Incomplete LU
Factorizations

This section describes our algorithm for incomplete LU
factorization with partial pivoting. The algorithm is sim-
ilar to Saad’s ILUTP [11], but with some improvements.

Our algorithm is a sparse, left-looking, column-oriented
algorithm with row exchanges. The matrix is stored in a
compressed sparse-column format, and so are L and U.
The row permutation is represented by an integer vector.

At step j of the algorithm, sparse column j of A is un-
packed into a full zero column v. Updates from columns
1 through j — 1 of L are then applied to v. These updates
collectively amount to a triangular solve that computes the
jth column of U, and a matrix-vector multiplication that
computes the jth column of L. The algorithm determines
which columns of L and U need to update v, as well as an
admissible order for the updates, using a depth-first search
(DFES) on the directed graph that underlies L. This tech-
nique was developed by Gilbert and Peierls [7].

Once all the updates have been applied to v, the algo-
rithm factors v, using threshold partial pivoting. Specifi-
cally, the algorithm searches for the largest entry v,,, in v,
the lower part of v (we use vy to denote the upper part of
v). If lvg| > 7|vm|, where 0 < 7 < 1 is the pivoting
threshold and v, is the diagonal element in v, then we do
not pivot. Otherwise we exchange rows d'and m. (In the
experiments below, we use either 7 = 1, which is ordinary
partial pivoting, or 7 = 0, which amounts to no pivoting).
The exact definition of a diagonal element in this algorithm
is explained later in this section.

After the column is factored, we drop small elements
from vy, and vy. We never drop elements that are nonzero
in A.2 The algorithm can drop elements using one of two
different criteria: (1) the algorithm can drop all but the
largest k elements in vy and the largest k elements in vz, or
(2) the algorithm can drop from vy; all the elements that are
smaller? than 6 max;c s |v;|, and from vy, the elements that
are smaller than § max;ey, |v;|, where d is the drop thresh-
old. When we drop elements using a drop threshold §, we
use the same value of § for all the columns. When we drop
elements using a fill count k, we set k separately for each

column. The value of & for a column j is a fixed multiple of

the number of nonzeros in the jth column of A. We refer to
this method as a column-fill-ratio method. After elements
have been dropped, the remaining elements of v are copied
to the sparse data structures that represent L and U and the
algorithm proceeds to factor column 7 + 1.

Our dropping rules differ somewhat from Saad’s ILUT

ZWe decided not to drop original nonzeros because we felt that drop-
ping them might compromise the robustness of the preconditioner, but in
some cases dropping original nonzeros may improve the efficiency of the
preconditioner.

3 All comparisons discussed in this section are of absolute values.
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and ILUTP, in that we do not drop small elements of U
during the triangular solve. Doing so would require us to
base the drop threshold on the elements of A; rather than
on the elements of U;, which we prefer. Also note that
we compute the absolute drop threshold for a column sep-
arately for vy, and for vyy. We expect separate thresholds
to give relatively balanced nonzero counts for L and for U,
which is difficult to guarantee otherwise since their scaling
is often quite different.

Our algorithm uses one more technique, which we call
matching maintenance that attempts to maintain a trailing
submatrix with a nonzero diagonal. The technique is il-
lustrated in Figure 1. Before we start the factorization, we
compute a row permutation that creates a nonzero diago-
nal for the matrix using a bipartite perfect-matching algo-
rithm (this algorithm returns the identity permutation when
the input matrix has a nonzero diagonal). When the al-
gorithm exchange rows (pivots), the nonzero diagonal can
be destroyed. For example, if in column 1 the algorithm
exchanges rows 1 and ¢ (in order to pivot on A;1), and if
A1; (which moves to the diagonal) is zero, then we may
encounter a zero diagonal element when we factor column
i. The element Ay; will certainly be filled, since both Ay;
and A;; are nonzero. Therefore, whether we encounter a
zero diagonal element or not depends on whether A;; is
dropped or not after it is filled. Since A;; will fill, our tech-
nique simply marks it so that it is not dropped even if it
is small. In effect, we update the perfect matching of the
trailing submatrix to reflect the fact that the diagonal of col-
umn 7 is now Ay; instead of A;;, which is now in U. If we
exchange row ¢ with another row, say [, before we factor
column ¢, we will replace A;; by Ay; as the diagonal el-
ement of column ¢. This marked diagonal element is not
dropped even if we end up pivoting on another element in
column 4, say A;;, because its existence ensures that the di-
agonal element in column j will be filled in. The resulting
diagonal elements may be small, but barring exact cancel-
lation they prevent zero pivots, at the cost of at most one
fill per column.

The goal of the matching maintenance is to prevent
structural zero pivots at the cost of one fill element per col-
umn. Our experiments show, however, that in very sparse
factorizations such as with 7 = 1 (which we denote by
ILU(0)), exact numerical cancellations are common even
when this technique is employed. When we replace the
numerical values of the matrix elements with random val-
ues, the factorizations do not break down. This experi-
ment shows that the technique does indeed prevent struc-
tural breakdowns. We were somewhat surprised that exact
numerical cancellations are so common in practice, even
when structural breakdown is prevented. It remains an open
problem to find a similarly inexpensive way to guarantee
against exact numerical breakdown.

Before concluding this section, we would like to com-
ment on two techniques that are employed in state-of-the-
art complete LU factorization codes but that are not in-
cluded in our incomplete LU code. The first technique
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(a)

(d)

Figure 1: An example of the matching-maintenance method. Nonzero elements are represented by full squares, and
zero elements by empty squares. A row exchange places a zero on the diagonal (a). This zero is marked as a diagonal
element that must not be dropped, denoted by the enclosing (red) square. Another row exchange moves another zero to the
diagonal (b). The new nonzero is marked and the previous one, which is now in U, is unmarked (c). The triangular solve
fills in the first zero element, which is not dropped since we do not drop elements in U before the column factorization
is complete (d). This fill element plus an original nonzero now cause the diagonal element to fill (¢). A row exchange is
performed, moving the element just filled off the diagonal. But since it is marked, it is not dropped (f), which ensures that

the diagonal element in the last row will fill.

is called symmetric pruning [6]. This technique exploits
structural symmetry by pruning the graph that the DFS
searches for updating columns. The correctness of sym-
metric pruning depends on a complete factorization, so we
could not use pruning in our code. The second technique
is the exploitation of nonsymmetric supernodes {3] to im-
prove the temporal locality in the factorization (and hence
reduce cache misses). Maintaining supernodes in an in-
complete factorization requires a restriction on the drop-
ping rules (a supernodal algorithm would need to drop or
retain entire supernode rows). This restriction would have
increased the density of the factors, and we estimated that
the increased density would offset the savings in running
time gained from supernodes. Still, this technique could
perhaps enhance performance on some matrices.

We have implemented this algorithm as a modification to
the GP code [7]. The modifications are mostly restricted to
the driver subroutine and to the column factorization sub-
routine. The subroutines that perform the DFS and update
the current column are essentially unmodified. (We had
to slightly modify all the routines in order to implement a
column ordering mechanism). The perfect-matching code

is by Pothen and Fan [9].

3 Experimental Methodology

This section describes our experimental methodology. We
describe the structure of the experiments, the test matrices
that we use, and the software and hardware platforms that
we used to carry out the experiments. The experiments are
summarized in Table 1.

Structure of the experiments

Our experiments compare a direct sparse LU solver with
partial pivoting, SuperLU [3], with an iterative solver. We
used a transpose-free quasi-minimum-residual (TFQMR)
Krylov-space method with the pivoting incomplete LU pre-
conditioner described above (see Saad [11], for example,
for background on the Krylov-space methods discussed in
this paper). For each matrix A we construct a random solu-
tion vector z (with elements uniformly distributed between
0 and 1), and multiply A by z to form a right-hand side b.
We then solve the resulting linear system using SuperL.U,
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keeping track of the total solution time and the norm of the
residual AZ — b, where £ is the computed solution. We do
not use iterative refinement. We then solve the same sys-
tem several times using the Krylov-space iterative method
with an incomplete-LU preconditioner, each time with a
different value of the drop threshold. When the incomplete
factorization breaks down due to zero pivots, we do not
proceed with the iterative solver at all.

We chose TFQMR based on initial experiments
that compared TFQMR, stabilized bi-conjugate gradients
(BICGSTAB), and generalized minimum residual (GM-
RES), the last with restarts every 10, 20, and 40 iterations.
These experiments, which are not reported here, showed
that the overall performance and robustness of TFQMR and
BICGSTAB are quite similar, with GMRES being less ef-
ficient. Since our goal is to evaluate iterative solvers as
candidates for general-purpose black-box solvers, and not
to compare different Krylov-space methods, we picked one
solver for the experiments reported here.

The stopping criteria for the iterative solver are as fol-
lows. Convergence is defined as a residual whose 2-norm
is at most 10* times the norm of the solution computed by
SuperLU. While arbitrary, this choice reflects the fact that
the accuracy achieved by a direct solver is often not needed
in applications, while at the same time tying the required
solution to the condition number of the system. Divergence
is defined as a residual that grows by a factor of more than
10* relative to the initial residual. The solver also stops
when the total solution time is more than 10 times the Su-
perLU solution time. We test for convergence after one
iteration, 2, 4, 8, 16, and then every 16 iterations. This pro-
cedure reduces the overhead of convergence testing, while
preventing the solver from iterating too many times when
convergence is rapid. The convergence-testing subroutine
computes true residuals.

Our time limit criterion and our convergence criterion
cannot be implemented in applications, since they require
the direct solution of the system. But they allow us to com-
pare the iterative solver to the direct solver effectively with-
out wasting too much computer time. (Even so, the exper-
iments took about two weeks of computer time to com-
plete.)

For each linear system, we ran four sets of experiments,
two with partial pivoting (in both the complete and incom-
plete factorization), and two with no pivoting (sometimes
called diagonal pivoting). The reference residual and run-
ning time used in the stopping criteria are always the ones
from the SuperLU solver with partial pivoting. In two sets
of experiments, one with and one without pivoting, we
tested the drop-threshold preconditioner. In each set, we
ran a direct solver and 33 iterative solvers, in which the
drop threshold 7 in the incomplete factorizations s set at
2732 2-81 . 2-1 1. Inthe other two sets, also one with
and one without pivoting, we tested column-fill-ratio pre-
conditioners. We tested fill ratio 32,16,8,4,2,and 1. (A
fill ratio » means that when a column of A has n nonze-
ros, the corresponding columns of L and U each retain
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their largest rn elements plus the diagonal element and all
the original A elements. Because the original nonzeros are
never dropped, and because some columns may not fill by
a factor of r, the total number of nonzeros in U + L may-.
be somewhat smaller or larger than rNNZ(A4).)

Most of the experiments were carried out using a col-
umn multiple-minimum-degree (MMD) ordering of the
matrices, but we did run one set of experiments using a
reverse-Cuthill-McKee (RCM) ordering. In this set, whose
goal was to allow us to compare different orderings, we
tested each matrix with two column-fill-ratio precondition-
ers, with ratios of 1 and 2.

We also ran three sets of experiments using symmetric-
positive-definite (SPD) matrices. The first set was identical
to the pivoting drop-threshold experiments carried out with
nonsymmetric matrices. The other two sets compared an
iterative solver specific to SPD matrices, denoted in Table 1
as CG+ICC, with a nonsymmetric iterative solver. These
experiments are described more fully in Section 4.

Test Matrices

We performed the bulk of the experiments on a set of 24 test
matrices, listed in Table 2. The table also lists the most im-
portant structural and numerical characteristics of the ma-
trices, as well as whether pivoting was necessary for the
complete and incomplete factorizations. The matrices are
mostly taken from the Parallel SuperLU test set [4], where
they are described more fully. The most important reason
for choosing this set of matrices (except for availability) is
that this is essentially the same set that is used to test Su-
perLU, which is currently one of the best black-box sparse
nonsymmetric solvers. Therefore, this test set allows us to
fairly assess whether preconditioned iterative methods are
appropriate for a black-box solver.

We have also used a set of 12 symmetric positive-definite
matrices in some experiments. Six of these matrices are
from the Harwell-Boeing matrix collection and were re-
trieved from MatrixMarket, an online matrix collection
maintained by NIST*. These include four structural en-
gineering matrices (bcsstk08, besstk25, besstk27, be-
sstk28), a power system simulation matrix (1108_bus),
and a finite-differences matrix (gr_30_30). The other
six matrices are image processing matrices contributed by
Joseph Liu (den090, dis090, spa090, den120, dis120,
spai120).

Software and Hardware Platforms

We used several mathematical libraries to carry out the
experiments. The experiments were performed using
calls to PETSc 2.0°, an object-oriented library that imple-
ments several iterative linear solvers as well as numerous
sparse matrix primitives [{]. PETSc is implemented in C
and makes calls to the Basic Linear Algebra Subroutines

4 Available online at http:/math.nist.gov/MatrixMarket.
5 Available online from http://www.mcs.anl.gov/petsc.
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LY Method @ @ Ordering > Drop thresholds Col fill ratios
1 23 | TFQMR+ILU | 24 [ NS | MMDon ATA | Y | 273,273 /2711

1 — | TFQMR+ILU | 24 | NS | MMDon ATA | Y 32,16,8,4,2,1
I |23 | TFQMR+ILU | 24 | NS | MMDon A7A | N | 27322781 2711

v — | TFQMR+ILU | 24 | NS | RCMon 4 Y 2,1
v 4 | TFQMR+ILU | 12 | SPD | MMDon ATA | Y | 27322731 2711

VI 4 | TFQMR+ILU | 12 | SPD | MMDon ATA | N 2—32 2-3‘ .27

VII | — | QMR+ILU 6 | SPD | RCMon A N 2—16 2-15 27

VII | — | CG+ICC 6 | SPD | RCMon A N 2—16 2-15 27

Table 1: A summary of the experiments reported in this paper. The table shows the iterative and preconditioning methods
that are used in each set of experiments, the number of matrices and their type (general nonsymmetric, NS, or symmetric
positive definite, SPD), the ordering of the matrices, whether pivoting was used, and the parameters of the incomplete-LU
preconditioners. The first six sets of experiments were carried out using our own incomplete-LU implementation. The
last two experiments, VIII and IX, were carried out using Matlab.

Figures 2, 3, and 4 give detailed data from some of the experiments, the other results are described in the main text.

(BLAS) to perform some operations on dense matrices and
on vectors. PETSc includes several preconditioners, but it
does not include a pivoting incomplete-LU preconditioner.
We therefore added to PETSc two interfaces that call other
libraries. The first interface enables PETSc to use the Su-
perLU library to order and factor sparse matrices. The sec-
ond interface enables PETSc to use our modified version
of the GP library to compute complete and incomplete LU
factorizations.

SuperLU is a state-of-the-art library for sparse LU fac-
torization with partial pivoting [3]. SuperLU achieves high
performance by using a supernodal panel-oriented factor-
ization, combined with other techniques such as panel DFS
with symmetric pruning [6] and blocking for data reuse. It
is implemented in C and calls the level 1 and 2 BLAS to
perform computations on vectors and on dense submatri-
ces. GP is a library for sparse LU factorization with partial
pivoting [7]. GP is column oriented (that is, it does not use
supernodes or panel updates). It uses column DES, but no
symmetric pruning. We modified GP to add the capability
to compute incomplete factorizations with partial pivoting
as explained in Section 2. GP is written in Fortran 77, ex-
cept for some interface routines that are written in C.

We used the Fortran level-1 and level-2 BLAS. We used
PETSc version 2.0.15. In SuperLU, we used the following
optimization parameters: panels of 10 columns, relaxed su-
pernodes of at most 5 columns, supernodes of at most 20
columns, and 2D blocking for submatrices with more than
20 rows or columns.

We ran the experiments on a Sun ULTRA Enterprise 1
workstation running the Solaris 2.5.1 operating system.
This workstation has a 143 MHz UltraSPARC processor
and 320 Mbytes of main memory. The processor has a
32 Kbytes on-chip cache, a 512 Kbytes off-chip cache, and
a 288-bit-wide memory bus.

We used the Sunpro-3.0 C and Fortran 77 compilers,
with the -x03 optimization option for C and the -03 op-

timization option for Fortran. Some driver functions (but
no computational kernels) were compiled with the GCC C
compiler version 2.7.2 with optimization option -03.

4 Experimental Results

This section summarizes our results. This summary is quite
long, and it is supported by many graphs that contain sub-
stantial amounts of information. This is a result of the com-
plexity of the underlying data. We found that it was not
possible to summarize the experiments concisely because
each matrix or small group of matrices exhibited a differ-
ent behavior. This complexity itself is part of our results,
and we attempt to include enough information for readers
to gauge it.

We begin with a broad classification of the matrices into
those that require pivoting and those that do not. We then
discuss each group separately. While most of the experi-
ments were carried out with a column multiple-minimum-
degree (MMD) ordering, we describe one set of experi-
ments whose goal is to compare MMD to reverse-Cuthill-
McKee (RCM) ordering. We also compare drop-threshold
and column-fill-ratio factorizations with similar amounts of
fill. We conclude the section with a discussion of two sets
of experiments with symmetric-positive-definite matrices,
whose goal is to determine whether the difficulties we en-
countered with the nonsymmetic matrices were due to the
properties of the matrices, of the more general nonsym-
metric solver, or of the incomplete-factorization paradigm
itself.

General Classification of Matrices

In our experiments, matrices that are more than 50% struc-
turally symmetric did not require pivoting for either the di-
rect or the preconditioned iterative solvers. Matrices that
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Matrix N NNZ | 3% Z& AR lzAa Z2
gre_1107 1107 5664 | 020 0.20 -1.0e+00
orsirr_1 1030 6858 | 1.00 050 29e-04| Y Y
mahindas 1258 7682 | 0.03 0.01 -1.0e+00 Y
sherman4 1104 3786 | 1.00 0.29 2.0e-04 | Y Y
west2021 2021 7310 | 0.00 0.00 -1.0e+00
saylrd 3564 22316 | 1.00 1.00 -6.1e-07 | Y Y
pores_2 1224 9613 | 0.66 0.47 -1.0e+00 Y Y
extrl 2837 10969 | 0.00 0.00 -1.0e+00
radfrl 1048 13299 | 0.06 0.01 -1.0e+00
hydrl 5308 22682 | 0.00 0.00 -1.0e+00
1hrO1 1477 18428 | 0.01 0.00 -1.0e+00
vavasisl 4408 95752 | 0.00 0.00 -1.0e+00
rdist2 3198 56834 | 0.05 0.00 -1.0e+00
rdist3a 2398 61896 | 0.15 0.01 -1.0e+00
1hr04 4101 81067 | 0.02 0.00 -1.0e+00
vavasis2 11924 306842 | 0.00 0.00 -1.0e+00
onetone2 | 36057 222596 | 0.15 0.10 -1.0e+00
onetonel | 36057 335552 | 0.10 0.07 -1.0e+00
bramieyl | 17933 962469 | 098 0.73 -1.0e+00 | Y Y
bramley2 [ 17933 962537 | 098 0.78 -1.0e+00 | Y Y
psmigr_1 3140 543160 | 0.48 0.02 -1.0e+00
psmigr_2 3140 540022 | 048 0.00 -1.0e+00 | Y
psmigr_3 | 3140 543160 | 048 0.01 -1.0e+00
vavasis3 | 41092 1683902 | 0.00 0.00 -1.0e+00

415

Table 2: The nonsymmetric matrices that are used in our experiments. The table shows the order N and number of
nonzeros (NNZ) of the matrices, structural and numerical symmetry, diagonal dominance, and whether the matrices
require pivoting in direct and iterative factorizations. The structural symmetry is the fraction of nonzeros whose symmetric
matrix elements are also nonzeros, the numerical symmetry is the fraction of nonzeros whose symmetric elements have
the same numerical value, and the diagonal dominance is defined as min;—  n (| 4|/ Z#i 14:;]) — 1, so a matrix with
nonnegative diagonal dominance is diagonally dominant, and a matrix with diagonal dominance —1 has a zero on the

diagonal.
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are less than 50% structurally symmetric generally require
pivoting for both the direct and the preconditioned iterative
solvers, with two exceptions: mahindas and psmigr_2
(3% and 48% structurally symmetric, respectively). A
nonpivoting direct solver worked on these two matrices
(although the solutions produced were significantly less
accurate than solutions obtained with pivoting factoriza-
tions), but the iterative solvers converged only with pivot-
ing preconditioners. In both cases the nonpivoting iterative
solver detected divergence and stopped. The 2-norms of
the forward errors were about 7 orders of magnitude larger
with the nonpivoting direct solver than with the pivoting
solver for mahindas, and 5 orders of magnitude larger for
psmigr_2. The 2-norms of the residuals were also larger
by similar factors.

We believe that the 50% structural symmetry cutoff point
for the need to pivot is significantly influenced by the set of
test matrices that we used. We believe that there are matri-
ces that arise in applications with more than 50% structural
symmetry that do not require pivoting and matrices with
less than 50% structural symmetry that do require pivoting.

Nonpivoting Factorizations

Figure 2 summarizes the results of experiments [ and I1I the
6 matrices did not require a pivoting preconditioner. On 5
of these 6 matrices, the iterative solver with the best drop-
threshold preconditioner was faster than SuperLU. On 3
of the 6, even a pivoting preconditioner was faster than
SuperLU. On the other 2 matrices in which a nonpivot-
ing preconditioner was faster than SuperLLU, bramley1 and
bramley1, the pivoting preconditioners were not able to
reduce the running time over either GP or SuperLU. On
one matrix, sherman4, all the preconditioners converged,
but none reduced the running time below either GP or Su-
perLU.

On 4 of the 6 matrices that did not require a pivoting pre-
conditioner, the iterative solver converged with very sparse
factorizations. On 3 of the 4, a factorization with no fill
at all (ILU(0)) converged. On saylr4, factorizations with
no fill or very little fill did not converge to an accurate
solution. They did converge to a less accurate solution.
The sparsest factorization that converged had only 117%
of the fill of ILU(Q) and only 5% of the fill of the complete
factorization. On the two remaining matrices, bramiey1
and bramley2, even the sparsest (ILU(0)) nonpivoting pre-
conditioners converged, but all the pivoting preconditioners
that converged were almost complete factorizations.

Generally speaking, the only failure mode for all 8 matri-
ces that did not require a pivoting direct solver was exceed-
ing the time limit. There were essentially no numerically
zero pivots or unstable factorizations. In some cases we be-
lieve that a higher time limit would allow convergence; in
some cases the solver has converged to a solution that was
not accurate enough and could not further reduce the resid-
ual; and in some cases the solver exceeded the time limit
without significantly reducing the residual at all. In two

J.R. Gilbert et al.

cases a single drop-threshold value produced an unstable
factorization, once when pivoting (on pores_2), and once
when not pivoting (on bramley2).

Pivoting Factorizations

We now discuss the results of experiments I and III with the
16 matrices that required pivoting for both complete and
incomplete factorizations, as well as with the 2 matrices
that did not require pivoting for a complete factorization,
but did require pivoting incomplete factorizations. The re-
sults of these experiments are summarized in Figures 3a,
3b, and 3c.

On 7 of the 18 matrices, the iterative solver (with the best
preconditioner) was faster than both SuperLU and GP (in
2 of these 7 cases the improvement over SuperLU was less
than 20%). On 3 more matrices, the iterative solver was
faster than GP but not faster than SuperLU (in one of the
3 cases the improvement over GP was less than 20%). On
the remaining 8 matrices, the iterative solver did not reduce
the solution time over either SuperLLU or GP.

Twelve of the matrices converged with a preconditioner
with 50% or less of the fill of a complete factorization.
Only 7 converged with 40% or less, only 5 with 20% or
less, and 2 with less than 10%. Only 2 matrices, psmigr_1
and psmigr_3, converged with an ILU(0) factorization.

Failure modes in the pivoting preconditioners on 12 of
the 18 matrices included unstable factorizations that were
detected as either numerically zero pivots during the fac-
torization or divergence during the iterations (the 2-norm
of the residual grows by a factor of 101 or more). Zero piv-
ots were detected on 11 matrices, and divergence on 6. On
the remaining 6 out of the 18 matrices, 2 matrices always
converged, and on the other 4 the only failure mode was
exceeding the time limit.

The Effect of Ordering on Convergence

Since RCM ordering produces significantly more fill than
MMD in complete and nearly complete factorizations, we
only tested RCM orderings on relatively sparse incomplete
factorizations, namely, column-fill-ratio factorizations with
ratios of 1 and 2. We now compare these RCM precondi-
tioners, from experiment IV, with column-fill-raio MMD
preconditioners with the same ratios from experiment I1.

In only 18 of the 48 experiments (24 matrices with 2
fill ratios each), both orderings converged. In 7 more the
MMD-ordered preconditioner converged but the RCM-one
exceeded the time limit (which was identical for both or-
derings and based on the SuperLU time with an MMD or-
dering). There were no other cases.

When both converged, MMD was faster in 8 experi-
ments and RCM in 10. But when MMD was faster, the
RCM preconditioner took on average 207% more time to
converge (that is, RCM was on average 3 times slower),
whereas when RCM was faster, MMD took on average
47% more time (1.5 times slower). The MMD and RCM
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preconditioners had similar numbers of fill elements, but
the MMD preconditioners were a little sparser on average
in both cases.

Our experiments show that pivoting incomplete factor-
izations with column ordering based on an MMD ordering
of AT A usually converge faster than pivoting incomplete
factorizations with column ordering based on an RCM or-
dering of A.

One possible reason for the difference in performance is
that the MMD preconditioners retain a larger fraction of the
fill of a complete factorization than the RCM ones. We ex-
pect an MMD ordering to yield a sparser complete factor-
ization than an RCM ordering. Since the column-fill-ratio
preconditioners had about the same number of fill elements
with both orderings, more fill was dropped from the RCM
preconditioners than from the MMD ones.

Column-Fill-Ratio Incomplete Factorizations

To compare the quality of drop-tolerance precondition-
ers and column-fill-ratio preconditioners, we matched each
column-fill-ratio preconditioner from experiment II with
a drop-tolerance preconditioner with a similar number of
nonzeros from experiment I. Specifically, we paired with
a column-fill-ratio preconditioner with & nonzeros a drop-
tolerance preconditioner with between 0.9% and k£ nonze-
ros, if there was one. We broke ties by choosing the pre-
conditioner with the largest number of nonzeros among all
admissible ones.

Out of 144 drop tolerance preconditioners, 108 were
paired. In 15 of the pairs neither preconditioner converged
within the time limit. In 16 pairs only the drop-tolerance
preconditioner converged. Among the 77 pairs in which
both preconditioners converged, the column-fill-ratio pre-
conditioners required, on average, factors of 21.7 more
iterations and 2.67 more time to converge (time includ-
ing both factorization and iterations). There were only
6 pairs-in which the column-fill-ratio preconditioner con-
verged faster. Among these 6, the column-fill-ratio precon-
ditioners, required on average a factor of 0.87 less time to
converge. We conclude that for a given number of nonze-
ros, a drop-tolerance preconditioner is usually dramatically
better, and never much worse.

Symmetric Positive Definite Matrices

Although this paper only focuses on nonsymmetric ma-
trices, we did perform some experiments on symmetric-
positive-definite matrices. The goal of these experiments
was not to assess iterative solvers for SPD matrices, but to
answer two specific questions: (a) does our iterative solver
perform better on SPD matrices than on nonsymmetric ma-
trices, and if not, (b) can an iterative solver that exploits the
properties of SPD matrices perform better?

We ran two sets of experiments. In the first set, consist-
ing of experiments V and VI, we used exactly the same
Krylov-space method and the same preconditioner, non-
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symmetric LU with and without partial pivoting, to solve
12 SPD matrices. Our goal in this first set was to determine
whether the behavior of our solver is significantly better
when the matrices are SPD.

The results, which are described in Figures 4a and 4b,
show that even SPD matrices can cause the solver diffi-
culties. Out of the 12 matrices, only 4 can be solved with
large drop tolerances. There is only one case (bcsstk08) of
spectacular reduction in running time relative to the direct
solver. Most of the failures are caused by exceeding the
time limit, but in a few cases the factorization is unstable
and causes the solver to diverge. There is no significant dif-
ference in performance between pivoting and nonpivoting
factorizations.

In the second set, consisting of experiments VII and VII,
we compared a symmetric and a nonsymmetric solver on
6 of the matrices (bcsstk08, besstk25, besstk27, be-
sstk28, 1138_bus, and gr_30_30). We compared a con-
jugate gradient (CG) method using a drop-tolerance in-
complete Cholesky preconditioner to a QMR method using
a drop-tolerance incomplete LU preconditioner. The first
solver exploits the fact that the matrices are SPD, while the
second is quite similar to our nonsymmetric iterative solver,
except that it does not pivot. We used Matlab 5.0 for this
experiment, and symmetrically permuted the matrices us-
ing RCM ordering. We again set the required residual to be
10* times less accurate than a residual obtained by direct
solution. We set the maximum number of iterations to 512.

The results of this experiment show no significant quali-
tative differences between the symmetric and the nonsym-
metric solver. The symmetric solver was able to solve the
matrices bcsstk08, besstk27, gr_30_30, and 1138_bus
even with very large drop tolerances (more than 512 iter-
ations were required on 1138_bus with the two sparsest
factorizations). The symmetric solver failed to converge in
512 iterations with most of the values of the drop tolerance
on the other two matrices. Reduction in running time rel-
ative to the direct solver was obtained only on bcsstk08.
This behavior is similar to the behavior of our nonsymmet-
ric solver.

5 Conclusions

The primary conclusion from our experiments is that iter-
ative solvers with incomplete LU preconditioners can be
very effective for some nonsymmetric linear systems, but
they are not robust enough for inclusion in general-purpose
black-box linear solvers.

Iterative solvers sometimes save a factor of about 10
in both time and space relative to a state-of-the-art di-
rect sparse solver. But in most cases even the best drop-
threshold value does not produce a very effective precon-
ditioner. Also, to our knowledge there are no known tech-
niques for determining an optimal or near-optimal drop-
threshold value. Therefore, a black-box solver is likely to
operate most of the time with sub-optimal drop thresholds,
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Figure 4a: Experiments V and VI. Running times and nonzero counts for SPD matrices ordered using MMD on A% 4, as
a function of the drop threshold. The running times with pivoting are denoted by diamonds, and the running times without
pivoting by squares. The nonzero counts are denoted by (red) x’s for factorizations with pivoting, and by (red) crosses
without pivoting. The y-axes are scaled so that the running time and nonzero count of the complete GP factorization with
pivoting (and triangular solution, for time) would fall on the middle hash marks. The scale on both axes is logarithmic.
The time limit for iterative solutions is 10 times the total factor-and-solve time for SuperLU.
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which can lead to slow convergence or no convergence.
Qut of hundreds of iterative solutions, few were more than
10 times faster than a direct solver, but many were more
than 10 times slower.

Our experiments on SPD matrices, while limited, sug-
gest that our primary conclusion remains valid even if we
restrict our attention to SPD matrices, and perhaps even to
SPD matrices solved by symmetric methods. These exper-
iments, however, are limited in scope, and were only meant
to indicate whether the nonsymmetry of the matrices or of
the solvers caused the difficulties that we have reported.
They were not meant to provide an evaluation of iterative
solvers for SPD matrices and should not be used as such.

We also draw some secondary conclusions from the data
on nonsymmetric matrices.

— First, pivoting in incomplete LU is necessary in many
cases, even though we always begin by permuting the
matrices to create a nonzero diagonal. Pivoting is
necessary whenever pivoting is required for the direct
solution, and it is necessary even for some systems
that can be directly solved without pivoting. In other
words, pivoting is more important in the incomplete
case than in the complete case.

— Second, the best overall running times for the iterative
solution of single linear systems (as opposed to mul-
tiple systems with the same matrix) are almost always
achieved with around 8 to 16 iterations.

— Third, drop-tolerance preconditioners are more effec-
tive than column-fill-ratio preconditioners with a sim-
ilar amount of fill. This is unfortunate, since column-
fill-ration and other fixed-fill strategies allow solvers
to tailor the preconditioner to the amount of available
main memory.

- Fourth, MMD column ordering yields more efficient
preconditioners than RCM column ordering. (Note
that Duff and Meurant [5] showed that for SPD ma-
trices, RCM is often a more effective ordering for
incomplete-Cholesky preconditioners with no fill.)

Iterative solvers are suitable for toolkits for the solution
of sparse linear systems. Toolkits implement multiple al-
gorithms and enable the user to construct a solver that can
efficiently solve a given problem. An iterative solver that
works well on one matrix may be inefficient or even fail
to converge on another. For example, Grote and Huckle [8]
switch from right to left preconditioning in order to achieve
convergence with a sparse-approximate-inverse precondi-
tioner on pores2, and Chow and Saad [2] switch from row
to column-oriented factorization to achieve convergence
with thr01. Chow and Saad also use a variety of other tech-
niques to solve other systems. There are no established cri-
teria that can guide an automatic system as to which solver
is appropriate for a given matrix. Therefore, it is necessary
to give the user control over which algorithms are used to
solve a linear system, which is exactly what toolkits do.

J.R. Gilbert et al.

Direct solvers, on the other hand, are suitable for black-
box solvers. A single direct solver with a single order-
ing was reliable and efficient on all of our test matrices.
In comparison, our experiments have not turned up any
single iterative solver (say, TFQMR with a specific drop-
threshold preconditioner) that can rival the overall reliabil-
ity and performance of this direct solver. While tuning a
direct solver—by changing the ordering, for example—can
sometimes improve its performance, we believe that direct
solvers, even “right out of the box™ with no tuning at all,
are more reliable and more efficient than iterative solvers.

The discussion in the preceding paragraphs suggests that
there are problems that can be solved, but not by black-box
solvers. We did not include problems that are too large to
be solved by a direct solver on a high-end workstation in
our test set because we would not be able to compare direct
and iterative solvers on them. QOur experiments show that
some problems can be solved by an iterative solver with
a drop-threshold preconditioner with no or little fill, and
that this solver requires significantly less memory than the
direct solver. The direct solver would ran out of memory
trying to solve similar but larger problems, but the itera-
tive solver should be able to solve them. This implies that
black-box solvers can solve all problems up to a certain
size with reasonable efficiency, and that larger problems
can sometimes be solved by more specialized solvers.

One potentially useful technique is to adaptively search
for an efficient preconditioner, hoping not to waste too
much time in the search. Two facts can guide us in design-
ing the search. Since an efficient preconditioner usually
yields a solution in 8-16 iterations, we can abort the solver
after about 20 iterations, or if we encounter a zero pivot,
and try to construct a new preconditioner. Since most of
the solution time is spent in the factorization phase when
the preconditioner is relatively dense, one should start the
search with very sparse preconditioners, so that aborting
and refactoring is not too expensive. One flaw in this idea is
that some matrices do not fill very much (e.g., west2021),
so each aborted iterative solution can be almost as expen-
sive as a direct solution.

We believe that studying iterative solvers in the context
of the reliability and performance of a direct solver is im-
portant. While comparisons of iterative solution techniques
to one another can be very informative, they do not provide
practitioners with specific practical advice. Since practi-
tioners have the option to use direct solvers, which are gen-
erally reliable and efficient, they need to know whether the
iterative solver under study outperforms state-of-the-art di-
rect solvers. The knowledge that one iterative solver out-
performs another is usually not sufficient for deciding to
deploy it. We hope to see more direct/iterative comparative
studies in the future, at least for nonsymmetric matrices,
especially since SuperL.U is freely available on NETLIB.

To summarize, we believe that incomplete LU precon-
ditioners with partial pivoting are useful components in a
toolkit for the iterative solution of linear systems, such as
PETSc. Such preconditioners can be very effective in indi-
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vidual applications that give rise to a limited class of linear
systems, so that the drop threshold and other parameters
(e.g., ordering) can be tuned and the entire solver can be
tested for reliability. But such iterative solvers cannot cur-
rently rival the reliability and performance of direct sparse
solvers.

Finally, early responses to this paper convice us that
more such studies are needed.
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Slovenia realises that that its intellectual potential and all
activities connected with its beautiful country are the basis
for its future development. Therefore, the country has to
give priority to the development of knowledge in all fields.
The Slovenian government uses a variety of instruments
to encourage scientific research and technological develop-
ment and to transfer the results of research and develop-
ment to the economy and other parts of society.

The Ministry of Science and Technology is responsi-
ble, in co-operation with other ministries, for most public
programmes in the fields of science and technology. Within
the Ministry of Science and Technology the following of-
fices also operate:

Slovenian Intellectual Property Office (SIPQ) is in
charge of industrial property, including the protection of
patents, industrial designs, trademarks, copyright and re-
lated rights, and the collective administration of authorship.
The Office began operating in 1992 - after the Slovenian
Law on Industrial Property was passed.

The Standards and Metrology Institute of the Republic
of Slovenia (SMIS) By establishing and managing the sys-
tems of metrology, standardisation, conformity assessment,
and the Slovenian Award for Business Excellence, SMIS
ensures the basic quality elements enabling the Slovenian
economy to become competitive on the global market,
and Slovenian society to achieve international recognition,
along with the protection of life, health and the environ-
ment.

Office of the Slovenian National Commission for UN-
ESCO is responsible for affairs involving Slovenia’s co-
operation with UNESCO, the United Nations Educational,
Scientific and Cultural Organisation, the implementation of
UNESCO’s goals in Slovenia, and co-operation with Na-
tional commissions and bodies in other countries and with
non- governmental organisations.

General Approaches — Science Policy

Educating top-quality researchers/experts and increasing
their number, increasing the extent of research activity and
achieving a balanced coverage of all the basic scientific dis-
ciplines necessary for:

- quality undergraduate and postgraduate education,

- the effective transfer and dissemination of knowledge
from abroad,

- cultural, social and material development,

- promoting the application of science for national needs,

- promoting the transfer of R&D results into production and
to the market,

- achieving stronger integration of research into the net-
works of international co-operation (resulting in the com-
plete internationalisation of science and partly of higher ed-
ucation),

- broadening and deepening public understanding of sci-
ence (long-term popularisation of science, particularly
among the young).

General Approaches — Technology Policy

- promotion of R&D co-operation among enterprises, as
well as between enterprises and the public sector,

- strengthening of the investment capacities of enterprises,
- strengthening of the innovation potential of enterprises,

- creation of an innovation-oriented legal and general soci-
etal framework,

- supporting the banking sector in financing innovation-
orientated and export-orientated business

- development of bilateral and multilateral strategic al-
liances,

- establishment of ties between the Slovenian R&D sector
and foreign industry,

- accelerated development of professional education and
the education of adults,

- protection of industrial and intellectual property.

An increase of total invested assets in R&D to about
2.5% of GDP by the year 2000 is planned (of this, half is
to be obtained from public sources, with the remainder to
come from the private sector). Regarding the development
of technology, Slovenia is one of the most technologically
advanced in Central Europe and has a well-developed re-
search infrastructure. This has led to a significant growth
in the export of high-tech goods. There is also a continued
emphasis on the development of R&D across a wide field
which is leading to the foundation and construction of tech-
nology parks (high -tech business incubators), technology
centres (technology-transfer units within public R&D insti-
tutions) and small private enterprise centres for research.

R&D Human Potential

There are about 750 R&D groups in the public and pri-
vate sector, of which 102 research groups are at 17 govern-
ment (national) research institutes, 340 research groups are
at universities and 58 research groups are at medical insti-
tutions. The remaining R&D groups are located in business
enterprises (175 R&D groups) or are run by about 55 public
and private non-profit research organizatios.

According to the data of the Ministry of Science and
Technology there are about 7000 researchers in Slovenia.
The majority (43%) are lecturers working at the two uni-
versities, 15% of researchers are employed at government
(national) research institutes, 22% at other institutions and
20% in research and development departments of business
enterprises.
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JoZef Stefan (1835-1893) was one of the most prominent
physicists of the 19th century. Born to Slovene parents,
he obtained his Ph.D. at Vienna University, where he was
later Director of the Physics Institute, Vice-President of the
Vienna Academy of Sciences and a member of several sci-
entific institutions in Europe. Stefan explored many areas
in hydrodynamics, optics, acoustics, electricity, magnetism
and the kinetic theory of gases. Among other things, he
originated the law that the total radiation from a black
body is proportional to the 4th power of its absolute tem-
perature, known as the Stefan—Boltzmann law.

The Jozef Stefan Institute (JSI) is the leading indepen-
dent scientific research institution in Slovenia, covering a
broad spectrum of fundamental and applied resecarch in the
fields of physics, chemistry and biochemistry, electronics
and information science, nuclear science technology, en-
ergy research and environmental science.

The JoZef Stefan Institute (JSI) is a research organisation
for pure and applied research in the natural sciences and
technology. Both are closely interconnected in research de-
partments composed of different task teams. Emphasis in
basic research is given to the developmentand education of
young scientists, while applied research and development
serve for the transfer of advanced knowledge, contributing
to the development of the national economy and society in
general.

At present the Institute, with a total of about 700 staff,
has 500 researchers, about 250 of whom are postgraduates,
over 200 of whom have doctorates (Ph.D.), and around
150 of whom have permanent professorships or temporary
teaching assignments at the Universities.

In view of its activities and status, the JSI plays the role
of a national institute, complementing the role of the uni-
versities and bridging the gap between basic science and
applications.

Research at the JSI includes the following major fields:
physics; chemistry; electronics, informatics and computer
sciences; biochemistry; ecology; reactor technology; ap-
plied mathematics. Most of the activities are more or
less closely connected to information sciences, in particu-
lar computer sciences, artificial intelligence, language and
speech technologies, computer-aided design, computer ar-
chitectures, biocybernetics and robotics, computer automa-
tion and control, professional electronics, digital communi-
cations and networks, and applied mathematics.

The Institute is located in Ljubljana, the capital of the in-
dependent state of Slovenia (or SOnia). The capital today
is considered a crossroad between East, West and Mediter-

ranean Europe, offering excellent productive capabilities
and solid business opportunities, with strong international
connections. Ljubljana is connected to important centers
such as Prague, Budapest, Vienna, Zagreb, Milan, Rome,
Monaco, Nice, Bern and Munich, all within a radius of 600
km.

In the last year on the site of the JoZef Stefan Institute,
the Technology park “Ljubljana™ has been proposed as part
of the national strategy for technological development to
foster synergies between research and industry, to promote
Jjoint ventures between university bodies, research institutes
and innovative industry, to act as an incubator for high-tech
initiatives and to accelerate the development cycle of inno-
vative products.

At the present time, part of the Institute is being reor-
ganized into several high-tech units supported by and con-
nected within the Technology park at the JoZef Stefan In-
stitute, established as the beginning of a regional Technol-
ogy park “Ljubljana”. The project is being developed at
a particularly historical moment, characterized by the pro-
cess of state reorganisation, privatisation and private ini-
tiative. The national Technology Park will take the form
of a shareholding company and will host an independent
venture-capital institution.

The promoters and operational entities of the project are
the Republic of Slovenia, Ministry of Science and Tech-
nology and the JoZef Stefan Institute. The framework of
the operation also includes the University of Ljubljana, the
National Institute of Chemistry, the Institute for Electron-
ics and Vacuum Technology and the Institute for Materials
and Construction Research among others. In addition, the
project is supported by the Ministry of Economic Relations
and Development, the National Chamber of Economy and
the City of Ljubljana.

JoZef Stefan Institute

Jamova 39, 1000 Ljubljana, Slovenia

Tel.:+386 14773 900, Fax.:+386 1 219 385
Tix.:31 296 JOSTIN SI

WWW: http://www.ijs.si

E-mail: matjaz.gams@ijs.si

Contact person for the Park: Iztok Lesjak, M.Sc.
Public relations: Natalija Polenec


http://www.ijs.si
mailto:matjaz.gams@ijs.si

Informatica 24

INFORMATICA
AN INTERNATIONAL JOURNAL OF COMPUTING AND INFORMATICS

INVITATION, COOPERATION

Submissions and Refereeing

Please submit three copies of the manuscript with good copies of
the figures and photographs to one of the editors from the Edito-
rial Board or to the Contact Person. At least two referees outside
the author’s country will examine it, and they are invited to make
as many remarks as possible directly on the manuscript, from typ-
ing errors to global philosophical disagreements. The chosen ed-
itor will send the author copies with remarks. If the paper is ac-
cepted, the editor will also send copies to the Contact Person. The
Executive Board will inform the author that the paper has been
accepted, in which case it will be published within one year of
receipt of e-mails with the text in Informatica WTEX format and
figures in . eps format. The original figures can also be sent on
separate sheets. Style and examples of papers can be obtained by
e-mail from the Contact Person or from FTP or WWW (see the
last page of Informatica).

Opinions, news, calls for conferences, calls for papers, etc. should
be sent directly to the Contact Person.

QUESTIONNAIRE
D Send Informatica free of charge

D Yes, we subscribe

Please, complete the order form and send it to Dr. Rudi Murn,
Informatica, Institut JoZef Stefan, Jamova 39, 61111 Ljubljana,
Slovenia.

Since 1977, Informatica has been a major Slovenian scientific
journal of computing and informatics, including telecommunica-
tions, automation and other related areas. In its 16th year (more
than five years ago) it became truly international, although it still
remains connected to Central Europe. The basic aim of Infor-
matica is to impose intellectual values (science, engineering) in a
distributed organisation.

Informatica is a journal primarily covering the European com-
puter science and informatics community - scientific and educa-
tional as well as technical, commercial and industrial. Its basic
aim is to enhance communications between different European
structures on the basis of equal rights and international referee-
ing. It publishes scientific papers accepted by at least two ref-
erecs outside the author’s country. In addition, it contains in-
formation about conferences, opinions, critical examinations of
existing publications and news. Finally, major practical achieve-
ments and innovations in the computer and information industry
are presented through commercial publications as well as through
independent evaluations.

Editing and refereeing are distributed. Each editor can conduct
the refereeing process by appointing two new referees or referees
from the Board of Referees or Editorial Board. Referees should
not be from the author’s country. If new referees are appointed,
their names will appear in the Refereeing Board.

Informatica is free of charge for major scientific, educational and
governmental institutions. Others should subscribe (see the last
page of Informatica). '

ORDER FORM - INFORMATICA



Informatica WWW:

http://ai.ijs.si/informatica/
http://orca.st.usm.edw/informatica/

Referees:

Witold Abramowicz, David Abramson, Adel Adi, Kenneth Aizawa, Suad Alagi¢, Mohamad Alam, Dia Ali, Alan
Aliu, Richard Amoroso, John Anderson, Hans-Jurgen Appelrath, Vladimir Baji¢, Grzegorz Bartoszewicz, Catriel
Beeri, Daniel Beech, Fevzi Belli, Francesco Bergadano, Istvan Berkeley, Azer Bestavros, Andraz BeZek, Balaji
Bharadwaj, Ralph Bisland, Jacek Blazewicz, Laszlo Boeszoermenyi, Damjan BojadzZijev, Jeff Bone, Ivan Bratko,
Jerzy Brzezinski, Marian Bubak, Leslie Burkholder, Frada Burstein, Wojciech Buszkowski, Rajkumar Bvyya,
Netiva Caftori, Jason Ceddia, Ryszard Choras, Wojcicch Cellary, Wojciech Chybowski, Andrzej Ciepielewski, Vic
Ciesielski, David Cliff, Maria Cobb, Travis Craig, Noel Craske, Matthew Crocker, Tadeusz Czachorski, Milan
Ceska, Honghua Dai, Deborah Dent, Andrej Dobnikar, Sait Dogru, Georg Dorfner, Ludoslaw Drelichowski,
Matija Drobni&, Maciej Drozdowski, Marek Druzdzel, Jozo Dujmovié, Pavol Durig, Johann Eder, Hesham
El-Rewini, Warren Fergusson, Picrre Flener, Wojciech Fliegner, Vladimir A. Fomichov, Terrence Forgarty, Hans
Fraaije, Hugo de Garis, Eugeniusz Gatnar, James Geller, Michacl Georgiopolus, Jan Golinski, Janusz Gorski,
Georg Gottlob, David Green, Herbert Groiss, Inman Harvey, Elke Hochmueller, Jack Hodges, Rod Howell, Tomas
Hruska, Don Huch, Alexey Ippa, Ryszard Jakubowski, Piotr Jedrzejowicz, A. Milton Jenkins, Eric Johnson, Polina
Jordanova, Djani Jurici¢, Sabhash Kak, Li-Shan Kang, Orlando Karam, Roland Kaschek, Jacek Kierzenka, Jan
Kniat, Stavros Kokkotos, Kevin Korb, Gilad Koren, Henryk Krawczyk, Ben Kroese, Zbyszko Krolikowski,
Benjamin Kuipers, Matjaz Kukar, Aarre Laakso, Phil Laplante, Bud Lawson, Ulrike Leopold-Wildburger, Joseph
Y-T. Leung, Barry Levine, Xuefeng Li, Alexander Linkevich, Raymond Lister, Doug Locke, Peter Lockeman,
Matija Lokar, Jason Lowder, Kim Teng Lua, Andrzej Matachowski, Bernardo Magnini, Peter Marcer, Andrzej
Marciniak, Witold Marciszewski, Vladimir Marik, Jacek Martinek, Tomasz Maruszewski, Florian Matthes, Daniel
Memmi, Timothy Menzies, Dieter Merkl, Zbigniew Michalewicz, Gautam Mitra, Roland Mittermeir, Madhav
Moganti, Reinhard Moller, Tadeusz Morzy, Daniel Mossé, John Mueller, Hari Narayanan, Rance Necaise, Elzbieta
Niedzielska, Marian Niedq’zwiedziriski, Jaroslav Nieplocha, Jerzy Nogieé, Stefano Nolfi, Franc Novak, Antoni
Nowakowski, Adam Nowicki, Tadeusz Nowicki, Hubert Osterle, Wojciech Olejniczak, Jerzy Olszewski, Cherry
Owen, Mieczyslaw Owoc, Tadeusz Pankowski, William C. Perkins, Warren Persons, Mitja Perus, Stephen Pike,
Niki Pissinou, Aleksander Pivk, Ullin Place, Gustav Pomberger, James Pomykalski, Dimithu Prasanna, Gary
Preckshot, Dejan Rakovig, Cveta Razdeviek Pucko, Ke Qiu, Michael Quinn, Gerald Quirchmayer, Luc de Raedt,
Ewaryst Rafajlowicz, Sita Ramakrishnan, Wolf Rauch, Peter Rechenberg, Felix Redmill, David Robertson, Marko
Robnik, Ingrid Russel, A.S.M. Sajeev, Bo Sanden, Vivek Sarin, Iztok Savnik, Walter Schempp, Wolfgang
Schreiner, Guenter Schmidt, Heinz Schmidt, Dennis Sewer, Zhongzhi Shi, William Spears, Hartmut Stadtler,
Olivero Stock, Janusz Stoklosa, Przemystaw Stpiczyriski, Andrej Stritar, Maciej Stroinski, Tomasz Szmuc,
Zdzislaw Szyjewski, Jure Silc, Metod Skarja, Jit1 Slechta, Chew Lim Tan, Zahir Tari, Jurij Tasi&, Piotr Teczynski,
Stephanie Teufel, Ken Tindell, A Min Tjoa, Wieslaw Traczyk, Roman Trobec, Marek Tudruj, Andrej Ule, Amjad
Umar, Andrzej Urbanski, Marko Ur§i¢, Tadeusz Usowicz, Elisabeth Valentine, Kanonkluk Vanapipat, Alexander
P. Vazhenin, Zygmunt Vetulani, Olivier de Vel, John Weckert, Gerhard Widmer, Stefan Wrobel, Stanislaw Wrycza,
Janusz Zalewski, Damir Zazula, Yanchun Zhang, Zonling Zhou, Robert Zorc, Anton P. Zeleznikar


http://ai.ijs.si/inforinatica/
http://orca.st.usm.edu/informatica/

LA

EDITORIAL BOARDS, PUBLISHING COUN CIL

Informatica is a journal primarily covering the European com-
puter science and informatics community; scientific and educa-
tional as well as technical, commercial and industrial. Its basic
aim is to enhance communications between different European
structures on the basis of equal rights and international referee-
ing. It publishes scientific papers accepted by at least two ref-
erees outside the author’s country. In addition, it contains in-
formation about conferences, opinions, critical examinations of
existing publications and news. Finally, major practical achieve-
ments and innovations in the computer and information industry
are presented through commercial publications as well as through
independent evaluations.

Editing and referceing are dlstrlbutcd Each cditor from the
Editorial Board can conduct the referceing process by appointing
two new referees or referees from the Board of Referees or Edi-
torial Board. Referees should not be from the author’s country. If
new referees are appointed, their names will appear in the list of
referees. Each paper bears the name of the editor who appointed
the referees. Each editor can propose new members for the Edi-
torial Board or referees. Editors and referees inactive for a longer
period can be automatically replaced. Changes in the Editorial
Board are confirmed by the Executive Editors.

~ The coordination necessary is made through the Executive Edl<
tors who éxamine the reviews, sort the accepted articles and main-
tain appropriate international distribution. The Exccutive Board

is appointed by the Society Informatika. Informatica is partially -

supported by the Slovenian Ministry of Science and Technology.

‘Each author is guaranteed to receive the reviews of his article.

When accepted, publication in Informatica is guaranteed in less
than one year after the Executive Editors receive the corrected
version of the article. - :

Executive Editor — Editor in Chief -
Anton P. Zeleznikar

Volariceva 8, Ljubljana, Slovema
s5lem@lea.hamradio.si
http://lea.hamradio.si/ s51lem/

Executive Associate Editor (Contact Person)
Matjaz Gams, JoZef Stefan Institute

Jamova 39, 61000 Ljubljana, Slovenia

Phone: 4386 61 1773 900, Fax: 4386 61 219 385
matjaz.gams@ijs.si '
http://www2.ijs.si/ mezi/matjaz.html

Executive Associate Editor (Technical Editor)
Rudi Murn, JoZef Stefan Institute

Publishing Council:

TomaZ Banovec, Ciril BaSkovic,
Andrej Jerman-Blazig, Jozko Cuk,
Vladislav Rajkovi¢

Board of Advisors:
Ivan Bratko, Marko Jagodit,
TomaZ Pisanski, Stanko Strménik

Editorial Board

Suad Alagi¢ (Bosnia and Herzegovina)
Vladimir Baji¢ (Republic of South Africa)
Vladimir Batagelj (Slovenia)
Francesco Bergadano (Italy)
Leon Bimbaum (Romania)
Marco Botta (Italy) =~
Pavel Brazdil (Portugal)
Andrej Brodnik (Slovenia)
Ivan Bruha (Canada) .

Se Woo Cheon (Korea)

Hubert L. Dreyfus (USA)

Jozo Dujmovié (USA) .
Johann Eder (Austria)
Vladimir Fomichov (Russia)
Georg Gottlob (Austria)

Janez Grad (Slovenia)

Francis Heylighen (Belgium)
Hiroaki Kitano (Japan) -

Igor Kononenko (Slovenia)
Miroslav Kubat (USA)

Ante Lauc (Croatia)

Jadran Lenarci¢ (Slovenia)
Huan Liu (Singapore) -
Ramon L. de Mantaras (Spain)
Magoroh Maruyama (Japan)
Nikos Mastorakis (Greece)
Angelo Montanari (Italy)

' Igor Mozeti¢ (Austria)

Stephen Muggleton (UK)
Pavol Navrat (Slovakia) - -
Jerzy R. Nawrocki (Poland) -
Roumen Nikolov (Bulgaria)
Marcin Paprzycki (USA)
Oliver Popov (Maccdonia)
Karl H. Pribram (USA)

Luc De Racdt (Belgium)
Dejan Rakovié (Yugoslavia)
Jean Ramacekers (Belgium)
Wilhelm Rossak (USA)
Ivan Rozman (Slovenia)
Claude Sammut (Australia)
Sugata Sanyal (India) )
Walter Schempp (Germany)
Johannes Schwinn (Germany)
Zhongzhi Shi (China)
Branko Soudek (Italy)
Oliviero Stock (Italy) -
Petra Stoerig (Germany)

Jifi Slechta (UK)

Gheorghe Tecuci (USA)
Robert Trappl (Austria)
Terry Winograd (USA)
Stefan Wrobel (Germany)
Xindong Wu (Australia)



mailto:s51em@lea.hamradio.si
http://lea.hamradio.si/~s51ein/
http://www2.ijs.si/~mezi/matjaz.html

b

Volpme 24 Number 3 September 2(7):7()‘0 1

ISSN 0350-5596

An International J ournal of Computing and Informatics

287

) Reports!an_d Apnouncements -

Introduction 7 . 285
Attribute Grammars as Record Calculus — A K. Gondow
Structure Oriented Denotational Semantics of - T. Katayama
Attribute Grammars by Using Cardelh s Record ‘
- Calculus. : -
Reference Attnbuted Grammars v G. Hedin - 301
4Mult1ple Attribute Grammar Inherltance M. Mernik. 319
: ‘M. Lenié
E. AvdiCauSevi¢ .-
— V. Zumer
First-class Attribute Grammars 0. de Moor 329
' K. Backhouse'
\ S.D.-Swierstra .
Equational Semantics L. Co‘rrertson 343
' Two-dimensional Approximation Coverage T Harm 355
o : ' R. Limmel
A Multi-phase Parallel Algorithm for the A. VBenainir ' 37
Elgenelements Problem - D. Laiymani -
DD-Mod: A 11brary for drstrlbuted programmmg J.M. Mil4n-Franco 379
R. Jiménez-Peris
M. Patifio-Martinez
A Technique for Computmg Watermarks from C.-C. Chang =~ 391
Di gltal Images : : C.-S. Tsai
A Program—Algebrarc Approach to Ehmmatmg - J.M. Boyle 397
Common Subexpressrons - R.D. Resler
An Assessment of Incomplete- LU Precondrtroners , I.R. Gilbert 4709‘
for Nonsymmetrlc Linear Systems - S. Toledo:
V - 427




