0

- 7

Volume 27 Number 1 April 2003 ISSN 0350-5596

Informatica

An International Journal of Computing
and Informatics

Special Issue:

Bioinformatics Tools and Applications
Guest Editors:

Johann Eder, Omran Bukhres

The Slovene Society Informatika, Ljubljana, Slovenia

EDITORIAL BOARDS, PUBLISHING COUNCIL

Informatica is a journal primarily covering the European com-
puter science and informatics community; scientific and educa-
tional as well as technical, commercial and industrial. Its basic
aim is to enhance communications between different European
structures on the basis of equal rights and international referee-
ing. It publishes scientific papers accepted by at least two ref-
erees outside the author’s country. In addition, it contains in-
formation about conferences, opinions, critical examinations of
existing publications and news. Finally, major practical achieve-
ments and innovations in the computer and information industry
are presented through commercial publications as well as through
independent evaluations.

Editing and refereeing are distributed. Each editor from the
Editorial Board can conduct the refereeing process by appointing
two new referees or referees from the Board of Referees or Edi-
torial Board. Referees should not be from the author’s country. If
new referees are appointed, their names will appear in the list of
referees. Each paper bears the name of the editor who appointed
the referees. Each editor can propose new members for the Edi-
torial Board or referees. Editors and referees inactive for a longer
period can be automatically replaced. Changes in the Editorial
Board are confirmed by the Executive Editors.

The coordination necessary is made through the Executive Edi-
tors who examine the reviews, sort the accepted articles and main-
tain appropriate international distribution. The Executive Board
is appointed by the Society Informatika. Informatica is partially
supported by the Slovenian Ministry of Science and Technology.

Each author is guaranteed to receive the reviews of his article.
When accepted, publication in Informatica is guaranteed in less
than one year after the Executive Editors receive the corrected
version of the article.

Executive Editor — Editor in Chief

Anton P. Zeleznikar

Volariceva 8, Ljubljana, Slovenia
s5lem@lea.hamradio.si
http://lea.hamradio.si/“s5lem/

Executive Associate Editor (Contact Person)
Matjaz Gams, JoZef Stefan Institute

Jamova 39, 1000 Ljubljana, Slovenia

Phone: +386 1 4773 900, Fax: +386 1 219 385
matjaz.gams@ijs.si
http://ai.ijs.si/mezi/matjaz.html

Executive Associate Editor (Technical Editor)
Drago Torkar, JoZef Stefan Institute

Jamova 39, 1000 Ljubljana, Slovenia

Phone: +386 1 4773 900, Fax: 4386 1 219 385
drago.torkar@ijs.si

Rudi Murn, Jozef Stefan Institute

Publishing Council:

Tomaz Banovec, Ciril Baskovic,
Andrej Jerman-BlaZzi¢, Jozko éuk,
Vladislav Rajkovi¢

Board of Advisors:
Ivan Bratko, Marko Jagodic,
Tomaz Pisanski, Stanko Strmcnik

Editorial Board

Suad Alagi¢ (Bosnia and Herzegovina)
Vladimir Baji¢ (Republic of South Africa)

Vladimir Batagelj (Slovenia)
Francesco Bergadano (Italy)
Leon Birnbaum (Romania)
Marco Botta (Italy)

Pavel Brazdil (Portugal)
Andrej Brodnik (Slovenia)
Ivan Bruha (Canada)

Se Woo Cheon (Korea)
Hubert L. Dreyfus (USA)
Jozo Dujmovié¢ (USA)
Johann Eder (Austria)
Vladimir Fomichov (Russia)
Georg Gottlob (Austria)
Janez Grad (Slovenia)
Francis Heylighen (Belgium)
Hiroaki Kitano (Japan)

Igor Kononenko (Slovenia)
Miroslav Kubat (USA)

Ante Lauc (Croatia)

Jadran Lenarcic (Slovenia)
Huan Liu (Singapore)
Ramon L. de Mantaras (Spain)
Magoroh Maruyama (Japan)
Nikos Mastorakis (Greece)
Angelo Montanari (Italy)
Igor Mozetic (Austria)
Stephen Muggleton (UK)
Pavol Navrat (Slovakia)
Jerzy R. Nawrocki (Poland)
Roumen Nikolov (Bulgaria)
Franc Novak (Slovenia)
Marcin Paprzycki (USA)
Oliver Popov (Macedonia)
Karl H. Pribram (USA)

Luc De Raedt (Belgium)
Dejan Rakovi¢ (Yugoslavia)
Jean Ramaekers (Belgium)
Wilhelm Rossak (USA)
Ivan Rozman (Slovenia)
Claude Sammut (Australia)
Sugata Sanyal (India)
Walter Schempp (Germany)
Johannes Schwinn (Germany)
Zhongzhi Shi (China)
Branko Soucek (Italy)
Oliviero Stock (Italy)

Petra Stoerig (Germany)

Jift Slechta (UK)

Gheorghe Tecuci (USA)
Robert Trappl (Austria)
Terry Winograd (USA)
Stefan Wrobel (Germany)
Xindong Wu (Australia)

Informatica 27 (2003) 3-14 3

A Decentralized Approach to the Integration of Life Science Web
Databases

Zina Ben Miled,

ECE Department, Indiana University Purdue University Indianapolis,
723 W. Michigan St, SL 160C, Indianapolis, IN, 46202
zmiled@iupui.edu

Nianhua Li, Mark Baumgartner

CSCI Department, Indiana University Purdue University Indianapolis,
723 W. Michigan St, SL 280, Indianapolis, IN, 46202
niali@iupui.edu, maabaumg@iupui.edu

Yang Liu,

ECE Department, Indiana University Purdue University Indianapolis,
723 W. Michigan St, SL 160C, Indianapolis, IN, 46202

liuy yang@yahoo.com

Keywords: integration, biological databases, distributed architecture

Received: June 82002

In the recent decades technological breakthroughs in science and engineering have led to an explosion in the
amount of data available in several fields such as environmental, biological and chemical fields. One of the
obstacles preventing this data from empowering new discoveries is the lack of adequate methods that can
manage this data and turn it into knowledge. This paper presents a scalable solution to the management of life
science databases. Life science web databases are often heterogeneous, geographically distributed and
contain semi-structured data. The proposed system (BACIIS: Biological and Chemical Information
Integration System) integrates these web databases on-demand. The architecture of BACIIS is decentralized.
This design choice was made in order to overcome some of the limitations of remote web-based querying and
to create a system that can adapt to an increasing number of users. This paper discusses the architecture of
BACIIS and presents an analysis of its performance in response to queries submitted by multiple users.

1 Introduction

The highlight of the last decade in the life sciences was
the production of massive amount of data. The objective
of the next decade is to analyse this data and turn it into
knowledge that can enable discoveries. In order for
scientists to turn the available data into knowledge, they
have to be able to formulate hypothesis and validate
them. This process involves accessing multiple databases
that are often only accessible through a web interface.
Furthermore, while these databases contain large amount
of valuable data, they do not easily interoperate. There
are hundreds of life science databases that provide access
to scientific data and literature. These databases use
different nomenclatures, file formats, and data access
interfaces. Furthermore, they may include redundant and
conflicting data.

BACIIS (Biological and Chemical Information
Integration System) [1] is an on-demand information
integration system for life science web-databases. Figure
1 shows BACIIS integrating four widely used life science
web databases. These databases are GenBank [2],
SwissProt[3], OMIM[4] and PDB[5].

1

f

USER
[]
= = =

‘ Unified User Interface

\F

Information Integration Layer

i R Sl i Sl R S

Web-Database Web-Database Web-Database "t Web-Database
GenBank SwissProt OMIM PDB

Figure 1: Information integration of life Science web
database.

‘Wrapper

For example, PDB (Protein Data Bank) contains
information on 3-D biological macromolecular structure
and GenBank is a genetic sequence database, which
consists of an annotated collection of all publicly
available DNA sequences. These databases represent only
a subset of the available life science databases that are in
excess of 100[6]. The objective of BACIIS is to integrate
a large number of these databases in order to provide

4 Informatica 27 (2003) 3-14

wide coverage. This goal can only be achieved through a
robust and scalable architecture.

BACIIS supports the seamless integration of various life
science web databases in order to facilitate knowledge
discovery. It allows a user to issue a multi-database query
without any knowledge of the actual content or data
representation of the individual web databases being
integrated by BACIIS. The querying process is
completely transparent to the user. Thus, allowing him or
her to concentrate on the biological aspects of the project
being conducted rather than on the implementation details
of the web databases that house the needed information.

The integration method used in BACIIS is based on the
semantic understanding and representation of the life
science domain knowledge. BACIIS provides users with
the ability to submit queries across multiple
geographically distributed heterogeneous life science
web-databases. The integration is performed on-demand
as opposed to in advance. That is, when a user issues a
multidatabase query, the corresponding data is retrieved
directly and on-line from the websites of the target life
science web databases. An integration in advance
approach relies on first downloading the various
databases to a local server ahead of time and responding
to the user query using the data from these local
databases. Given that BACIIS performs integration on-
demand, its decentralized architecture enhances its ability
to perform multidatabase queries with reduced response
times even when multiple users are accessing the system.

In this paper, the decentralized architecture of BACIIS is
presented and its query response time is analysed.
Although, BACIIS integrates life science databases, the
proposed architecture can also be used as a model for
systems that process transactions over the Internet.
Section 2 of this paper describes the functionality and
implementation of the decentralized architecture of
BACIIS. Experiments that illustrate the scalability of
BACIIS and its performance are presented in Section 3.
Related work is summarized in Section 4. Conclusions
are included in Section 5.

2 Decentralized Architecture

BACIIS was designed with several goals in mind
including correctness, reduced query response time, and
maximum coverage. In order to fulfil the first goal, an
on-demand integration approach was selected because it
provides the user with up-to-date query results.
Furthermore, correctness dictates a semantic based
integration. The biological databases use disparate
scientific terms and representations. For example, the
term citation is used by PDB and the term references is
used by GenBank to refer to literature references. When
constructing the data source schema for these two
databases, the two terms are tagged by the same ontology
term: REFERENCE. Thus, establishing their equivalency.
In addition, once the result corresponding to these two
terms is returned from each database, the records in each

Z.B. Miled et al.

result have to be combined in order to keep only the
unique records. This example illustrates one of the many
cases where only a semantic integration approach can
resolve the variability among the databases and provide a
correct response to a multidatabase query.

Preserving the local autonomy of the individual life
science web databases was dictated by the culture of the
biological field. Most of the databases are organized
around disciplinary interest or institutional convenience.
This gave rise to data silos that integrate data vertically
(within a domain) but not horizontally (across domains).
The goal of BACIIS is to support this horizontal
integration using a semantic-based approach.

The above mentioned constraints (i.e. correctness,
reduced query response time, maximum coverage and
preservation of the local autonomy of the databases) often
lead to design trade-offs. For example, returning the most
complete result data set for a query (i.e. maximum
coverage through the integration of a large number of
databases) will most likely require a longer response time
than returning a selected reduced data set result. This
paper focuses on the decentralized architecture of
BACIIS and its ability to integrate on-demand, multiple
web databases with fast query response time.

User Web Browser

Il

Web
Interface
Server

Result

Ontology Presentation

Knowledge

——> (T Server
Server
Web Server
RMI with Servlet RMI
support
BACIIS H
Knowledge
Base Query Wrapper
Planning Service

Domain Server |::> Server

Ontology _
RMI RMI
Figure 2: BACIIS decentralized architecture

BACIIS is composed of five servers (Figure 2): Web
interface server, Query Planner Server, Ontology
Knowledge Server, Wrapper Service Server, and Result
Presentation Server. These servers collaborate in order to
generate query plans, match queries with target data
sources, perform data source interrogation, and integrate
the results returned from data sources. The functionality
and implementation of these servers are discussed in the
following subsections.

The architecture of BACIS (Figure 3) is based on a
mediator-wrapper approach [7, 8, 9] augmented with a
knowledge base. The mediator transforms data from its

A Decentralized Approach to the Integration of...

format in the source database to the internal format used
by the integration system. Some of the functions of the
mediator are included in the Query Planning Server and
the remaining functions are included in the Result
Presentation Server.

Web Interface

Input user queries and
present the query results

Result Presentation Module

Query Generator Module Receive and integratq
the individual result

set from wrappers int
HTML format and
send result pages to

|
|
|
|
|
|
|
|
|
|

web interface N
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

]
|
|
|
|
|
|
|
|
|
|
|

Wrapper
Fetch HTML pages| Web
from remote data | | Database
source, extract

based user querics info result data

domain recoganize
terms through Ontology

Wrapper

[Fetch XML pages
from remote data Web
source, extract Database
[: result data
' '
' '

|
|
|
|
|
|
|
|
|
| Generate semantic
|
|
|
|
|
|
|
L

Query Planning and Execution Module

Query Planner

BACIIS
Knowledge
_Base _

Decompose the e | [y curon Engine]
query into subqueri

define the subqueries | Receive data sourcq_|
dependancy, and find || SPecific subqueries

the query paths and envoke
[X) Wrappers to feich
the data from

Wrapper

Fetch TEXT pages
from remote data
source, extract
result data

el
Database

Mapping Engine remote data source|

S;j

Map each subquery int
specific data source(s)|

Information Integration Layer

Figure 3: BACIIS system architecture

Each database participating in the integration is
associated with a wrapper. The wrapper acts as an
intelligent proxy user and extracts information from the
corresponding remote data source. All the wrappers are
part of the Wrapper Service Server.

The life science web databases include semi-structured
data with an unknown or dynamically changing schema.
This characteristic makes it impractical to collect the
schema from each remote database and attempt to
maintain a unified static global data schema using the
traditional relational model. BACIIS uses a different
strategy. Instead of building a global data schema, each
remote database schema is mapped onto the domain
ontology [10]. Both the ontology and the data source
schema for the various databases are included in the
BACIIS knowledge base (Figure 2). The ontology is
independent from the data schema of the remote
databases. It will only change when the biological
domain evolves to include new discoveries and findings.

The decentralized architecture of BACIIS was
implemented using Java Remote Method Invocation
(RMI) [11]. Queries in BACIIS often result in a large
volume of retrieved data. The complexity of the queries
and the high volume of retrieved data, make a centralized
architecture inadequate. Furthermore, a centralized
architecture quickly becomes a bottleneck if multiple
users are trying to submit queries. The decentralized
architecture of BACIIS yields other benefits beyond a
performance enhancement and a better quality of service,
including increased modularity and better maintainability.

Informatica 27 (2003) 3-14 5

2.1 Web Interface Server

The web interface server is developed using JavaBeans
and JSP. It accepts user queries and presents the query
results. Queries in BACIIS are formulated by using the
query by example approach. This is a very popular
approach in the biological domain. The user composes a
query by combining terms from the domain ontology.
These domain ontology terms are retrieved from the
ontology service server.

The user formulates a query in BACIIS through the
interface shown in Figure 4. The first box in this
interface shows the ontology classes and subclasses.
When one of the classes is highlighted the corresponding
properties are displayed in the properties window. This
allows the user to select the desired output property from
the available properties list. The user can select several
classes and several properties. This process in the query
composition allows the user to retrieve only the data that
he or she may need. Filtering the output according to the
preferences of the user will reduce the amount of data
retrieved, which will in turn improve query response
time.

BACIIS Advanced Search
Class Properties
0 CITATION = MARKERS-AND-BIOTECH-TOOLS
1 CLASSIFICATION NUCLEIC-ACID-IDANFO
1.0 PROTEIN-CLASSIFICATION NUCLEIC-ACID-SEQU-HINFO
1.1 PROTEIN-STRUCTURE-CLASSIFICATION
2DRUG
3 MUCLEIC-ACID =l
Keyword Type
UNC PROTEIN-NAME E
AND ~
house ORGANISM-MNAME B
Add Query Submit

Figure 4: BACIIS Advanced Search Interface.

The next step of the query composition is to define the
input part of the query. The input is defined as a Boolean
expression over a set of input keywords. The user can
have unlimited number of predicates in the input query.
However, for each predicate, the user must also specify
an input type that is selected from a drop down menu. For
example, in Figure 4, the keyword mouse is associated
with the type ORGANISM-NAME. The type specification
is necessary when integrating heterogeneous life science
databases because it promotes a more accurate query
result. Most of the life science web databases identify
specific terms, such as organism name, in each record of
the database. Specifying the type organism name for the
input keyword “mouse” will use the metadata knowledge
available in the underlying life science database to
prevent BACIIS from returning irrelevant results. For

6 Informatica 27 (2003) 3-14

example the keyword “mouse” may be used in a different
context such as in “by a click of a mouse”. Records
containing reference to the keyword mouse in this context
are irrelevant to the input query and should not be
returned by BACIIS. A subset of the type list available in
BACIIS is shown in Figure 5.

Type
| PROTEIN-NARME -]

DRGAMNISM-NAME =
GEME-MARME

KEYWORDS

CRIbA-MNO

EC-NO
MNCBFEMBL-DDBJ-ACCESS-M
FIR-ACCESS-M
SWISSPROT-ACCESS-N
FDB-D

FROSITE-MO

G-MND =

Figure 5: User Interface Type Selection

Once the query entry process is completed, the web
interface server will package the query including
information about the output properties, the input and the
output types selected by the user, and forwarded it to the
query planner server.

2.2 Query Planner Server

The role of the query planner server is to decompose a
given query into sub-queries, define the dependencies
between these sub-queries, find proper query execution
paths, map the sub-queries to the appropriate data
sources, and call the wrapper service server to invoke the
corresponding data source wrappers.

Finding a proper query execution plan entails determining
the shortest execution path for the query. The plan is
composed of database specific sub-queries, where each
sub-query can be answered using a single database. This
task involves building a graph of possible paths, where
the sub-queries are the nodes of the graph, and
determining the shortest path.

Consider the following query: For all the enzymes of the
EC family 1.1.1.1 and the human ADH?2 protein, retrieve
their 3D structure information, their coding gene
sequence and their related literature references.

The above query is entered in the BACIIS interface as
follows, where the Boolean operators that combine the
clauses are underlined:

[Protein Name = ADH2] AND [Organism Name =
Human] OR [EC Family Number = /.1.1.1].

Z.B. Miled et al.

The BACIIS interface uses the query-by-example
approach which simplifies the entry of complex queries
such as the above query. Also, as previously mentioned,
the interface uses the ontology to guide the user in
formulating the query.

Query decomposition transforms a complex query into
sub-queries. This is accomplished by breaking the query
string into sub-strings along the partitions of logical
operators. Internally in BACIIS the query is interpreted
using the left anchored operator precedence. The result of
the query decomposition tree for the example query
introduced in Section 1 is shown in Figure 6.

Node 1
» [Protein Name = ADH2] AND [Organism Name = Human]
OR [EC Family Number = 1.1.1.1].

A
Node 2
> [Protein Name = ADH2] AND
[Organism Name = Human].

v

Node 3
[Protein Name = ADH2].
[Organism Name = Human].

Node 4
> [EC Family Number = 1.1.1.1].

Y v

Figure 6: Query Decomposition Tree

In this figure node 1 is processed and all the paths
originating with the databases that can accept the query in
node 1 (i.e. [Protein Name = ADH2] AND [Organism
Name = Human] OR [EC Family Number = /././.1]) and
terminating with the databases that can provide Protein-
3D-Structure, Coding gene sequence, or Related
literature references are determined. For most complex
queries, it is very unlikely that a single life science
database can accept all the query clauses. Therefore, this
query needs to be decomposed further. Without an
information integration system for life science databases,
the user would need to decompose the query manually,
process the various sub-queries and combine the results
of these sub-queries. This fact is one of the motivations
underlying the need for the integration of life science
databases. The query of node 1 is decomposed along the
OR operator into two nodes: node 2 (i.e. [Protein Name =
ADH?] AND [Organism Name = Human]) and node 4
(i.e. [EC Family Number = 1.1.1.1]) . For these nodes
also, the paths that start with databases that can accept the
two sub-queries and terminate in a database that can
generate Protein-3D-Structure, Coding gene sequence, or
Related literature references are identified. The goal of
query decomposition is to explore all the possible
execution paths for the original query submitted by the
user. Each of the nodes 2 and 4 will result in a set of
paths. If the final execution plan includes these nodes, a
given path from the first set will be combined with a path
from the second set. Since the union (OR) of node 2 and

A Decentralized Approach to the Integration of...

node 4 forms the original query, the union of the data set
resulting from the first path and the data set of the second
path is computed in order to collect the result data set for
the original query. The union is performed by the
information integration layer in BACIIS because of the
limited query capabilities of the individual life science
databases. Similarly, if two sub-queries are joined using
the AND operator, then the information integration layer
in BACIIS will compute the intersection of the result data
sets.

The decomposition process continues until nodes with
simple sub-queries (i.e. one input constraint with no
operators) are obtained. For example, the query
decomposition terminates in Figure 6 with nodes 3 and 4.
Each of these nodes contains a set of simple sub-queries.
The first step in the query processing is the
decomposition (Figure 6). Once the query decomposition
tree is obtained, the second step consists of identifying all
the databases that can accept the original query (node 1)
or any of its sub-queries (nodes 2 through 4). For
example, in order to process node 3, the databases that
can accept either one of the following sub-queries must
be determined as input databases:

e Protein Name = ADH?2
e Organism Name = Human

Moreover, all databases that can provide the desired
query output (i.e. Protein-3D-structure, Coding gene
sequences, or Related literature references for the
example query) will be identified as output databases.
Among the four databases that are currently integrated by
BACIIS, SwissProt and PDB can provide Protein-3D-
structure, SwissProt and GenBank can provide Related
literature references, and GenBank can provide Coding
gene sequences.

The third step consists of combining the result of the
previous step into paths that originate from the databases
that can service any of the above queries and terminate in
an output database that contains the query result (i.e.
Protein-3D-Structure, Coding gene sequence, or Related
literature references information for the example query).
Figure 7 shows the complete plan for the above sample
query. The plan contains five paths: A1, A2, B1, CI1, and
C2.

The forth step is to translate the plan in Figure 7 into an
executable plan. The plan in Figure 7 contains 5 plan
paths. Each of them contains several steps. In the
mapping process, each of the plan steps is mapped to a
specific data source that contains the requested data using
the information contained in the knowledge base.
Specifically, the metadata associated with each web
database being integrated by BACIIS is represented using
an XML schema file that is stored in the knowledge base.
This information is used to map a given plan step to the
specific URLs and extraction rules of the corresponding
web database. This mapping process will be explained in

Informatica 27 (2003) 3-14 7

more details in section 2.5. In the final executable plan,
each plan step includes the URL address of the associated
web database, the input and output properties, and the
extraction rules. An extraction rule consists of the set of
operations to be performed on the web database in order
to retrieve a given output based on a given input.

literature
references,
2L Al

GenBank
accession

numbery, | GenBank

iterature

eference;

oding gene
quence;

literature

references
e A2

Coding gene
Swiss sequences
Prot

FDB Protein 3D
structure

Protein 3D
structure

Figure 7: Query plan

2.3 Wrapper Service Server

The wrapper service server receives the executable plan
from the query planner server. The wrapper service server
will fork a thread for plan paths that it receives. Five
threads will be generated for the above sample query
plan. Each thread will access the web databases
associated with a given path in a sequential order. For
example, the thread for plan path C1 in Figure 7 will use
the original query to retrieve corresponding SwissProt
entries and extract the cross-references to PDB from
these SwissProt entry pages, then it will fetch the cross-
referenced PDB entries and extract the protein 3D
structure information from the PDB database. In this
process, URLs are used to fetch source database data
entry pages, whereas the extraction rules are used to
obtain the desired information from that page. Once the
data is returned for all the plan paths, the wrapper service
server makes a remote method invocation to the result
presentation server.

Identification Module
Label the query properties using
ontology terms
Construct the data container for

Mediator Query .
Planning and
execution module,
the query result

Query keywords
Remote database address * *
Extraction rules

Interrogation Module
Submit query to remote database
Retrieve returning HTML pages

y #

Extraction Module
Parse returning pages
Extract result data using proper
extraction rules

Structructed query results

Mediator: Result
presentation module

Figure 8: Wrapper Architecture

Figure 8 shows the architecture of the wrapper. Each
wrapper consists of three modules: the identification
module, the interrogation module and the extraction
module. The identification module interfaces with the
query planner server. The role of this module is to label
the terms in the query using the ontology properties. It
also constructs the container that will hold the returned

8 Informatica 27 (2003) 3-14

result. The interrogation module communicates with the
identification module, the extraction module and the
associated web database. The role of this module is to
submit the query to the remote database and to retrieve
the result pages. These pages are passed to the extraction
module. In the extraction module the result pages are
parsed in order to extract the information requested by the
user. The structured query results also contain tags that
identify the various fields using terms from the ontology.
These structured results are passed to the result
presentation server.

The complexity of retrieving the correct data for a given
query may involve multiple accesses to more than one
web database. The data returned from a given web
database may consist of a page that includes the desired
data or just a link to another data source page. In the
second case, another access to a web database is required.
Furthermore, often, the data can only be retrieved from
one web database if a preliminary step of retrieving data
from another database is performed. For example, given
the GI number (GenBank ID) of a gene, in order to get
the 3D structure information of the protein encoded by
this gene, three databases have to be queried sequentially:
GI number —> GenBank database —> Accession Number
—> SwissProt database —> PDB [D —> PDB database —>
3D structure information.

24 Result Presentation Server

In the wrapper service server, once the data is returned by
the wrappers, the client will make a remote method
invocation to the result presentation server. The result
presentation server will fork a thread for each remote
method invocation. Once the results from all the sub-
queries of a given query are integrated, the information is
passed to the web interface server.

In order for the results retrieved by the wrappers to be
usable, the data retrieved must be semantically integrated
into a correct and cohesive format. Integrating data
source results in the biological domain is particularly
challenging because data from different data sources must
be checked for equivalency. Furthermore, the data
schema and the data format are different in the databases.
For example, a reference information is expressed as a
single record in SwissProt, while it is divided into
different fields (i.e. AUTHORS, TITLE, JOURNAL,
etc...) in GenBank.

Result of Query

property REFERENCE
header 3 lme_ﬂlﬂ?

RO~ — title
entry MEDLINE-NO 24009718
i PUBMED-NO 2405471

one

AUTHORS D, idos, s T, U M. dons . Tonp . A s s e
sub- TITLE "Moleeular strusture of ras-telated swall GTF-binding protein genes
property nf;:ﬁa plants and G TPase antivitiss of gene produsts in Escherichia

coli”;

JOURNALS FEBS Lett. 332:282-286(1993). —
ENMY e AOGA RO SWISSPROT 14-3-3-lke protein 594 - Oryza sativa (Rice} _e,r‘;]y
header MEDLINE-NO B tle

Figure 9: Example query result entry from SwissProt.

Z.B. Miled et al.

In the result presentation server, an information unit is
called a result entry and it is extracted from one record in
one of the web databases. A result entry starts with a title
that contains the source database. Figure 9 shows the
result entry associated with the reference information
extracted from SwissProt for “14-3-3-like protein S94. -
Oryza sativa (Rice)”. In this figure the sub-properties of
the selected property REFERENCE are shown under the
field header.

Figures 9 and 10 are both result entries returned for a
single query issued against BACIIS. The difference in
these result entries illustrates another challenge that the
result presentation server faces when integrating the
result returned from different sub-queries. Figure 9 is a
result entry returned from SwissProt. Figure 10 is a result
entry retuned from GenBank. The SwissProt database
stores the sub-property PUBMED-NO. The PUBMED-
NO is an identification number given to a record in the
PubMed database. GenBank does not store the PubMed
identification number. Therefore, this number is included
in the result entry of Figure 9 but not in the result entry of
Figure 10. The result presentation server needs to be able
to handle the differences in both representation and
database information content. These differences are very
common in life science web databases.

REFERENCE ‘ GenBank: Filobesidiells neoformans var. neoformans RAS protein (RAS1) gene, comple

AUTHORS Wagh VLS., Heitraan, T, and &lspangh, &

TITLE RAS1 and RAS2 regulate distinct aspects of growth, flamentation, and pathogenicity in
JOURNALS Unpublished

MEDLINE-NOQ ik

REFERENCE GenBank:Filobasidiella necformans var. neoformans RAS protemn (RAS1) gene, comple
AUTHORS ‘ Waugh M5, HeitrmanJ. and Alspaugh. &

Figure 10: Example query result entry from GenBank.

2.5 Ontology Knowledge Server

The BACIIS knowledge base contains the domain
ontology and the data source schema. Figure 11 shows
the high level structure of the ontology used in BACIIS.
The ontology is organized along three dimensions:
Object, Property and Relation. In this figure, nucleic acid
and protein are object classes, polymorphism and protein-
mut-info are property classes, and encode and regulate
are relations. An instance of a property class can only
exist if there is at least one instance of the associated
object class. The classes in the object dimension are
arranged in a tree using the ordering “is-a-subset-of”.
The relations in the relation dimension provide an
association between the classes in the object dimension
and between the classes in the property dimension as well
as between classes across the two dimensions.

The domain ontology in BACIIS is represented using
PowerLoom [12]. The ontology knowledge server is used
to manage this domain ontology and service ontology
terms and relations inquiries from the BACIIS web
interface server. When a user starts building a query, the
web interface server will first retrieve all the ontology
classes through the ontology knowledge server. These

A Decentralized Approach to the Integration of...

classes populate the left window in the BACIIS interface
shown in Figure 4. As the user selects certain classes, the
web interface server will further query the ontology
knowledge server to retrieve the sub-classes or the
properties for the selected ontology classes. These
properties will populate the right window in the BACIIS
interface shown in Figure 4.

The data source schema is the other component of the
knowledge base in BACIIS. It maps the schema of
individual databases to the domain ontology. The
mapping information contained in the data source schema
is stored in a file using the XML format. This convenient
and structured data format is well suited for storing data
source information because of the hierarchical nature of
the data. The concepts of sub-sets of information
residing at multiple levels are well represented by XML.
For better system performance, XML files are read into
Java Document Object Model (DOM) structures only on
system start up or after a knowledge base update.

Relations

encode

) ey

expression-system,

regulate

Property
class

\

polymorphisms

protein-mutation

SCOP-structu

prote

Variation-summary

gene f—
8
"
sion | 5
)
5

clone
accessi
STS
organism
genome
tiss!
tissue-system

member <
classification <

Tucleic-acid
sequence-info

source-of

source-of

SOURCE <

NUCLEIC
ACID
PROTEIN

markers-and-
biological-tools
Object

class

Figure 11: Structure of the Domain Ontology

A partial data source schema for GenBank is shown in
Figure 12. This XML file contains three sections: the
metadata, the query input types and the query output
types. The metadata section includes information about
the associated database. For example, one of the tags is
DBNAME which represents the database name. This tag
has the value GenBank in Figure 12. The query input type
section includes all the types of input keywords that are
accepted by the database. For example, GENE-NAME
which is a tag in the query input type section of the
GenBank data source schema, can be accepted by
GenBank. The value of this tag is a URL (ie.
http://www.ncbi.nlm.nih.gov/query?db=2&form=1&term
=XXXX/TITLE]). If the user types in an input keyword
(e.g. ras) in the BACIIS user interface and specifies its
type as a Gene-Name, then the keyword ras will be
inserted into the URL as follows:

http://www3.ncbi.nlm.nih.gov/htbin-
post/Entrez/query?db=2&form=1&term=ras[TITL]

Informatica 27 (2003) 3-14 9

This final URL will be used to fetch data entries related
to gene ras from GenBank.

The last section of the data source schema contains the
types of output that can be produced by the database. In
the case of GenBank, NUCLEIC-ACID-SEQUENCE-
INFO can be retrieved. All of the tags in the query input
type section and the query output section of the data
source schema are terms defined in the ontology. In
addition to being used by the query planner to identify if
a given web database can answer a given query, these
tags are also used to mark the object, property and
relation terms in the result pages returned from the
wrappers. For example, the REFERENCE is an ontology
term that is used to tag the records returned from
SwissProt for citation and the records returned from
GenBank for reference for the BACIIS result entries
shown in figures 9 and 10.

—-<ROOT> Tag Name
—» —<META-DATA> ~
<DBNAME>GenBank</DBNAME>
-<PATH-PAGE>
<PAGE-CHARACTER> Tag Value
Define

{title}entrez-nucleotide
Wﬁ-?ﬂf})ase </PAGE-CHARACTER>
eadatd - EXTRACT-LINK>

uh='value="clip add"'t='{/p}'la='{a href="'
</EXTRACT-LINK>
</PATH-PAGE>
—> </META-DATA>
—» —-<INPUT-SCHEMA>
-<NUCLEIC-ACID-ID-INFO>
<GENE-NAME>
http://www3.ncbi.nih.gov/htbin-post/Entrez/
query?db=2!form=1!term=XXXX[TITL]
Define </GENE-NAME>
Q“eT’;p'e';"“%/NUCLE IC-ACID-ID-INFO>
-<NUCLEIC-ACID-SEQU-INFO>
<GI-NO>
http://www3.ncbi.nih.gov/htbin-post/Entrez/
query?db=2!form=1!term=XXXX[UID]
L w </GI-NO>
__, </NUCLEIC-ACID-SEQU-INFO>
</INPUT-SCHEMA>
-<OUTPUT-SCHEMA>
Define ~<NUCLEIC-ACID-SEQU-INFO>
Query Outpt <NULEIC-ACID-LENGTH>
Properties sh='{pre}'t='bp'l="locus" 'r="bp"'
</NUCLEIC-ACID-LENGTH>
<GI-NO>
sh='"{pre} 't='keywords'l='version"GI: 'r=""
L . </GI-NO>
</NUCLEIC-ACID-SEQU-INFO>
</OUTPUT-SCHEMA>

Figure 12: Example Data Source Schema

3 Performance Analysis

Initially, BACIIS was implemented using a centralized
architecture. All system components were integrated into
a single application built to run on a single machine. The
complexity of the system components made it clear that a
decentralized approach is necessary. In this section the
performance gain of the decentralized architecture of
BACIIS is compared to the centralized architecture. This
performance is measured in terms of query response time.

3.1 Experiment Set-up

In order to evaluate the performance of the centralized
and decentralized BACIIS architectures, three
representative queries where identified. Because the
response time of BACIIS varies with the complexity of

10 Informatica 27 (2003) 3-14

the query, the selected queries have three different
complexity levels as shown in Table 1.

The first query is rated as simple because only one
database (SwissProt) will be used to generate the query
result. SwissProt is the only database among the four
databases currently integrated in BACIIS that can provide
general information for a protein. Furthermore, the query
is stated in terms of an access number that is recognized
by SwissProt. Finally, only one SwissProt record matches
this query. Thus, the wrapper will only access SwissProt
once and the returned result is small in size.

The second query is classified as average. The execution
plan generated by BACIIS for this query consists of the
following two steps:

1. Retrieve the entry list of all ADH2 proteins from
SwissProt.

2. Use the cross-references in each SwissProt entry
to retrieve related GenBank entries and extract the
desired information.

Complexity
simple

Query

Retrieve general information about
the protein whose ACCESS
NUMBER in the database
SwissProt is P00326.

Retrieve general information of all
genes encoding the ADH2 (alcohol
dehydrogenase 2) proteins.

For all the enzyme of the EC family
1.1.1.1 and the human ADH?2
protein, retrieve their 3D structure
information, their gene sequence and
their related literature references.

average

complex

Table 1: Queries with different level of
complexities used to evaluate the response time
of BACIIS.

The second step is complicated by the biological
terminology, which uses the same name for close
homologous proteins in all species. For example,
SwissProt contains 74 records for the ADH2 proteins
from different species (yeast, tomato, human, etc ...).
Furthermore, each entry is linked to multiple other
records in GenBank that are also retrieved. This query
mainly stresses the wrapper service server and provides
moderate complexity for the other servers.

The third query is the one previously mentioned in
Section 2.2. It is repeated here for convenience. This
query is complex. It seeks information about the Enzyme
family ECI1.1.1.1 also known as “alcohol
dehydrogenase”. The execution plan for this query
consists of the following steps

Z.B. Miled et al.

1. Obtain all SwissProt entries of the EC family
1.1.1.1 proteins and human ADH2 protein and
extract reference information and cross-references to
GenBank and PDB.

2. Retrieve the gene sequences from GenBank and
the protein 3D structure information from PDB.

This query plan is more complex than the previous two
because it includes a join operation over data sets from
multiple databases. Thus, it takes the wrapper service
server and the result presentation server more time to
process this query. By selecting three queries with
varying complexity it possible to assess the performance
of the BACIIS system under different scenarios.

The web interface server and ontology knowledge server
are involved in the query building process, but not in the
query processing. Both of them are not included in the
experiment for three reasons. First, they have limited
effect on the overall system performance. Second, the
variability in the interactivity of a user with the interface
may make the results of the experiment unreliable. Third,
the experiment includes a test that submits multiple
queries in order to mimic the performance of the system
when multiple users are using it. It is impractical to use
the web interface and the ontology knowledge server for
such a test in a controlled environment. Instead of using
the web interface server, a simple query generator module
is used to send test queries, receive results and measure
the query response time.

For the centralized BACIIS architecture, the queries were
executed on a Sun Ultra 5 workstation. In the case of the
decentralized BACIIS architecture, the query planner
server, the wrapper service server and the result
presentation servers were each executed on a different
Sun Ultra 5 workstation. All the Sun Ultra5 workstations
used in the experiment have 384Mbyte of memory and
are equipped with one 400Mhz UltraSPARC-IIi
processor. During execution, these servers communicate
and exchange data through Java RMI procedure calls.

In an information integration system, the workload is
affected by the query arrival rate and the query
complexity. The first factor was tested by simultaneously
initiating multiple instances of the query generator
module where each instance submits one test query.
Thus, multiple copies of the same test query will be sent
to BACIIS concurrently. In order to test the second
factor, three queries (Table 1) with varying complexities
were selected.

3.1 Results

Figures 3, 4 and 5 show the execution times of the
queries under both the centralized and decentralized
architectures. Each figure includes four graphs. They
correspond to the execution time spent in the query
planner server, the wrapper service server, the result
presentation server and the overall execution time,

A Decentralized Approach to the Integration of...

respectively. Figures 3, 4, and 5 show the execution times
for the simple, average and complex queries,
respectively. In each graph the x-axis represents an
increasing number of queries. The first data point refers
to the case when only one query is issued. The last data
point shown on the graphs corresponds to the case when
eight copies of the same query are submitted to BACIIS.
The y-axis represents the execution time per query.

As expected, the query response time for both the
centralized and decentralizes architectures degrades as
more queries are issued (figures 3d, 4d and 5d).

The query planner server is CPU and memory intensive,
so its performance heavily depends on the resources
available on the host machine. In the decentralized
architecture, since each server executes on a different
machine, there are less contention for resources. The
difference in contention in resources between the
centralized and decentralized architectures for the query
planner server can be observed in figures 3a, 4a and Sa.
In each of these graphs, the execution time for the query
planner in the decentralized architecture nearly remains
constant as the number of queries increases while that of
the centralized architecture increases rapidly.

6000
5000 -
4000 +
3000 ~
2000

1000 %ﬁ

0 ‘

Execution Time (ms)

10
Number of Concurrent Queries

—&— Centralized —A— Decentralized

('a) Query planner server execution time

A

6000

5000 -

4000 -

3000 -

2000 -

Execution Time (ms)

1000 ~

0 T

5 10
Number of Concurrent Query

—&— Centralized —&— Decentralized

(b)) wrapper service server execution time

Informatica 27 (2003) 3—-14 11

250
@ 200
E
@ 150 -
£
-
c 100 —o—o—o
.0
5
3 50
(4]
X Ah—Ah—Ah—h—A—A—AA
w o ‘
0 5 10

Number of Concurrent Queries

—e&— Centralized —&— Decentralized

(¢) Result presentation server execution time

Execution Time (ms)

0 \
0 5 10
Number of Concurrent Queries

—&— Centralized —&— Decentralized

(d) Overall query response time
Figure 3: Execution times for simple query.

The result presentation server is also memory intensive.
For the same reason mentioned above, its performance
exhibits a similar pattern to that of the query planner
server.

The performance of the wrapper server is mainly dictated
by network traffic and response times from remote
database queries such as PDB and SwissProt. Because
multiple copies of the same query are issued
concurrently, these queries will connect to the same URL
and access the same records in the remote databases
integrated by BACIIS at almost the same time. Thus,
these requests will experience longer delays as the
number of query increases.

12

Execution Time (ms)

Execution Time (ms)

Informatica 27 (2003) 3-14

15000
12500 -
10000 -

7500
5000 - /
2500

[SN

Execution Time (ms)

0
0

5
Number of Concurrent Queries

10

—&— Centralized —&— Decentralized

(‘@) Query planner server execution time

300000
250000

200000 -
150000 -
100000 -

50000 -

0 ‘

0 5
Number of Concurrent Queries

10

—&— Centralized —&— Decentralized

(b)) Wrapper service server execution time

6000

~

N W b O

o O O O

o O O O

o O o o
| |

-

o

o

o
|

o

0 5

Number of Concurrent Queries

10

—&— Centralized —&— Decentralized

(¢) Result presentation server execution time

Z.B. Miled et al.

300000
250000 -

200000 - /4
150000

100000 -

50000 -

Execution Time (ms)

0 \

0 5 10
Number of Concurrent Queries

—&— Centralized —&— Decentralized

(d) Overall query response time
Figure 4: Execution times for average query.

The overall execution time in the case of the simple query
(Figure 3) is nearly constant for the decentralized
architecture and it increases rapidly in the centralized
architecture. However, in the case of the average and
complex query the overall execution time increases for
both architectures. This can be explained by investigating
the percentage of the execution time spent in the wrapper
service server. For the average and complex query, the
wrapper service execution time dominates the overall
execution, whereas for the simple query this is not the
case. Moreover, as stated earlier, the execution time of
the wrapper service server is mostly dominated by the
access to the remote databases which incurs the same
overhead in both the centralized and decentralized
architectures.

As the usage of the biological databases increases, mirror
web databases may be created. Furthermore, we are
currently redesigning the wrapper service server so that it
itself can have a distributed architecture. These two
factors will improve the performance of the wrapper
service server in the cases of average and complex
queries.

4 Related Work

There are other projects that aim at integrating
heterogeneous databases such as TAMBIS [13] and
TSIMMIS [14]. BACIIS also shares many of its design
features with other distributed systems that perform the
same functions of query entry and data retrieval. These
systems include the Distributed Information Systems
Control World (DISCWorld) [15]. In this section,
BACIIS is compared to these systems.

TAMBIS integrates a specific set of life science
databases that consists of protein and nucleic acid data
sources. BACIIS differs from TAMBIS in that it aims at
integrating all possible life science data sources. In
addition the architecture of TAMBIS is not distributed.

A Decentralized Approach to the Integration of...

The goal of the TSIMMIS Project is to develop tools that
facilitate the rapid integration of heterogeneous
information sources that may include both structured and
semi-structured data. TSIMMIS has components that
translate queries and information (source wrappers),
extract data from web sites, combine information from
several sources (mediator), and allow browsing of data
sources over the Web. TSIMMIS itself is not an
information integration system, but a tool for building
integration systems. TSIMMIS utilizes a distributed
CORBA-based protocol for submitting queries to data
sources and obtaining results [16]. This distributed
protocol is asynchronous in nature and will return partial
results to the client during data retrieval. The protocol
requires server side support, which is impractical for most
of the web databases that BACIIS integrates.

DISCWorld is a Java-based middleware for integrating
distributed computing component applications across
wide-area networks[17]. Like TISMMIS, DISCWorld
also requires the integrated services to be well defined
and described, thus it is not suitable for the integration of
web databases. DISCWorld focuses on issues such as
scalability, platform heterogeneity and the ability to
operate over wide-area networks[18].

520000

s

0 :
0 5 10
Number of Concurrent Queries

—&— Centralized —&— Decentralized

(‘a) Query planner server execution time

400000

300000 -
200000 -
100000 -

0 \
0 5 10

Execution Time (ms)

Number of Concurrent Queries

—&— Centralized —&— Decentralized

(b)) Wrapper service server execution time

Informatica 27 (2003) 3-14 13

600000
500000 +

400000 -
300000
200000 -
100000 -

Execution Time (ms)

0 \
0 5 10

Number of Concurrent Queries

—&— Centralized —&— Decentralized

(¢) Result presentation server execution time

=

Execution Time (ms)

0 ‘
0 5 10

Number of Concurrent Queries

—&— Centralized —A&— Decentralized

(d) Overall query response time

Figure 5: Execution times for complex query.

6 Conclusion

This paper describes the decentralized architecture of
BACIIS. This architecture consists of five servers that
cooperate to answer multi-database queries over a set of
geographically distributed life science databases. These
servers can be executed on the same host machine or on
different machines. This decentralized implementation is
scalable and maximizes resource utilization. In addition,
the decentralized implementation reduces the effort
needed to add new services to BACIIS.

The decentralized architecture of BACIIS shows a
performance gain in query response time for simple
queries when compared to the performance of the
centralized architecture. The difference in performance is
less apparent when more complex queries are submitted
to BACIIS. In this case, the query execution time is
dominated by the time it takes to retrieve data from
remote web databases (i.e. the wrapper service server).
This time is controlled by the access time to the remote
databases. This effect was exacerbated with the fact that
in the experiment multiple copies of the same query were
used. All of these copies access the same records in the

14 Informatica 27 (2003) 3-14

same web databases. The impact of the access time to
remote web databases on the performance of BACIIS will
be reduced further if mirror web sites for the web
databases can also be used. In addition, this impact can be
reduced if BACIIS can support the replication of services.
That is, initiating multiple copies of each of the servers
on different hosts when BACIIS receives multiple
queries.

BACIIS is available at http://baciis.engr.iupui.edu.

Acknowledgment

This research is supported by the National Science
Foundation under grants CAREER DBI-0133946 and
DBI-0110854, by the Indiana 21* Century Research and
Technology Fund, and by Eli Lilly and Company.

References

[11 Z. Ben Miled, O. Bukhres, Y. Wang, N. Li, M.
Baumgartner, B. Sipes, Biological and Chemical
Information Integration System, Network Tools and
Applications in Biology, Genoa, Italy, May 2001.

[2] http://www.ncbi.nlm.nih.gov/Genbank/index.html
[3] http://www.expasy.ch/sprot/

[4] http://www.ncbi.nlm.nih.gov/entrez/

[5] http://www.rcsb.org/pdb/

[6] http://www.expasy.ch/alinks.html#Proteins

[7] Wiederhold, G., Mediators in the Architecture of
Future Information Systems, /[EEE Computer, pages 38-
49, 1992.

[8] Knoblock, C.A., Minton, S. The ariadne approach to
web-based information integration. [EEE Intelligent
Systems, 13(5), September/October 1998.

[9] Levy, A.Y., The Information Manifold Approach to
Data Integration, /EEE Intelligent System, 1998.

[10] Ben Miled, Z., Wang, Y., Li, N., Bukhres, O.,
Martin, J., Nayar, A. and Oppelt, R., BAO, A Biological
and Chemical Ontology For Information Integration,
Online Journal Bioinformatics, Vol. 1, pages 60-73,
2002.

[11] George Coulouris, Jean Dollimore, and Tim
Kindberg., “Distributed Systems Concepts and Design”,
P194-200, Addison-Wesley Publishers Limited, Third
Edition, 2001

[12] MacGregor, R.M., Chalupsky H., and Melz, E.R.
Powerful knowledge representation and reasoning with
deliver in Common-Lisp, C++, (and, eventually, Java).
PowerLoom Manual, Nov.1997.

Z.B. Miled et al.

[13] Paton, N.W., Stevens, R., Baker, P.G., Goble, C.A.,
Bechhofer, S., and Brass, A. Query Processing in the
TAMBIS Bioinformatics Source Integration System,
Proc. 1ith Int. Conf. on Scientific and Statistical
Databases (SSDBM), IEEE Press, pages 138-147, 1999

[14] J. Hammer, M. Breunig, H. Garcia-Molina, S.
Nestorov, V. Vassalos, R. Yerneni. Template-based
Wrappers in the TSIMMIS System. In Proceedings of the
Twenty-Sixth SIGMOD International Conference on
Management of Data, Tucson, Arizona, May 12-15,
1997.

[15] K. A. Hawick, H. A. James, and J. A. Mathew.,
Remove Data Access in Distributed Object-Oriented
Middleware, Parallel and Distributed Computing
Practices, 2000

[16] Garcia-Molina, H. and Paepcke, A., Proposal for
[**3 Client Server Protocol, Technical Report, September
1996

[17] Hawick, K.A., James, H.A., and Coddington, P.D. A
Reconfigurable Component-based Problem Solving
Environment. Proc. Of Hawiaii International Conference
on System Sciences (HICSS-34), 2000.

[18] Hawick, K.A., James, H.A., Silis, A.J., Grove, D.A.,
Patten, C.J., Mathew, J.A., Coddington, P.D., Kerry,
K.E., Hercus, J.F., and Vaughan, F.A. DISCWorkd: An
Environment for Service-Based Metacomputing. Future
Generation Computer Systems (15), pages 623-640, 1999.

Informatica27 (2003) 105-114 105

An Algorithm for Computing the Optimal Cycle Time of a Printed Circuit
Board Assembly Line

DuSan M. Kodek and Marjan Krisper

University of Ljubljana, Faculty of Computer and Information Science
TrzaSka 25, 1000 Ljubljana, Slovenia

E-mail: duke@fri.uni-lj.si

Keywords: combinatorial optimization, integer programming, minimax approximation

Received:December 24, 2002

We consider the problem of optimal allocation of components to a printed circuit board (PCB) assembly
line which has several nonidentical placement machines in series. The objective is to achieve the highest
production throughput by minimizing the cycle time of the assembly line. This problem can be formulated
as a minimax approximation integer programming model that belongs to the family of scheduling prob-
lems. The difficulty lies in the fact that this model is proven ta\#&complete. All known algorithms that

solve theNP-complete problems are exponential and work only if the number of variables is reasonably
small. This particular problem, however, has properties that allow the development of a very efficient type
of branch-and-bound based optimal algorithm that works for problems with a practically useful number of
variables.

1 Introduction can be used in such cases. These suboptimal solutions are
comparable to those obtained by the near-optimal methods
The problem of optimal allocation of components to placelike local search, genetic algorithms, or knowledge based
ment machines in a printed circuit board (PCB) assembgystems. Or in other words, the user can only gain if the
line is NP-complete and is often considered too difficultoptimal algorithm is used.
to solve in practice. This opinion is supported by the ex-
perience with the general integer programming programs
that are typically very slow and do not produce solutions Let us start with an investigation of the PCB assembly
in a reasonable time. It is therefore not surprising to sdne problem. The cycle tim& of a PCB assembly line is
many attempts of replacing the optimal solution with alefined as the maximum time allowed for each machine (or
near-optimal one. The reasoning goes as follows: A neastation) in the assembly line to complete its assembly tasks
optimal solution is often good enough and is usually oben the board. This time becomes important when the quan-
tained in a significantly shorter time than the optimal solutity of PCBs is large: A minor reduction in the cycle time
tion. Although this is true in many cases, it does not holdan result in a significant cost and time savings. Moreover,
always. The difficulty with the near-optimal methods isa PCB line in the problem has several non-identical place-
that they, as a rule, do not give an estimate of closenessrtent machines. As a board contains hundreds of surface
the optimal solution. This means that a significantly betmounted components in different shapes, sizes, and pat-
ter optimal solution, about which the user knows nothingterns, different placement machines in the line are installed
may exist. Given a choice, the user would probably alway® cope with different components. The line efficiency de-
choose the optimal solution provided that it can be obtaingeends on the combination of the machine types. Due to the
in a reasonable time. costly placement machines, the optimization of the assem-
This paper challenges the opinion that the optimal sdly process can significantly increase the competitiveness
lution is too difficult to compute. An algorithm that takesOf the production.
advantage of the special properties of the minimax approx-
imation optimal allocation problem is developed. This op-
timal algorithm is much faster than the general integer pro- Many factors affect the efficiency of the PCB assem-
gramming approach mentioned above. The algorithm prdly, namely customer orders [1], component allocation [2],
duces, in most practical cases, the optimal solution in RCB grouping [3], component sequence [4], and feeder ar-
time that is similar to the time needed for near-optimatangement [5]. Different algorithms have been developed
methods. Because of its exponential nature, it will ofo optimize different factors in PCB assembly [6], [7]). The
course fail in the cases when the number of variables genetic algorithm technique is one of the heuristic methods
large. But it should be noted that the algorithm practicallyhat has been used recently to find a near-optimal solution
always produces one or more suboptimal solutions whid].

106 Informatica27 (2003) 105-114 D.M. Kodek et al.

. _ Placement times;; for component typg | Setup
MachineM; 1] 2] 3] 4] 5] 6] 7] times,
1 03]0707|05| c0o| 00 11.0
2 07(12|15|16|15|15| 21| 147
3 23|38|35|35|27|33| 43| 147
Number of typej
components per boargl 324 | 37 | 12 5 7 5 4

Table 1: An example of a PCB assembly line with 3 different placement machines and 7 different component types per
board. The placemet timeg; for different components and machines and the setup tinas in seconds.

2 Formulation of the problem line has the best performance. The PCB assembly line cy-
cle timeT is formally defined as the maximum time needed
When a board is assembled on a production line they one of the machines/;, i = 1,2,---,m, to complete

board’s components are grouped and allocated to approphfie placement of the components allocated to it. Clearly,
ate placement machines in order to achieve a high outpilit¢ time interval between two finished boards coming out
of the line. The next machine can begin its tasks only aPf the assembly line is equal 6 which means that the
ter the previous machine has completed the placement &fmber of boards produced in a given time span is propor-
all components that were allocated to it. After the boaréional to1/7'. This number can be increased by allocating
passes through all the machines, the component placem#if components to the machines in such way tha re-
process is completed. It is clear that the slowest task diguced. A mathematical model that describes this situation
tates the performance of the assembly line. can now be given. o
There are two important differences between the tradi- SUPPOSe that there are non-identical placement ma-
tional assembly line problem and this PCB assembly linglinesM; in a PCB assembly line and that a board with
problem. First, unlike the traditional assembly line, thdYP€S Of components is to be assembled on this line. It takes
precedence of operations in the PCB assembly is not irfis UNits of time to place the component of typen a ma-
portant and can be ignored. The second difference cofifiN€ ;. In addition, each maching/; has a setup time
cerns the assembly times for the same component on dif- 1Nere are exactly; components of typg per board.
ferent machines. Due to various types and configuratiorld!® component allocation problem can be formulated as
of the placement machines, different machines have differ-
ent times for placement of the same kind of component. .
The components are usually of a surface mounted type, al- Topt = min,_max st Z b | (1)
though this is not important here. An example from Table 1
is used to make the problem easier to understand. This &bject to
ample is the same as the one used in [8] and will allow the
comparison of our optimal algorithm to the near-optimal i
One.p p g p Zl‘ij = Cj, j:1,2,...,n, (2)
A PCB assembly line with three different placement ma- =
chinesM;, M>, M5 and a board with seven types of com-

ponents is used in the example. The placemet tine®r The solution of this problem is the optimal cycle tiffig,,;

different components and machines are given in the Tabglﬁd the optimal allocation Variableégpt)_ The variable
1. If a machine cannot handle a particular type of compo- J

t its pl ttime i ianed to be infinia (The 1 gives the number of components of typthat are allo-
nent, s placement time 1S assigned to be in inite) € cated to machind/;. Constraints (2) ensure that all of the
infinity is used here for simplicity of notation only — it is

- 4 omponents will be allocated. The components are indivis-
replaced by a large positive number for computation. In a

o : . ble and (3) ensures that; are positive integers. Note that
dition to the time that is needed to place a component thege L o
. : : i; ands; are by definition positive
is also a setup time; for each of the machinesf;. The
machine needs this time every time a new board arrives for
its positioning and placement preparation. Finally, a totsB ~ Complexity of the problem
number of each type of a component per boards also
given. The problem (1)—(3) is a combination of assignment and
Obviously, there are many possible ways of allocatinffowshop scheduling problems [9]. It SP-complete for
the components to the placement machinéd;. Each of 2The timest;; ands; can be arbitrary positive real numbers. Itis easy

them leads to its own Cyde_ tinE. The question is how 4 reformulate the problem and changg andss; into arbitrary positive
to allocate the components in such a way that the assemliyegers. This does not change the complexity of the problem.

x;; > 0 and integer 3)

AN ALGORITHM FOR COMPUTING THE OPTIMAL ... Informatic27 (2003) 105-114 107

n > 2. Proving theNP-completness is no too difficult. indicesi that correspond to the known integers.. The
First, it is trivial to show that the problem is iR. Sec- subproblem’s variables can be formally described as
ond, itis possible to show that the well known PARTITION

problem can be polynomially transformed into (1)—(3) [10]. zloj=1,..k—1,i=1,....m

Since PARTITION isNP-complete, so is our problem. _ xfj., j=k, i€l 5
Atypical approach to solving this problem is to treat it s/ — Tij, j=k, i & I ®)

a general mixed integer linear programming problem. The Tij, j=k+1,...,n,i=1,...,m,

minimax problem (1)—(3) is reformulated as

min T wherek can be any of the indicels 2, . .., n. Notationa:{j
ziy; OP? is used to describe the variables that are already known in-

tegers. The remaining variables; are not yet known. The

n
Topt — si = Ztijxiﬂ' 20, i=12,....m, number of indices in the sé}, lies in the rangé to m — 2.

=1 (4) If there werem — 1 known integerss!, the constraint (2)
Z zij=cj, j=1,2,...,n, gives the remaining variable which contradicts the assump-
i1 tion that not all of the variables;;, are known. The index

z;; > 0 andinteger. k changes t& + 1 when allz;;, are known integers.

. . : Definition (5) assumes that a certain rule is used to in-
All algorithms that are capable of solving this problem op- . . . :
. . ; : troduce the constraints which force the variablgsto in-
timally work by starting with the noninteger problem where

the variablesr:. can be anv positive real number Ad_teger values. This rule is simple: For every index is

ditional constrgints are therz/ praduaII introduced i.nto thgecessary to constrain. to known integerSrfk for all
9 y 1,1 =1,2,...,m, beforek can change. The rule follows

problem and these constraints eventually force the varl:

: . . om the structure of constraints given by (2) and is needed
ablesz;; to integer values. Many instances of suitably re 9 y(2)

formulated subproblems of the form (4) must be solved bég denye the lower bound theorem. There is no problem
. L with this rule because the branch-and-bound method, on
fore the optimal solution is found.

An advantage of the formulation (4) is that generaYvhlch our algorithm is based, allows complete freedom of

. X . choosing the variable;; that is to be constrained next. The
mixed integer programming programs can be used to soly

. : indicesk can be selected in any order. A simple ascendin
it. Unfortunately, this advantage occurs at the expense y P 9

the computation time. The general programs use the si 8[derk =1,2,...,n, s used in (5). This also applies to
lex al (r))rithm to solv.e the sgub roblzmg The simplex arlf_he case when the problem is first reordered along the in-

piex alge prot o P dices; in a way that gives the fastest rate of lower bound

gorithm is very general and slow since it does not use aM¥crease. Such a reordering is used in our algorithm.

of the special properties of the minimax problem. All these To simplify th tation. let us first the k int
properties are lost if the original problem (1)—(3) is con- 0 simplify the notation, let us first use the known inte-

verted into the general problem. gersz; and redefing, into s; as
The fact that the general problem (4) is so slow has led

to the development of suboptimal heuristic algorithms that k

I .
search for a near-optimal solution. These algorithms are Si Ztijl’vﬁj , 1€
faster and often good enough. The difficulty is that a signif- s = ij (6)
i<_:ant|y better qptima_l solution may exist_ which these algo- s+ Ztijm{jv i T,
rithms do not find. It is the purpose of this paper to develop = ’

an optimal algorithm that does not use the generalized for-
mulation (4). The algorithm takes advantage of the Sped%‘imilarly
properties of the minimax problem (1)—(3). It avoids usinq ’
the simplex algorithm completely which leads to a much
faster solution.

the known integers?, (if any) are used to rede-
ine ¢ into ¢j, as

Cp = Cp — lelk (7
i€l

4 The lower bound theorem

The lower bound o, over all possible not yet known
The basic idea of our algorithm is to use a lower bound fovariablesz;; is the most important part of our algorithm.
T,,: as a tool that leads to the solution. This lower boundt is developed along the lines used in a related integer
must be computed for each of the subproblems that appdzglynomial minimax approximation problem that appears
within the branch-and-bound process. It must take into aé? a digital filter design [11], [12] and is given in the
count the fact that some of the subproblem’s variablgs following theorem.
are known integers. To derive it, let us assume that the sub-
problems’s variables;;,j = 1,2,...,k — 1, are known Theorem 1 Let T,,, be the minimum cycle time corre-
integers for alli. In addition, some, but not all, of the vari- sponding to the optimal solution of the problem (1)—(3) in
ablesz;;, may also be known integers. L&t be the set of which some of the variables are known integers defined by

108 Informatica27 (2003) 105-114

(5). ThenT,,, is bounded by

C‘]+Zi+pg+q‘7

11”

Tt >
opt 2 _Max i . (8)
= tii
where
_ : Lar
pj = Zk:lcr i:lI,%}.I.l.,'m (t”> ’
T?;e}r 9
¢; = ¢ min bak , Jj=k+1,....n
iZ 1y tij
Proof: Leth be a number that satisfies
s; + Ztmx” + Z tijrij, © € Iy
h Z Jj= k+1 (10)
8i + thxw + Zt”x”, i I .

j=1

Note thath is a lower bound fofl,,,; if we can prove that
(10) holds over all possible not yet known valugs. Us-
ing (6) eq. (10) is simplified

n
S;-f— E tijxig, 1€ Iy
=kt
n

8; =+ Ztijxij, 7 ¢ Ik .

Jj=k

h >

11)

It follows from (11) that variables;; can be expressed as

n

h & t;

T < ——-L =Y La, i€l j=k+1,..n
by iy r:k+1tij
7
h st tir _)
Tij < tfl — ﬁxm ig I, j=k,..n.
ij ij
r=k

ry_é j
] (12)
Adding all z;; by index: and using (2) and (7) gives

m m

g SZ Z*— IPILI B

r=k4+11=1 ” i1

r#]
j=k+1,....n

Tiky
(%]

(13)
and the lower bound fdt can now be written as

m

CJ+Z*+ IR

r=kt1i=1 tij i,
£
=1 lis
i=k+1,...,n.

(14)

D.M. Kodek et al.

All the terms in (14) are positive. This means tlais a
lower bound over all variables if the lowest possible values
of the terms containing variables, andzx;;, are used. The
variablesz;,. are subject to

m
Zﬂcw:cr, r=k+1,...,n

=1

(15)

Itis quite easy to see that the sum containingis bounded

by
tir
E E fxw>§ Cr_ llgln ()ij,
r=k+1i=1 U r=k+1 Zj (16)
r#j r#j

j=k+1,....n

since itis obvious that a minimum is obtained:jf. is given
the valuec,. for index: that corresponds to the lowest of the
factorst;, /t;; while all otherx;, are set to zero. Similarly,
the variables:;;, are subject to

> ik =} (17)
igly
and the sum containing;;, is bounded by
Lik Lik
S > domin (75) =g,
tzy i€l ti' (18)

igIy
ji=k+1,....n

Equations (16) and (18) are used in the definitions (9) and
this completes the proof. O

Note that the Theorem 2 does not include the lower
bound for the cas& = n. The following trivial lower
bound, which holds for alt, can be used in this case

Topt > I%E}X (st +tiwzir), k=1,...,n. (29)
1Lk
Note also that inde¥ = k was not used in the derivation

of the Theorem 1. The equivalent of (13) fpe= & is

T SR SE D Sy

i1y i1y r=k+1i&Iy tik

(20)

When I}, is not empty allx;,- in the sum oveii ¢ I; can

be zero and still satisfy (15). The lowest possible sum con-
taining x;,. is obviously zero in this case. This gives an
additional lower bound

(21)

This lower bound is almost always much lower than the
one given by (8). It can included in the algorithm to bring a
small decrease in computing time which is on the order of
1%.

AN ALGORITHM FOR COMPUTING THE OPTIMAL ... Informatic&27 (2003) 105-114 109

By choosingk = 0 one can use (8)—(9) to compute thek = n only, experiments show that it is usually faster if it
lower bound over all possible values of variables. Ap- is used for allk.
plying this to the example from the Table 1 giv€s,; > The lower boundl', 5 (k) (25) is the basis of our algo-
96.084. But there is more — the theorem plays a centralithm. It is a linear function of the variables;,i ¢ I,
role in our algorithm because it eliminates the need to usend, as mentioned before, a new constraint must be intro-
the simplex algorithm for solving the subproblems withinduced on one of them at each branch-and- bound iteration.
the branch-and-bound process. Let i.,i. ¢ I, be the index of the variable; ; that
is selected for constraining. Selection of the indgxs
. . simple — any of the indices, i ¢ I, can be used a&.
S Appllcatlon of the lower bound It is more difficult to find the value:; , that will be used
theorem in the branch-and-bound iteration to constrain the selected
variable to integers:] , which are the nearest lower and
The usefulness of the Theorem 1 is based on the followirigpper neighbours Olf* . Thez; ;, must be a number that
observation: The problem of finding the all-integer solutiorgives the lowest IOOSSIb|e lower boutig; (k) over all pos-
that gives the lowest cycle tini&,,; can be replaced by sible values of the not yet known variableg, i ¢ I, and
the problem of finding the all-integer solution that has theij,i = 1,...,m,j = k+1,...,n. Orin other words, the
lowest lower bound foff,,,;. Both approaches obviously z;, , must be at the global minimum @, 5 (k).
lead to the same solution sin@g,; equals its lower bound It is important to understand why; , must be at the
when all variables:;; are integers. global minimum of T,z (k). It is because our algorithm
This observation, however, is not enough. A new condses the property thatyz (k) is a linear function of the
straint must be introduced on one of the variablgs i ¢ variablesz;, and is therefore also convex. The convex
I, at each branch-and-bound iteration. This constraifffoperty is crucial for the success of our algorithm since
cannot be made on the basis of the Theorem 1 alone alignsures that every local optimum is also global. The al-

requires additional elaboration. gorithm uses this property by stopping the search along a
To see how the lower bound dependsigplet us define variable in the branch-and-bound process whgp (k) ex-
the parameter®y(j, k) as ceeds the current best soluti@h. This, however, can be
used only ifx} ; is such thatT, 5 (k) does not decrease
m when an arbitrary integer is added#d .. Thez? , at the
¢+ Z tij it Z tij global minimum certainly satisfies th%skconditioﬁ.
TL(4,k) = ! — o , (22) A great advantage of using the lower bound comes from
Z 1 the fact that the lower bourifl, 5 (k) in (25) depends only
= tij on the variableg:;;, i ¢ I, and is independent of the re-
maining variables;;, ¢ =1,...,m,j = k+1,...,n. This
wherej = k+1,...,n,andk = 1,...,n—1. TheTL(j,k) means that the number of variables is significantly reduced

are simply (14) rewritten in a shghtly different way. Thejn comparison with the general approach (4). Solution of
Theorem 1 lower bound (8) in which the variablgs are the minimax problem

left is now equal to

i i Tr(i, k Tr(j, k 26
Topt > jzﬁl_i%i(“mTL(j, k). (23) rg}{l max (%?f 1(d,)7j: max £,)) , (26)
This lower bound does not include the cdse- n. This ,
is easily corrected if (19) is included. To simplify notation Y win=0¢,, @20, (27)
we first define parametef (i, k) as il

gives the nonnegative number$, that give the global min-
imum of Ty, (k) for a givenk.

A complication arises wheh changes t& + 1 because
the solution of (26)—(27) fok + 1 depends not only on
., butalso onzj, (throughs;)). The problem is that},

T[(i, k) ZS;—Ftikl‘ik, k=1,...,n, (24)

and define the new lower boufld,, > T,z (k)

T15(k) = max (maXTI(z k), max Tr(j,k)

i¢ T G=k+1m : are not at the global minimum @f, 5 (k+1). Itis possible
(25) thatthe minimum of (26) fok+1 decreases if different;,
The T.p(k) are defined fork = 1,...,n (where are used. An error can occur if this is ignored because the

T.(j,n) = 0). They includeT; (i, k) for all k even if it algorithm stops the search along a variable if the minimum
is strictly needed only fok = n. There is a good reason is > T, when in fact a lower value fof, g (k + 1) exists.

for that because th&}; lower bound sometimes exceedslt is obvious that this error cannot occur if the minimum
the T, lower bound. This can occur when the values$;of Tpp(k+ 1) < Tpp(k).

differ by several orders of magnitude as is the case in the The following corrective procedure is used in the algo-
example from Table 1 where a large positiygis used in- rithm when the minimund’, 5 (k+1) > minimumI;z (k).
stead obo. Although the algorithm works iy is used for It consists of adding +1 and/or -1 to th¢ , that was used

110 Informatica27 (2003) 105-114 D.M. Kodek et al.

as the last constraint. Using the new, we simply re- Definitions of termsf, and ¢,; are somewhat tedious
computeT’, 5 (k) and solve again (26)—(27) fdr+ 1. If though they follow directly from (22) and (24)
max(TLp(k), Tre(k + 1)) decreases we continue in that
direction until it stops decreasing or until (27) is violated s};{(u) , v=1,....,m —1
(Tr(k) increases when the original , changes). The SR T tR(v)ka , v=m'
correctedr; , is a solution of

fv: Cor + Z

tR(m’)k ¢
min max (Tpp(k), Tre(k+1)) . (28) tR(m’)v’ /

Tick, Tik+1 ™ , v>Mm
Itis used to replace the original and this eliminates the pos- Z_:l o’
sibility of error. Note that it is not necessary to correct "= (34)

the remaining variables!, even if they were not derived
from the global minimum off ',z (k + 1). This is because
the branch-and-bound process ensures that all value's of

trak if i=v, 0if i £v, v=1,...,m —1
—tR(m"k 5 i=1,..m -1, v=m
bRk _ TROOK

/

will be tried as long as thelf, 5 (k) is lower thanT;,. Ad- Boi=¢ 1o, 1
ditional details about the implementation of (28) are given Rlvl ROV i1 om/ =1, 0> m’
in step 6 of the algorithm in section 7. Z
The minimax problem (26)—(27) must be solved many = trv
times within the branch-and-bound process and it is ex- (35)
tremely important to have an efficient method that giveforv=1,...,n"andi =1,...,m’' — 1.

its solution. Most of the computing time in our algorithm The process of solving (32)—(33) is simplified greatly

is spent on solving this problem. The method that is useay the theorem that gives the necessary and sufficient

to solve it is worth a detailed description. conditions for the variables*R(i wi=1,...,m —1,that
minimize (32). The general version of the theorem is given

. . . in [15]. It is repeated here in the form that applies to our
6 Solving the discrete linear problem.

minimax problem
Theorem 2The variableszr}‘%(i)k,i =1,....,m' —1, are
The number of variables;;, in (26)—(27) is equal to the the optimal solution of the minimax problem (32)—(33) if
number of indices, i ¢ I;. Letm’,1 < m’ < m, be this and only if the following holds

number and lefk(i),i = 1,...,m/, be the indices not in
I.. Equation (26) contains:’ terms7; andn — k terms
Ty, The total number of terms’ is equal to Hgn I I Z Pyi(zi — TRaw) =0, (36)
n=n+m'—k, m <n' <n+m. (29)
over all numbers;,i = 1,...,m' — 1, that satisfy
It helps to rewrite (26) using a new index
'—1
. /
min max (max T7(R(v), k), Z 2 < ¢, 2 >0. (37)
TR(i)k v=1,....,m’ (30) i—1
ma: T (v, k) |, i o
1):m’+1}f-<.,n' i)> The setV,,..(z*) contains those of the indicesv =
, , ... 1,...,n/, at which the maximum is obtained. That is
wherev’ = v + k — m/. Because of the sum constraint in
(27) there are onlyn’ — 1 independent variables; the’-th 1
variable can be expressed as max (fot Z ‘I)m‘x*R(i)k) _
m’—1 _1 i=1 (38)
’ = Z X (31) — * *
xR(m k Ck R(i fv + Z (I)UixR(i)k7 v e ‘/’rnaw(gj)
i=1
The minimax problem (26)—(27) can now be reformulated
into a more general form Only the indices), v € Vi,a (27), that give the extremal
values of the function (38) are used in the Theorem 2. The
) -1 theorem says thaty, .., is the optimal solution if there are
min max | f, + Z Quizrir | > (32) no numbers; for Wh|ch (36) is lower than zero. To show
TRk v=1,...,n .
i=1 how this can be used to solve (32)—(33) let us assume that
- we have a set of numbeﬁ%(Nk and would like to check
Z TRk < e T > 0. (33) if they are optimal. Depending dW,, .. (*) and®,,; there

are two mutually exclusive cases:

AN ALGORITHM FOR COMPUTING THE OPTIMAL ... Informatic27 (2003) 105-114 111

1. The setV,, .. (z*) contains at least two indices and wheref, are defined as
vo for which the following holds

m’—1
(I)vliq)vgi <0, 1= 1,...,m’—1. (39) f’ll) :fv+ Z (I)mxﬂé(z)k’ v = 17_._’77//. (44)
Itis easy to see that the numbeygshat give (36) lower ii;ill

than zero cannot exist. This is because of the opposite
signs of®,, ; and®,,,; for all i. Any set of numbers; Each of the equations (43) gives a possible new value for
that is different frormf}%(i)k makes (36) greater than x}}(mk- The one that is the least different from the current
zero for at least = v, or v = v9. Thus, according to value must be used because the8gt.(<*) changes at
the Theorem 27,), are optimal. that value. The newy,; \, must of course also satisfy
(33). Replacing:cj;z(il),~c with the new value gives a new
solution x*R(i)k,i = 1,...,m — 1, for which the whole
process is repeated until the optimal solution is found.
Selecting a good starting solution is important because
it reduces the number of iterations. Our algorithm uses a
solution that is found by choosingjw)k = ¢, (the re-
Dy, i®yyi > 0,0 €1y, 1,02 € Vipaz (z*), (40) mainingm*R(i)k are zero) fori = 1,...,m’/, and comput-
ing the lower bound’;, 5 (k) for each of them. The choice
holds for any pair of indices from Vi, (2%). OF that gives the lowest, 5 (k) is the starting solution. This
in other words, for each € I, the ,; are nonzero starting solution is often optimal; when it is not, it usually
and have the same signs for alE V... (z"). Letus takes only one or two iterations to find the optimum. Note
assume that there are numbersi € I, that satisfy that the search for the optima, ;. is not necessary if the
(37) and give startingT’, 5 (k) is lower than the lower bound (21). In such
” N cases the algorithm simply uses the starting solution.
Zq)”izi < Zq)”xR(”’“’ V€ Vinas (27), (41) Having the optimal variables:, .. i = 1,...,m’' — 1,
i€l i€l . . LR
it remains to select the one that will be used as the new
These numbers, together with= z ;). for i ¢ I,,, constraint. This is done by computing the products
obviously make (36) lower than zero. The numbers

2. The setV,,q,(z*) does not contain two indices;
and vy for which (39) holds (this is always true if
Vinaz (™) contains only one index). This means that
there exists a set of indicdg, containing at least one
index¢, for which

(s, @re therefore not optimal if such exist. They LR TRk 8= Lo,m, (45)
exist almost always — the only exception occurs if the
following holds where (31) is used to compute the remaining variable
TR (m ke The indexR(i) that gives the highest product is
Z @Uix}(i)k = ngin Z Dz, (42) selected as.. The reasons for this choice is obvious: The
icl, Y oiel, highest of products (45) is most likely to give the largest

] increase of the lower bourit}, 5 (k).
for somev, v € V0, (2*). Itis clear that (41) cannot

be satisfied in this case because #fjg,,, sum is al-
ready the lowest possible. The lowest possible sum i
(42) is easy to compute by using = 0 for &,; > 0
andz; = ¢ for the most negative ob,; < 0. This
means that it is also easy to check:i), are opti-
mal.

7 The algorithm

The algorithm is based on the well known branch-and-
bound method which is described in detail in many text-
books (see, for example, [13] or [14]). We assume that the
Using (39)—(42) it becomes straightforward to solve (32)+eader is familiar with this method and continue with the
(33). A starting solution for}, ., is selected and checked description of the algorithm.

as described above. If it is found optimal, we have a solu- Animportant part of the branch-and-bound method is the
tion. If not, one of the variables*R(il)k, 11 € I,,istried; if branch-and-bound tree. Each node in the tree represents a
it can change towards zero (if,;, > 0) or towardsc), (if subproblem that has some of the variables constrained to
®,;, < 0) without violating (33), it leads to an improved integers. Information that is stored at each node must con-
solution. Itis ignored otherwise and a new variable is triedain the following: The node’s lower bourid, 5 (k), index

The setl, always contains at least one indethat leads to % the size of sef, (it is equal torm — m’), the indices:

an improved solution. in I, integer variable&{j,j = 1,...,k, and the nonin-
The new value Ofxf%(il)k is computed by trying all teger variaplevfck that will be used_a_s the next. copstraint
01,01 ¢ Vinas (z*), and solving (together with the index.). The efficient organization of
the tree is important. It does not, however, influence the
fo, + Dyyis TRi k= i+ Dyiy TR0y ks V€ Vinaa (27), results of the algorithm and will not be discussed here. The

(43) algorithm is described in the following steps:

Informatica27 (2003) 105-114

1. Setk = 0 and use (8)—(9) to compute

(46)

forj =1,2,...,m. Sortthe lower boundsy(4,0) in

the ascending order. The problem parametgrand

c; are reordered accordingly. It is assumed from here
on thatj = 1 corresponds to the lowe®y,(j,0), j =

2 to the next highefl',(4,0), and so on. The reasons
for this reformulation of the problem are simple: We
wish to eliminate the indiceg that give the lowest
contribution to the total lower bound; 5 (k) and at
the same time keep the indices that give the highest
contribution to the total lower bound. Several other
strategies for selecting the indicgsvere tested; none
performed better over a large class of problems.

. Set the current best solutidh, to oo (a large posi-
tive number). The corresponding variabls%’) can

be set to anything — they will be replaced by one
of the solutions quickly. The index indicates that

T, is an upper bound off,,;. The alternative is to
use some heuristic construction and compute a near-
optimal starting solutioff;,. We found that this is not
really necessary because the algorithm quickly pro-
duces good near-optimal solutions.

. Create the root node. This is done by making=

1, m’ = m (this makes the s, empty), and solv-
ing the problem (32)—(33) as described by (36)—(45).
The resulting information is stored in the branch-and-

bound tree. Initialize the branching counférto zero. 6.

. Choose the branching node by searching through the
nodes of the branch-and-bound tree. Go to step 8 if
no nodes withl', 5 (k) < T,, are found or if the tree is
empty. Add 1 to the branching countdtand choose
the branching node according to the following rule: If
N is odd, choose the node with the low&5is (k),
otherwise choose only among the nodes that contain
the largest number of integer variableg and select
the one that has the lowe®}, 5 (k). This branching
strategy is a combination of tHewest lower bound
and depth firststrategies and is used to get many of
the near-optimal solutions as fast as possible. This is
especially important for large problems with several
hundred variables;;.

. Two subproblems are created from the branching node
by fixing the node’s variable; , to integers

inCk = |27], (47)
wig = lap,) +1,

where|z; , | denotes the nearest lower integerfo, .

The integersx{ck must of course conform to (27). If

D.M. Kodek et al.

xfk in (48) does not, discard this subproblem (sub-
problem (47) is never discarded becaugeg satisfies
(33)). The number of noninteger variableg; is re-
duced by 1
m —m' —1. (49)

If m’ > 2 go to step 6. Otherwise there is only one
noninteger variable:;; left. Its integer value is al-
ready determined because (27) gives

@)+ T = (50)
and m{k is easily computed. All variables;; are
known integerse/,, i = 1,2,...,m. Because of this
the indexk is incremented as described by the defini-
tion (5)

ke k41, (51)

The new setl;, is made emptyr¢’ = m). If k <

n, go to step 6. Otherwise we have a case where all
of the subproblem’s variables; are integer. This is

a complete integer solutioand the cycle timéel" is
simply computed as

T= (52)

n
I
i=1,2,...,m Si Z tijlij
j=1
If T < T,, we have a new best solution; the current
T, is set toT" and the current best solutimﬁ;) is re-

placed byx{j. The branch-and-bound tree is searched
and all nodes wittl', (k) > T, are removed from
the tree. Go to step 7.

Each of the non-discarded subproblems from step 5 is
solved. The already known integers are taken into ac-
count by computing; andcj, using (6) and (7). Equa-
tions (34) and (35) are used next to compyiiteand

®,; and the problem (32)—(33) is solved as described
by (36)—(45). The results ar (k) andz; ;. If
Trp(k) > T, ignore this subproblem since it obvi-
ously cannot lead to a solution that is better than the
current bestr,,. Otherwise ifm’ = 2 andk < n

do the corrective procedure (28) and replagg and
T1,5(k) with the new values. The newly computed
Ty, (k) will in most cases be greater than that of the
branching node. This growth is not monotone and it
is possible that the neW 5 (k) is lower. Since the
lower bound cannot decrease we use the branching
node’sT; 5 (k) as the subproblem®,z (k) in such
cases. The subproblem information containirjg,

and Tz (k) is stored as a new node in the branch-
and-bound tree.

The subproblem in the branching node from step 4 is
modified (the root node is an exception — it is simply

removed from the branch-and-bound tree and we go
to step 4). The branching subproblem is modified by

AN ALGORITHM FOR COMPUTING THE OPTIMAL ... Informatic27 (2003) 105-114 113

. ' Allocation z;; of components | Assembly time
Machineid; 1] 2] 3]4[5]6]7] onmachinel,
1 2741 0| 2|5|0|0]|0 97.1
2 50| 37| 2/0|{0|0|0 97.1
3 0| 0| 8/0|7|5|4 95.3
Number of typej
components per boargl 324 | 37 | 12| 5|7 | 5| 4

Table 2: One of the 10 equivalent optimal solutions of the cycle time problem given in example Table 1. The solution was
obtained with the algorithm described in this paper.

changing the integer variahi€, that was created last. than a second to find all optimal solutions. This time in-
The modification is equal to creases to almost 2 hours if an additional machine is added
(giving a problem witht x 20 = 80 variablest;;). It should
be noted, however, that for this example a suboptimal solu-
tion that is within 0.1% of the optimum was found after less
than 0.1 second. This behaviour is typical for the branch-
This of course means that each node in the brancnd-bound based algorithms where a great amount of time
and-bound tree must also contain information aboyt often needed to prove the optimality of a solution that
the integer variable that was created last and abowfas found early in the process.
the way it was created (either by (47) or (48)). The The algorithm was also tested on problems with a much
branChing node is removed from the tree if the ne\l]/arger number of Variab|esij_ Cases with up to 10 ma-
apy, < 0orif 2j, > ¢, and we go to step 4. Oth- chines and up to 100 different component types per board
erwise the modified subproblem is solved exactly agiving up to 1000 variables; ;) were tried. Because of the
in step 6. Note that andm’ remain unchanged and exponential nature of the algorithm the optimal solution is
that this subproblem can never be@mplete integer not found and/or proved optimal in a reasonable computing
solution If T, (k) < T, the modified subproblem is time for problems this large. But the algorithm is useful
stored back into the tree, otherwise it is removed fror@ven in such cases — the branching strategy ensures that
the tree. Go to step 4. many good near-optimal solution are obtained. In addition,
o .) the algorithm gives a global lower bound on the optimal
8. The current best solution is the optimal solution. Thgo|ytion which allows the user to determine how close to
optimal cycle timel’,,,, is equal tol’, and the optimal {he pest possible solution a near-optimal solution is. The
variablesgﬁ?”“ are equal tong;‘). Stop. global lower bound on the optimal solution is the lowest of
the T,z (k) in the branch-and-bound tree and is obtained
in step 4 of the algorithm. It can be used to decide if a
8 Experimental results and near-optimal solution is sufficiently close to the optimum
conclusions and also if it is worth trying the longer computing time.

I { zf, — 1if f, was created by (47) (53)

Ty, zl, + 1 if 2}, was created by (48)

The algorithm was implemented in a program and teSteAcknowledgment
on many different cases. It is typical for the problem (1)—

(3) that there are often many equivalent optimal solutionSse 4thors would like to thank Prof. B. Vilfan for provid-

One of the 10 optimal solutions of the example given in thgang the formal proof ofNP-completeness for the problem
Table 1 is presented in the Table 2. It took less than O.O(J_L)_(3)_

seconds of computer time (on a 2.4 GHz Pentium 4) to find
all 10 optimal solutions.

The computing time depends not only on the number qR eferences
variablesz;; but also on the problem parameteys and
especiallys;. The lower values of; obviously make the [1] P, Ji, Y.S. Wong, H.T. Loh, L.C. Lee, “SMT production
search space smaller and reduce the computation time. Ex- scheduling: A generalized transportation approach,”
periments have shown that for the problem parameters sim- |nternational Journal of Production Researctol.32
ilar to those in the Table 1 all optimal solutions are typically (10), pp.2323-2333, 1994.
found within a minute of computing time if the number of
variablesz;; is 60 or fewer. For example, the 3-maching2] J.C Ammons, M. Carlyle, L. Cranmer, G. Depuy, K.
case from the Table 1 in which the number of different Ellis, L.F. Mcginnis, C.A. Tovey, H. Xu, “Compo-
component types per board is increased to 20, takes less nent allocation to balance workload in printed circuit

114 Informatica27 (2003) 105-114

card assembly systemllE Transactions vol.29 (4),
pp.265-275, 1997.

[3] A.Schtub, O.Z. Maimon, “Role of similarity measures
in PCB grouping procedurelhternational Journal of
Production Researctvol.30 (5), pp.973-983, 1992.

[4] J. Sohn, S. Park, “Efficient operation of a surface
mounting machine with a multihead turretfiterna-
tional Journal of Production Researchvol.34 (4),
pp.1131-1143, 1996.

[5] Z. Ji, M.C. Leu, H. Wong, “Application of linear as-
signment model for planning of robotic printed cir-
cuit board assemblyASME Manufacturing Processes
and Material Challenges in Microelectronics Packag-
ing, vol.ADM-v131/EEP-v1, pp.35-41, 1991.

[6] M. Sadiqg, T.L. Landers, G. Taylor, “A heuristic al-
gorithm for minimizing total production time for a

sequence of jobs on a surface mount placement ma-

chine,” International Journal of Production Research
vol.31 (6), pp.1327-1341, 1993.

[7]1 Y.D. Kim, H.G. Lim, M.W. Park, “Search heuristics
for a flowshop scheduling problem in a printed circuit
board assembly proces&Uuropean Journal of Opera-
tional Researchvol.91 (1), pp.124-143, 1996.

[8] P.Ji, M.T. Sze, W.B. Lee, “A genetic algorithm of de-
termining cycle time for printed circuit board assem-
bly lines,” European Journal of Operational Reseaych
vol.128 (3), pp.175-184, 2001.

[9] P. Brucker, “Scheduling algorithms,” Second Ed.,
Springer, pp.274-307, 1998.

[10] B. Vilfan, “NP-completeness of a certain scheduling
problem,” (in Slovenian)nternal report,University of
Ljubljana, Faculty of Computer and Information Sci-
ence, June 2002.

[11] D.M. Kodek, “Atheoretical limit for finite wordlength
FIR digital filters,” Proc. of the 1998 CISS Conference
vol. Il, pp.836—-841, Princeton, March 20-22, 1998.

[12] D.M. Kodek, “An approximation error lower bound
for integer polynomial minimax approximatiorglec-
trotechnical Revieywol.69 (5), pp.266—272, 2002.

[13] C.H. Papadimitrou and K. SteiglitZ?Combinatorial
optimization,” Prentice-Hall, pp.433—-453, 1982.

[14] E. Horowitz, S. SahnifFundamentals of computer
algorithms,” Computer Science Press, pp.370-421,
1978.

[15] V.F. Demyanov, V.N MalozemoV,Introduction to
minimax,’ Dover, pp.113-115, 1990.

D.M. Kodek et al.

Informatica27 (2003) 15-20 15

DoMosaic - Analysis of the Mosaic-like Domain Arrangements in Proteins

David T. Gerrard and Erich Bornberg-Baugr
School of Biological Sciences, University of Manchester, UK
2.205 Stopford Building, Oxford Road, M13 9PT, Manchester, UK; ebb@bioinf.man.ac.uk

Keywords: sequence analysis, domain evolution, data visualisation

Received:June 15, 2002

Sequence analysis is widely used to infer function from one protein sequence to another. One of the
remaining hurdles in pushing further the limits of efficient usage is the modular and mobile architecture of
proteins. Although many resources provide precompiled signatures, they are not yet used in conjunction
with pairwise comparisons to investigate the modular architecture and phylogeny.

We present a program, doMosaic, which combines existing domain definitions with an adapted sequence
alignment algorithm. It is based on the Smith-Waterman scheme, can be combined with trees derived
from the domains and provides a user-friendly graphical interface. The method enables fast and efficient
analysis of domain duplication events within one or in-between two sequences. Therefore, it enables
refined functional annotation.

1 Introduction sequence patterns which re-occur across different proteins.
Often, the same feature of a sequence will be recognised
Sequence data are a major resource for inferring molegs both a domain and a motif, but this is not always the
ular function by comparative analysis. Scoring schemesase. However, since the methodology presented in the fol-
quantify the similarity between two genes or proteins, anhwing works at the sequence level for both (structural) do-
algorithms compute the best alignment. This well estalimains and (sequence) motifs, we use the word domain to
lished procedure is based on a reasonable model of molefenote both entity types. Searching for domains alone re-
ular evolution. The first algorithms were introduced taduces the complexity of functional inference but depends
molecular biology roughly 25 years ago and followed theyn the reliability and availability of precompiled resources.
recursive programming scheme which worked basically iBuch searchable resources are provided for motifs using
O(nxm) intime plus some overhead for the backtrackingweighted matrices [5, 8, 14] or signatures of patterns [3, 4].
typically of complexitym. More sophisticated and popular
fi‘:)gno\r,:/t:r:n; r‘éii;tisgs'['ﬁrs]c?fltUpIe'rrequeng'fsc;n c?fmbln yrganisms and proteins, they can excise and incise into
. . principle or aione anc tracde ol Speefy, proteins and sometimes other organisms (lateral
against selectivity [10]._An mtere;tmg V|s_uaI|sat|o_n tool is ene/domain transfer). Because of various reordering pro-
Dotter [23]. It was designed to display high scoring IocaE

alignments of proteins based on the dot plot idea [17] esses domains are also highly mobile within their host-
o in: th li A — ABB
To ease searching and browsing through the hu ing protein: they can duplicateAGC),

. _%F\’Nap ABCD — ACBD), undergo circular permutations
f ionally related “families” by cl ing based n{ﬂBC’ — ABCABC — BCA) and so on. Consequently,
unctionally related “families” by clustering based on Sey,, ¢nctional definition and inference by sequence simi-

quence similarity. Th|§ has been. accom_phsheq using fulﬁgrity can become a very involved task when hierarchical
length or local comparison of regions, with or without de-

manding transitivity, splitting etc. [6, 11, 12, 15, 16, 1g]lclléztermg and canonical classifications are rendered use
The main hurdle in this context appears to be the irregu-

lar, domain-wise architecture of proteins. While proteins Several groups have begun to take pragmatic approaches
evolve, certain regions within a protein are functionallyPy Using an existing tree, e.g. a species tree, as a “scaf-
more important than others and thus remain better cofRld”. By annotating the nodes and leaves of this scaffold
served while interspersed with regions that evolve mor@ith domain information it becomes possible to illustrate
rapidly and have many gaps and insertions. These coffte most likely domain evolution. Thus, functional rela-
served substrings are generally known as domains if donships which may remain hidden by simple sequence

fined by structural units or motifs when characterised byomparison or domain detection may be revealed.
TreeWiz uses a (species) tree as the underlying scaffold,
Present address: School of Biosciences, University of Birminghanlisplays sequences next to the leaves and allows the user

B15 2TT, UK; email: dtgl24@bham.ac.uk. . _
2Correspondence: Phone/Fax: +44-161-275-7396/5082 to browse trees of several tens of thousands leaves interac

Preprint version as of September 26, 2005. Final version to appear {iv€ly on a standard PC [22]. NIFAS, a t.0_0| bU”ding on
Informatica, special issue on Bioinformat{t3),2002. Pfam, helps to analyse the trees and mobility of certain do-

Domains may evolve at different speeds in different

16 Informatica27 (2003) 15-20 D.T. Gerrard et al.

mains [25]. It generates a tree based on the phylogeny ofit low scoring comparisons, significance cut off values
one chosen domain and displays the resulting tree. Theere derived for each BLOSUM matrix from 300 compar-
domain arrangement for every protein is displayed at theons of random sequences between lengths 50 and 500.
corresponding leaf. Thus, proteins hosting the domain uimino acid frequencies were taken from McCaldon and
der scrutiny in multiple copies will appear at all respectivedrgos (1998) . The value was chosen such that 99% of ran-
leaves. dom comparisons fell below this cut off score (once trans-
We are currently developing algorithms with userformed as above). The cut-offs were 5.0, 4.0 and 6.0 for
friendly graphical front ends to investigate the nature othe BLOSUM45, BLOSUM62 and BLOSUMS80 matrices
domain architecture. Here we present a tool, based on vargspectively. The cut off value is then subtracted from the
ations of existing algorithms, which allows a quick andength normalised score and 1.0 is added. If the value is
easy representation of major domain rearrangements ksl below 1.0, it is set to 1.0 so that in the next step, it will
tween homo- and heteromeric paralogous and orthologobhecome 0. The natural log of the value is taken. This re-
proteins. duces to zero all comparisons that scored less than or equal
to the cut-off value. The value is divided by 5 to give a
)) value in the majority of biological cases between 0 and 1.
2 Methods and Appllcatlon Some long and very similar domains (e.g. VWA domains)
will still score over 1.0. It is then multiplied by 100 for use
In an ideal world, one would want to produce the most paiby doMosaic in sizing the individual tiles between 0 and
simonious tree in terms of duplications, insertions, losse3$00%
fusions, fissions etc. However, as there are far too marthe normalisation could certainly be improved by taking
variables associated to these move sets (contrary to niito account the distribution of scores between real domain
mal sequence alignments), these events can not be propedligjnments or p-value statistics. However, in all examples
quantified. Therefore, one has to resort to a combination d@ie heuristics as described appear to work well enough to
approaches which, in our case, is the sequence alignmejigcriminate related domains from random similarities.
and the associated trees which can be produced from theall pairwise domain alignments can be analysed using
pairwise similarities. a neighbour-joining tree. This will group domains which
have arisen from an internal duplication event closer to-

Algorithms: To make use of both the precompiled andether than domains of one kind which have been in linear

fairly reliable motif resources and the pairwise comparisofrder over a longer evolutionary period after, e.g., a more

of full length sequences, doMosaic first brakes down th@ncient duplication event. Domains which have been in-

protein into the regions which are already annotated. Cugis€d will also appear far off. Care must be taken if paralo-

rently, the program requires SWISS-PROT entry format tgOUS Sequences are compared as will be seen in the follow-
scan in the feature tables correctly. Next, for each pair ¢f9 examples.

domains which can be formed between both sequences, a

full Smith-Waterman algorithm with affine gap-penalties iSAppIications: Figure 1 shows the domain-wise com-
run at the sequence level. This procesjure.can be performggrison of two paralogous human cadherin proteins.
again for each single sequence against itself. Results &&pH_HUMAIN obtained from liver and intestines and
then displayed on a grid with size of filled squares propoas five consecutive cadherin domaingl (A2, ..., A5)
tional to the alignment score. . out of seven consecutive domains annotated in total
The raw scores generated by the Smith Waterman al41 .. A7). CAD4_HUMA retinal, has seven consec-
gorithm increase with the lengths of the sequences beiggiye cadherin dom;insm, B2, ..., BT7) out of eight an-
aligned. The degree of length dependency varies with thgytated domains in total{1, ..., B8). B1, the first domain
alignment parameters (gap penalties, matrices) and wigh cAD4 HUMARas highest similarity tol1 and A3, the
the residue frequencies in the amino acids. Empirical dajgst and third domain oEADH HUMA&hdB2, the second
suggest that the relationship lies somewhere between lingg§main ofCAD4_HUMANas highest similarity to the sec-
and logarithmic (see [1] for references). The inferences @fnd and fourth domain oc€ADH HUMANFigure 2 shows
doMosaic depend on the relative similarities of related dog tree derived from all pain,visg domain-comparisons be-
mains which are normally of similar length. Therefore, thgween these two proteins and a graphical illustration of an
main point here is not so much do distinguish between trugolutionary model of domain duplication and insertion.
and false positives (or negatives) but rather to find a trang-adherins are commonly thought to have arisen by sub-
formation that is fast and removes a significant portion ofequent duplication events [13] but it is not clear if such
the length bias in the majority of cases. an event has occurred before or after a paralogous dupli-
The maximum local alignment scofefrom each compar- cation or a speciation event (leading to two orthologous
ison is divided byin(mn). So that doMosaic could filter sequences), if all have been duplicated one after another
1 : . etc. The tree is difficult to decipher and some more ancient
Two genes are paralogs if they have arisen from a common ancestor . L.
and occur in the same organism. Orthologs are also descended fron€%eNts as well as the_recent domain additions can only be
common ancestor but appear in different organisms. guessed. The necessity to add other paralogs and orthologs,

DOMOSAIC - ANALYSIS OF THE MOSAIC-LIKE. .. Informatice27 (2003) 15-20 17

— |-

ADA_CHICK(7{913)
CADA_HUMANZ (916}

CADH_HUMANE/ B32)

ADH_RAT(B/827) 300

400

| +Gene || -Gana || Run |

‘BLOSUM62 ¥ | [¥] Affine GP
Gap apening penalty:

[1k 1

0 5 10 15

Gap extension penalty: RO0 S| —
—v — 1| |P| 1|§:§:§: : |’|
u] 2 4 6 8 10 60%| + || - |CADHERIN 4. (CAD4_HUMAN) vs. CADHERIN 4. (CADH_HUMA

Figure 1: Comparison of CADH_HUMAN (North side) and CAD4_HUMAN (West side) using doMosaic. Each square

is placed in a cell (all cells are of equal size) and denotes a domain for which a similarity value above the threshold has
been found. The bigger and darker a square is, the more similar two domains are. Circles denote empty squares (similarity
below threshold). The relative length and order of domains can be read from the bars on top and left from the panel. Upon
mousing over a cell, information about the corresponding proteins is shown in a little window which pops up. Also, the
corresponding domains in the north and west bars are high-lighted such that the relative orientation in each of the proteins
becomes obvious even when the grid is dimensioned such that only a small part of all the cells are shown. Since the size
of the cells has been computed from similarities within a limited range, cells can never “bump” into each other.

possible intermediate sequences, the inability to distinguighins from a list etc. It is possible to adjust screen size, gap

between domain loss and adding and so forth would malgenalties and choose the mutation matrix. Mousing over

the tree even more involved. However, even without redomains shows score, name of domains and highlights the

sorting to such a tree, doMosaic immediately gives a cleassociated domains in the string representations in the West

answer for these two paralogous proteins: because of caand North margins of the main display window. Both size

served order, proximity and similar levels of homology, doand colour intensity of cells in the grid indicate similarity

mains B1 and B2 from CAD4_HUMAMave most likely score.

been added together to a precursor with the “classical” five-

cadherin architecture in a fairly recent duplication event.

Taking into account a few mor@ADHentities from other

vertebrates, suggests that this duplication event has most

likely occured only relatively recently, i.e., shortly beforePerformance: depends obviously on the length and num-

mammal speciation (data not shown). ber of domains but for typical applications a run does not
Example 2 in figure 3 shows the self comparison ofake more than a few, mostly less than 2 rea! time seconds

TRIO_HUMANa hetero-multimeric protein. Again, the co-°N & 7_00MHz Intel pentium IlIl. Memory requirements are

duplication of the spectrin repeats (domaing, 4 and5 Nedligible.

where2 and4 are only interspersed by a low-complexity

region of apoly-gln) is apparent and so is the probable

co-duplication of domain§ and7. Although the spectrin

family is well studied [20] the strong conservation which

will most likely have arisen from one single multiplication

event has not been reported as yet.

Implementation status: To obtain platform indepen-
dency, all parts have been programmed in JAVA and
the version, as depicted on Figures 1 and 3 can
be obtained from the authors (DTG) or our web-site
GUI: doMosaic appears essentially as a GUI which alfwww.bioinf.man.ac.uk). A revised version with the tree
lows changing parameters, loading and eliminating prageneration routine fully integrated is under construction.

18 Informatica27 (2003) 15-20 D.T. Gerrard et al.

Figure 2: Top: The neighbour joining tree of all domains which were compared by doMosaic during the comparison
between the two cadherins (CADH_HUMAN: A and CAD4_HUMAN: B) and from the self-comparison of each cadherin

in Figure 1. All events above the dotted line (earlier events, closer to the root) probably have happened within one,
ancestral protein, before the full-gene duplication into the two proteins. Bottom: The most probable flow of domains
as obtained from the tree. At the question mark the situation is unclear as the order of the domains seems to be not
conserved. Probably there have been more events which could only be reconstructed with the help of even more family
members and/or more sophisticated tree programs.

3 Discussion and Conclusion sight into the relationships between sequences have mostly
focused on the sequence level. Dotter [23] is similar in
Since new experimental techniques are introduced, biologpirit to doMosaic and displays the full x m alignment
ical data rapidly accumulate and diversify and so do toolsf two proteins such that traces of all significant subopti-
and methods to analyse these data. Many of these foawal alignments become visible. The domain arrangements
on specialised areas and help to gain qualitatively new ifier both sequence can be displayed next to the matrix sim-
sights, which in turn stimulate experimentalists to geneiitar to the two bars in doMosaic (see Figure 1). However,
ate more data and new challenges for the bioinformaticiasimilarities between domains are not displayed. Therefore,
Analysing domain evolution and mobility is such a speevolutionary events such as duplications do not become
cialised area which has recently become an important issd@¢ectly obvious. NIFAS [25], displays the phylogenetic
since the increasing amount of sequence data requires makee and domain arrangements of more than two sequences
specialised tools to push the limits of functional inferencéut does not allow the direct comparison of two sequences.
further. Although the mobility of domains has been knowrSeveral other tools focus on the phylogenetic relationship,
of for along time [9], it was only recently that it became ap4n particular of paralogy and orthology of full sequences
parent how complex a problem this imposes on their studp1, 24, 26].
[2,7,27].? However, these tools do no enable the direct and quantita-
Recent attempts to generate tools which provide further inive analysis of domain duplication events. This is what do-
2To illustrate the problem of domain mobility consider a graphMOSf’iIC d_oes: do-mam rearrangements in hom(?- and heter(-)-
G=(V,G). Let domains be verticdg, where each kind of a domain, e.g., ml.JIFlmerlc prot(.?m.S can be compared .and aSSIQned. to their
all identified EGF-like domains or the p-kinase domains are represent&@igin. doMosaic is of course not a primary analysis tool,
by one vertex, ¥1) and () respectively. Let the set of all sequencesbut it is particularly well suited for a quick analysis of do-
Whicg tI:nk ;h(;;/ert_icesl/i,vtj: for]faﬂ;])air odf two dLﬁz;eantd@main; be de- main based rearrangement events.
2? ttr?e sgqiegncéjs’.’:llrrzzsv‘v)r?gtlr\\/:r%the? g(r)rr?;ilr?swm;y a?soj oiicuﬂrikntﬁgz/strixg.e plan _tO further_develop the_ program such that it inte-
Then the graph has a small-world structure with scale free character agfiates with TreeWiz [22] and includes features from NI-

almost all domains appear in a single, giant, connected component. THAS.
holds for a variety of motif databases and organisms, [7, 27], for structural
domains [2] and even for simplified model systems [7].

DOMOSAIC - ANALYSIS OF THE MOSAIC-LIKE. ..

Figure 3: Self comparison of TRIO_HUMAN using doMosaic. The plot is symmetric because when comparing two

Informatic®7 (2003) 15-20 19

TRIO HUMAN(15/3038)
TRIO_HUMAMN(15/3038)

220
230
| +Gene H -Gene || Run | 240
[BLOSUM62 ~ | ¥/ Affine GP
Gap apening penalty: -5
0 bl 10 15 260
Gap extensian penalty: —
|| il
=]
0 2 4 6 8 10 0% |

MouseOwver to see the score

domains transitivity holds.

Acknowledgements: We thank Julian Selley for tech-

nical assistance.

EBB gratefully acknowledges support

through an MRC international recruitment grant. We thank
the referees for careful reading and useful comments whicth?]
helped to improve the manuscript.

References

(1]

(2]

(3]

(4]

(5]

(6]

[8]

S. F. Altshul, R. Bundschuh, R.Olsen, and T. Hwa.
The estimation of statistical parameters for local
alignment score distributions.Nucleic Acids Res.
29:351 - 361, 2001.

[9]

G. Apic, J. Gough, and S. A. Teichmann. Domain
combinations in archaeal, eubacterial and eukaryotic
proteomesJ. Mol. Biol,, 310:311-324, 2001.

[10]

T. Attwood, M. Croning, D. Flower, A. Lewis,

J. Mabey, P. Scordis, J. Selley, and W. Wright.
PRINTS-S: the database formerly known as PRINTS,
Nucleic Acids Res28:225-227, 2000. [

A. Bairoch and B. Boeckmann. The SWISS-PROT
protein sequence data bank, recent developmbiots.
cleic Acids Res21:3105 — 3109, 1993.

A. Bateman, E. Birney, R. Durbin, S. R. Eddy, K. L.
Howe, and E. L. Sonnhammer. The Pfam protein fam-
ily databaseNucleic Acids Res28:263-266, 2000.

1]

[12]

E. Bolten, A. Schliep, S. Schneckener, D. Schomf13]

burg, and R. Schrader. Clustering protein sequences

— structure prediction by transitive homologdgioin-
formatics 17:935 — 941, 2001.

E. Bornberg-Bauer. Randomness, structural unique-
ness, modularity and neutral evolution in sequence
space of model proteinsZ. Phys. Chem.216:139

— 154, 2002.

F. Corpet, F. Servant, J. Gouzy, and D. Kahn. ProDom
and ProDom-CG: tools for protein domain analysis
and whole genome comparisoriducleic Acids Res.
28:267 — 269, 2000.

R. F. Doolittle and T. L. Blundell. Sequence and
topology: Unity and diversity all over againCurr.
Opn. Struct. Biol.3:377 — 378, 1993.

R. Durbin, S. Eddy, A. Krogh, and G. MitchisoBi-
ological Sequence AnalysisCambridge University
Press, 1998.

A. J. Enright and C. A. Ouzounis. Gene RAGE: a
robust algorithm for sequence clustering and domain
detection.Bioinformatics 16:451 — 457, 2000.

J. Freudenberg, R. Zimmer, D. Hanisch, and
T. Lengauer. A hypergraph-based method for
unification of existing protein structure- and
sequence-families. In Silico Biology 2001.
http://www.bioinfo.de/isb/2001/02/0031

B. Geiger and O. Ayalon. Cadherindnn. Rev. Cell
and Dev. Biol, 8:307 — 332, 1992.

20 Informatica27 (2003) 15-20 D.T. Gerrard et al.

[14] S. Henikoff and J. Henikoff. Amino acid substitution
matrices from protein blocksProc. Natl. Acad. Sci.,
USA 89:10915-10919, 1992.

[15] A. Krause, P. Nicodeme, E. Bornberg-Bauer,
M. Rehmsmeier, and M. Vingron. WWW-access to
the SYSTERS protein sequence cluster Babinfor-
matics 15:262 — 263, 1999.

[16] M. Linial, N. Linial, N. Tishby, and G. Yona. Global
self-organisation of all known protein sequences re-
veals inherent biological signatures]. Mol. Biol,
268:539 — 556, 1997.

[17] J. V. Maizel and R. P. Lenk. Enhanced graphical ma-
trix analysis of nucleic acid and protein sequences.
Proc. Natl. Acad. Sci., USA8:7665 — 7669, 1981.

[18] P. McCaldon and P. Argos. Oligopeptide biases in
protein sequences and their use in predicting protein
coding regions in nucleotide sequenceProteins:
Structure, Function and Genetic$:99 — 122, 1988.

[19] J. Park and S. A. Teichmann. DIVCLUS: an au-
tomatic method in the GEANFAMMER package
that finds homologous domains in single- and multi-
domain proteinsBioinformatics 14:144 — 150, 1998.

[20] J. Pascual, J. Castresana, and M. Sarraste. Evolution
of the spectrin repeaBioEssays19:811 —817, 1997.

[21] M. Remm, C. E. Storm, and E. L. Sonnhammer.
Automatic clustering of orthologs and in-paralogs
from pairwise species comparisonsl. Mol. Biol,
314:1041-1052, 2001.

[22] U. Rost and E. Bornberg-Bauer. TreeWiz: interactive
exploration of huge treesBioinformatics 18:109 —
114, 2002.

[23] E. L. Sonnhammer and R. Durbin. A dot-matrix pro-
gram with dynamic threshold control suited for ge-
nomic DNA and protein sequence analysi§&ene
167:1-10, 1996.

[24] E. L. Sonnhammer and J. C. Wootton. Integrated
graphical analysis of protein sequence features pre-
dicted from sequence compositioRroteing 45:262
— 273, 2001.

[25] C. Storm and E. L. Sonnhammer. NIFAS: visual anal-
ysis of domain evolution in proteingioinformatics
17:343-348, 2001.

[26] C. E. Storm and E. L. Sonnhammer. Automated or-
tholog inference from phylogenetic trees and calcula-
tion of orthology reliability. Bioinformatics 18:92 —
99, 2002.

[27] S. Wuchty. Scale-free behaviour in protein domain
networks.Mol. Biol. Evol, 18:1694 — 1702, 2001.

Introduction:

Informatica 27 (2003) 1-1 1

Bioinformatics Tools and Applications

Dear Readers,

Advances in computing have traditionally been
driven by demands in rapidly evolving scientific
areas. Examples of research areas that recently have
been enjoying a rapid growth are life sciences. This
rapid growth has in turn led to a high demand for
computation tools that support the management,
interpretation and analysis of the data generated by
life science research. The field of Bioinformatics
aims at addressing this demand.

The revolution in the life sciences has led to the
emergence of new and challenging applications.
These complex applications are driving the need for
new algorithms and tools to facilitate the access,
analysis and interpretation of life science data. The
focus of this special issue of the journal is on
algorithms, systems, techniques and tools that
facilitate the way life science data is collected,
interpreted and retrieved.

In order to expose the readers of Informatica to
the recent trends in Bioinformatics, this special
issue of the journal presents some of the emerging
complex life science applications. The papers
included in this issue cover various topics such as
the interoperability of distributed biological
databases, protein functional analysis and gene
clustering. These topics will continue to be
important in facilitating new discovery and are
expected to be the subject of many future research
contributions.

The special issue starts with an article that
focuses on the interoperability of geographically
distributed and heterogeneous science databases.
The paper offers a summary of some of the
challenges facing the support of such
interoperability and proposes a scalable approach
that addresses this issue. In addition, the authors
analyze the query execution of multidatabase
queries and identify the performance limitations of
these queries. Inferring the function of a protein
using sequence data is an active area of research.
The process is generally based on sequence
similarity algorithms that establish the similarities
between known sequences and unknown sequences.
There are several previous software tools that
address this topic.

The second paper in this issue describes a
system that greatly improves on these systems by

using different processing techniques for different
types of regions of the proteins. Certain regions of
the proteins are functionally more important than
others and therefore tend to be better conserved.
The proposed system uses information about these
highly conserved regions to facilitate the functional
analysis of proteins.

The third paper in this issue concentrates on an
important area of Bioinformatics: gene clustering.
Increased attention to gene clustering was due to the
recent availability of high throughput microarray
technology. This technology allows the
measurement of gene expression data for thousands
of genes and generates a large amount of expression
data. Analyzing and interpreting this data can be
difficult. To assist scientists in this process, the
authors of the third paper of this issue propose an
integrated approach to gene clustering. One of the
innovative aspects of the proposed approach is that
it is highly automated and generates high quality
clustering result based on a dynamic validation
technique.

The editors would like to thank the authors for
their strong contributions to this special issue and
the reviewers for their diligent review of the papers.
We hope that the readers of Informatica will enjoy
this issue and will find it valuable in their future
research.

Editors of the Special Issue,

Johann Eder Omran Bukhres

eder@isys.uni-klu.ac.at bukhres@cs.iupui.edu

2 Informatica 27 (2003) 1-1 Introduction

Informatica 27 (2003) 21-27 21

Mining and Validating Gene Expression Patterns: an Integrated

Approach and Applications

Shin-Mu Tseng and Ching-Pin Kao

Institute of Computer Science and Information Engineering
National Cheng Kung University

Tainan, Taiwan, R.O.C.

Email: tsengsm@mail.ncku.edu.tw

Keywords: gene expression, microarray, data mining, clustering, validation techniques

Received: July 5, 2002

The microarray technique has been widely used in recent years since it can capture the expressions of
thousands of genes in a single experiment. To meet the challenge of high volume and complexity of
microarray data, various data mining methods and applications have been proposed for analysing gene
expressions. Although numerous clustering methods have been studied, they can not provide automation,
high quality and high efficiency simultaneously for the biologists during the analysis process. In this
research, we propose an integrated approach that can analyse large volume of gene expression data
automatically and efficiently. Our approach integrates efficient clustering algorithms with a novel
validation technique such that the quality of the discovered gene expression patterns can be evaluated
on the fly. Through practical implementation and applications on real gene expression data, our
approach was shown to outperform other methods in terms of efficiency, clustering quality and

automation.

1 Introduction

With the innovation of microarray technology [5, 16], the
biological researchers can examine the expressions of
thousands of genes simultaneously in a single experiment.
This advances greatly the progress in exploring the real
functions of various genes. In recent years, large
amounts of gene expression datum have been generated
by the biologists. Thus, there is a great need to develop
effective analytical methods to analyze and to exploit the
information contained in gene expression data. Since
genes with related functions tend to have similar
expression patterns, possible roles for genes with
unknown functions can be suggested based on the known
functions of some other genes that are placed in the same
cluster. Therefore, it is an important research issue to
analyze and interpret the gene expression data obtained
via microarray experiments [4, 15]. The gene expression
patterns obtained by analysing microarray data can then
be used for a variety of inference tasks, like measurement
of a gene’s involvement in a particular cellular event or
process [1, 17, 19], predict regulatory elements [3], etc.

Clustering of gene expression is one of the most
important processes in analysing gene expression data.
Clustering methods aim at detecting groups of genes that
have similar expression patterns. Basically, a clustering
algorithm partitions entities into groups based on the
given features of the entities, so that the clusters are
homogeneous and well separated. For gene expression
analysis, the main algorithmic problem involved is to
cluster multi-condition gene expression patterns. More

specifically, the aim is to identify sets of genes that
behave similarly across the conditions. Furthermore, the
clustering results can be utilized to help understand
functions of genes. For example, the function of a gene
may be predicted based on the known functions of genes
within the same cluster.

A variety of clustering methods have been proposed for
mining gene expression data [2, 4, 6-11]. For example,
the average-link hierarchical clustering algorithm was
widely used to identify groups of co-regulated yeast
genes. Ben-Dor et al. [2] reported success of applying
CAST algorithm on gene expression analysis. Although a
number of clustering methods have been studied in the
rich literature, they incur problems in the following
aspects: 1) Automation, 2) Quality, and 3) Efficiency. In
the aspect of automation, most clustering algorithms
request the users to set up some parameters for
conducting the clustering task. For example, k-means [9]
requires the user to input the number of clusters & to be
generated. However, in real applications, it is difficult for
a biologist to determine the right parameters manually
for the clustering tasks. Hence, an automated clustering
method is required. In the aspect of quality, an accurate
and efficient validation method is lacked for evaluating
the quality of the clustering results. Consequently, it is
difficult to provide users with the information regarding
how good the clustering result is. Finally, in the aspect of
efficiency, the existing clustering algorithms may not
perform well when the optimal or near-optimal clustering

22 Informatica 27 (2003) 21-27

result is required from the global view.

In this paper, we propose an integrated approach for
mining multi-condition gene expression and validating
the clustering results. This approach integrates the
density-based clustering method with the validation
techniques to provide automation and accuracy for the
clustering. Furthermore, an iterative computing process
is adopted to reduce the computation in clustering such
as to meet the requirement of efficiency. The approach is
implemented and applied on real gene expression data,
and it is shown to deliver higher efficiency, clustering
quality and automation than other methods.

The rest of the paper is organized as follows: In Section 2,
some related literatures are introduced; Our approach is
described in section 3; Applications of the proposed
method on analysing gene expression data is
demonstrated in Section 4; the conclusion and future
work is made in Section 5.

2 Related Work

In recent years, the biologists can produce large amounts
of gene expression datum rapidly through the microarray
experiments, which can be divided into two categories.
The first types of microarray experiments are to monitor
the expressions of a set of genes under a series of varied
conditions; the second type of microarray experiments
aim at observing the expressions of genes under a same
environment but from different cells. The data generated
from first type of experiments can be used to detect the
trends and regularities of a gene under a series of
conditions, while the data from the second type of
experiments can provide information about the
classifications of genes. In this research, we focus on the
first type of gene expression data.

To analyse gene expression data effectively, a number of
clustering methods were proposed [2, 4, 6-11, 21]. They
can be classified into several different types: partitioning-
based methods (like A-means [9]), hierarchical methods
(like Hierarchical Agglomerative Clustering), density-
based methods (like CAST [2]), model-based methods,
etc. k-means partitions the dataset into & groups primarily
based on the distance between data items, where % is a
parameter specified by the user. Hierarchical clustering
methods have been applied extensively and shown to be
valuable on analyzing gene expression patterns. For
example, hierarchical clustering can be used to separate
normal and tumor tissues and to differentiate tumor types
based on gene expression patterns in each tissue. Self-
Organizing Maps were used by Tamayo et al. [7] for
advanced gene expression analysis. CAST (Cluster
Affinity Search Technique) takes as input a parameter
named affinity threshold t, where 0 < ¢ < 1, and tries to
guarantee that the average similarity in each generated
cluster is higher than the threshold t. The main advantage
of CAST is that it can detect the outliers more effectively
and it executes efficiently. In [8], a detail survey was

S.M. Tseng et al.

made on the main characteristics and applications of
various clustering algorithms, which were also classified
into different categories including portioning,
hierarchical, density-based, grid-based, fuzzy clustering,
etc.

Although a number of clustering algorithms have been
proposed, they may not find the best clustering result
efficiently and automatically for the given microarray
dataset. To find the best clustering result, an important
problem involved is how to validate the quality for some
clustering result generated by a clustering algorithm. Jain
and Dubes [9] divided cluster validation procedures into
two main categories: external and internal criterion
analysis. External criterion analysis validates a clustering
result by comparing it to a given “standard” which is
another partition of the data objects. In contrast, internal
criterion analysis uses information from within the given
data set to represent the goodness of fit between the input
dataset and the clustering result.

There are many statistical measures that assess the
agreement between an external criterion and a clustering
result. For example, Milligan ef al. [13, 14] evaluated the
performance of different clustering algorithms and
different statistical measures of agreement on both
synthetic and real data. In [8], a number of well-know
validity criteria and representative measuring indices
were studied further with detail empirical evaluations.
The problem of external criterion analysis is that reliable
external criteria are rarely available when analysing gene
expression data. Therefore, some new measures were
proposed for the internal criterion analysis. For example,
compactness and isolation of clusters are possible
measures of goodness of fit. A measure named Figure of
Merit (FOM) was used by Yeung et al. [20] for
evaluating the quality of clustering on a number of real
gene expression datasets.

The main drawback of the existing methods for analysing
gene expression pattern is that they can not meet the
requirements of automation, high quality and high
efficiency at the same time during the analysis process.
This motivated this research in designing a novel
approach that integrates clustering and validation
techniques for mining gene expression such that
automation, high quality and high efficiency can be met
simultaneously.

3 Proposed Approach

In this section, we first describe the definition of the
problem, then we present the details of our approach,
including the principles and an approximation method for
reducing the computations.

MINING AND VALIDATING GENE...

3.1 Problem Definition

The objective of clustering methods is to discover
significant groups existed in a dataset. The problem of
gene expression clustering can be described briefly as
follows. Given a set of m genes with unique identifiers, a
vector E; = {E;;, Ej», ..., E;,} is associated with each gene
i, where Ej; is a numerical data that represents the
response of gene i under condition j. The goal of gene
expression clustering is to group together genes with
similar expressions over the all conditions. That is, genes
with similar corresponding vectors should be classified
into the same cluster.

3.2 An Integrated Approach

The main ideas of the proposed approach are as follows.
Given a gene expression data, the first step of our
approach is to calculate a similarity matrix S in which the
entry S; represents the similarity of the expression
patterns for genes i and j. Although a number of
alternative measures could be used for calculating the
similarity between gene expressions, we use Pearson’s
correlation coefficients [9] here for its wide application.
Note that a similarity matrix needs to be computed and
generated only once given a gene expression data. This
reduces a lot of computation overhead as incurred by
some clustering algorithms that calculate the similarities
dynamically.

In the second step, a density-and-affinity based algorithm
is applied as the base clustering algorithm. With a
specified input parameter, the base clustering algorithm
utilizes the similarity matrix S to conduct the clustering
task. Thus a clustering result will be produced by the
base clustering algorithm based on the given input
parameter. A good candidate for the base clustering
algorithm is CAST (Cluster Affinity Search Technique)
[2], since it generates a clustering result very quickly
based only on the value of an input parameter named
affinity threshold t, where 0 <t < 1.

In the third step, a validation test is performed to evaluate
the quality of the clustering result produced in step two.
We adopt Hubert’s I statistic [9] for measuring the
quality of produced clustering. Let X=[X(7,)] and Y =[Y(i,
j)] be two n X n matrix where X(i, j) indicates the
similarity of genes i and j, Y(i, j) is defined as follows:

o 1 if genesiand j are in same cluster,
Y, j)= o otrwisehe

Hubert’s /[statistic represents the point serial correlation
between the matrix X and Y, and is defined as follows:

r-L 5 il(X(i’j)_XJ[Y(i’j)_Y]

=1 j=it Ox Ov

where M =n (n - 1) / 2 and I is between [-1, 1]. Let
matrix X be the similarity matrix derived from the gene

Informatica 27 (2003) 21-27 23

expression data, matrix Y and Hubert’s I statistic can be
calculated easily without much computation overhead.
For a clustering result, a higher value of /7 represents the
better clustering quality.

With the above steps, it is clear that a good clustering
with high quality can be obtained by applying a number
of different values for the affinity threshold t as input
parameters to the CAST algorithm, calculating the
Hubert’s I statistic of each clustering result respectively,
and choosing the one with the highest value of Hubert’s
I statistic as the output. In this way, a local-optimal
clustering result may be provided for the users
automatically. For example, as shown in Figure 1, the X
axis represents the values of affinity threshold t input to
CAST and the Y axis shows the obtained Hubert’s I”
statistic for each of the clustering result. The highest
peak in the curve corresponds to the best clustering result,
which has Hubert’s I statistic value around 0.52
occurred when ¢ is set as 0.25.

In fact, this approach is feasible in practical applications

for the following reasons:

1. Once the similarity matrix of the gene expressions
was generated at the beginning of execution, CAST
executes very fast.

2. The computation of Hubert’s I statistic for each
clustering result is easy, too. So the extra
computation overhead in doing quality validation
will be acceptable.

However, one problem incurred in the above simple
approach is how to determine the best value for the
affinity threshold t. The easiest way is varying the value
of affinity threshold t with a fixed increment and iterating
the executions of CAST by feeding in the series of values
as parameter repetitively. For example, we may vary the
values of ¢ from 0.05 to 0.95 in steps of 0.05, as shown in
Figure 1. For each clustering result, its quality will be
measured by using Hubert’s I statistic and the one with
the highest measured quality is selected as the best result.
We call this approach CAST-FI (Fixed Increment) in the
following discussions. The main disadvantage of CAST-
FI is that many iterations of computation are required.
Therefore, an approximation method will be described
for reducing the computation overhead in the next
section.

t 0.05 [<] 0.20 [[0.25][0.30 [035 [2 0.90 [0.05
Istatistic | 0.04 gg 0.51 [|0.52][0.51 [0.47 gg 0.06 | 0.04
Best Clusteﬁug result

Figure 1. Hubert’s I statistic vs. values of ¢.

24 Informatica 27 (2003) 21-27

3.3 Approximation Method

The idea behind the approximation method is to reduce
the computations by eliminating unnecessary executions
of clustering such as to obtain a “nearly-best” clustering
result instead of the optimal one. That is, we try to make
the times of executing CAST as less as possible.
Therefore, we need to narrow down the range of the
parameter affinity threshold t effectively. The proposed
method works as follows:

1. [Initially, a testing range R for setting affinity
threshold t is set as [0, 1]. We divide R equally into
m parts by the points P;, P,,..., P,.;, where P;< P,
< ... <P, ;, m[J3. Then, the value of each of P;is
taken as the affinity threshold t for executing CAST
and the /" statistic of the clustering result for each of
P; is calculated. We call this process a “run”.

2. When a run of executing the clustering is completed,
the clustering at point P, that produces the highest /~
statistic is considered as the best clustering. The
testing range R is then replaced by the range [P,.;,
P,.;] that contains the point P,.

3. The above process is repeated until the testing range
R is smaller than a threshold & or the difference
between the maximal value and minimal values of
the quality is smaller than another threshold o.

4. The clustering result with the best quality during the
tested process is output as the answer.

In this way, we can obtain the clustering result that has a
“nearly-best” clustering quality with much less
computation. In the next section, through empirical
evaluation, we shall evaluate how good the generated
clustering result is and to what extent the computations
could be reduced by our approach.

4 Applications on Gene Expression
Analysis

To validate the feasibility and performance of the
proposed approach, we implement the proposed approach
in C++ and apply it for analyzing gene expression data.
We describe the experimental setup in Section 4.1 and
the detailed experimental results on different types of
data in Sections 4.2, 4.3 and 4.4.

4.1 Design of Experiments

To evaluate the performance of our approach, we use the
microarray expression data of yeast saccharomyces
cerevisiae obtained from Lawrence Berkeley National
Lab (LBNL) (http://rana.lbl.gov/EisenData.htm). The
dataset contains the expressions of 6221 genes under 80
experimental conditions. Based on this dataset, we
generate two datasets with different properties for testing.

S.M. Tseng et al.

For the first dataset (further named dataset A), we choose
2000 genes from the original dataset randomly. The
average similarity of dataset A is 0.137 by using
Pearson’s correlation coefficient as measurement of
similarity. Thus Dataset A represents a low-similarity
dataset. Then, in order to generate a dataset with higher
similarity, we retrieve a number of genes with high
similarity from the original dataset and duplicate these
gene expression patterns to generate a dataset of about
1900 genes. Additionally, 100 outliers were mixed with
the 1900 genes to form Dataset B of about 2000 genes
totally. The average similarity of Dataset B is about
0.696 and thus it represents a high similarity dataset.

We compare our approach with CAST-FI and the well-
known clustering method, namely k-means [9]. For our
approach, the parameters m, & and o are default as 4,
0.01 and 0.01, respectively. For k-means, the value of £ is
tested in two ways: 1) & is varied from 3 to 21 in step of 2,
and 2) k is varied from 3 to 39 in step of 2, respectively.
The quality of clustering results was measured by using
Hubert’s I' statistic. The experimental results on dataset
A and B are described in the following sections,
respectively.

4.2 Results on Dataset A

The total execution time and the best clustering quality
for the tested methods on Dataset I are listed in Table 1.
The notation “CAST-FI” indicates the approach running
CAST iteratively by varying affinity threshold t from
0.05 to 0.95 in fixed increment of 0.05, while the
notation “Our Approach” indicates the one described in
Section 3 using the proposed computation reduction
method.

Table 1. Experimental results (Dataset A).

Methods |Time (sec) [Number of clusters| I” Statistic
Apgr‘égch 27 57 0.514
CAST-FI 246 57 0.514
(’;“;‘f‘znls) 404 5 0.447
(’;‘giz“;) 1092 5 0.447

It is obvious that our approach and CAST-FI outperform
k-means substantially in both of execution time and
clustering quality. In particular, our approach performs
15 times to 40 times faster than A-means with k ranged as
[3, 21] and [3, 39], respectively. In addition, the results
also show that the highest /" statistic value generated by
our approach is very close to that of CAST-FI, meaning
that the clustering quality of our approach is as good as
CAST-FI. However, our approach is about 8 times faster
than CAST-FI. Therefore, it is shown that our approach
outperforms other clustering methods greatly no matter
in quality or computation time.

MINING AND VALIDATING GENE...

Table 2 shows the distribution of clusters produced by
each tested method. It is shown that k-means generated 5
clusters for the best clustering result, while the size of
each cluster is ranged between 101 and 400. This
phenomenon holds no matter % is varied from 3 to 29 or
from 3 to 39. However, our approach produced 57
clusters for the best clustering result. In particular, it is
clear that 4 main clusters are generated, with two clusters
sized between 101 to 400 and another two sized between
401 to 600. Moreover, our approach also generates a
number of clusters with small size (1~10 and 11~100),
which are mostly outliers (or noise). This means that our
approach is superior to k-means in filtering out the
outliers from the main clusters. This can provide more
accurate clustering result and insight for gene expression
analysis.

Table 2. Distribution of produced clusters (Dataset A).

Informatica 27 (2003) 21-27 25

fact, by observing the distribution of size in the
generated clusters as shown in Table 4, we found
that both our approach and CAST-FI produce a main
cluster with large size (401-600) and many other
small clusters, which are actually outliers. This
matches the real distribution of dataset B as
described in Section 4.1. In contrast, k-means
partitions the large cluster into several clusters with
uniform size. Consequently, the clustering result
distracts with the original data distribution. This
indicates that k-means can not perform well under
high similarity dataset. In particular, it can not
identify the outliers correctly.

2. In the aspect of execution time, again our approach
is much faster than other methods. Compared to
CAST-FI, our approach produces clustering quality
as good as that by CAST-FI with much shorter
execution time. This shows that our approach can
still achieve high efficiency and accuracy under high
similarity dataset.

Table 3. Experimental results (Dataset B).

ster size
Methods 1~10 | 11~100 | 101~400 | 401~600
Our Approach | 38 15 P 5
CAST-FI 38 15 2 P
k-means
(k=3~21) 0 0 5 0
k-means
(k=3~39) 0 0 5 0

The following observations were made from this

experiment:

1. In terms of clustering quality, our approach and
CASI-FI perform much better than k-means,
especially in isolating the outliers. This means that
the density-and-affinity based methods are superior
to partitioning-based methods in clustering low-
similarity gene expression data.

2. Our approach executes much faster than CASI-FI in
discovering the best clustering result, while the
resulted clustering quality is very close to that of
CASI-FI. This illustrates the advantage of the
approximation method for computing reduction as
described in Section 3.3.

4.3 Results on Dataset B

We conducted the same experiments by replacing dataset

A with dataset B, which represents a dataset with higher

similarity. Table 3 and Table 4 show the experimental

results of the tested methods and the distribution of
cluster size under dataset B, respectively. The following
observations were made from the empirical results:

1. It is obvious that our approach and CAST-FI
outperform k-means substantially in terms of the
clustering quality (I statistic). Compared to the
experimental results on dataset A, the degree of
improvement our approach performed over k-means
in terms of the clustering quality is much higher. In

Methods | Time (sec) |Number of clusters| I Statistic
Apl?r‘;ch 13 63 0.833
CAST-FI 41 62 0.833
(’;‘giazrg) 77 12 0.309
(kk:rgi%rgs) 267 12 0.309

Table 4. Distribution of produced clusters (Dataset B).

ster size
Methods 1~10 | 11~100 | 101~400 | 401~600

Our Approach | 62 0 0 1
CAST-FI 61 0 0 1
k-means
(k=2-20) 4 5 3 0
k-means
(k=2~38) 4 5 3 0

5 Conclusions and Future Work

An integrated approach for mining and validating gene
expression patterns is proposed in this paper. The
proposed approach can automatically and effectively
cluster microarray data generated by multi-condition
experiments. Through empirical evaluations on datasets
with different degree of similarities, our approach was
shown to achieve higher efficiency and clustering quality
than other methods. Moreover, the proposed approach
can discover the “nearly-best” clustering result without
requesting the users to input parameters. Therefore, the
proposed approach can provide high degree of
automation, efficiency and clustering quality, which are

26 Informatica 27 (2003) 21-27

lacked in other clustering methods for mining gene
expression data. Our approach can also be extended to
the parallel and distributed systems for achieving higher
performance in the future.

In the future, we will further explore the following

research issues:

1. Reduce the initial range of input parameter, namely
affinity threshold t, for executing CAST. This will
significantly reduce the computation further once the
correct range can be estimated initially.

2. Design a memory-efficient clustering method to be
integrated with our iteratively clustering approach.
This is especially useful when the number of tested
genes in the microarry is large.

3. Extend our approach for the parallel and distributed
system environment and evaluate its performance in
terms of efficiency and accuracy under various
system conditions like varied number of computing
units, etc.

6 Acknowledgement

This research was partially supported by National
Science Council, R. O. C., under grant NSC 90-2213-
E006-132. We would also like to thank the referees for
their precious comments and advices.

7 References

[1] U. Alon, N. Barkai, D. A. Notterman, K. Gish, S.
Ybarra, D. Mack & A. J. Levine (1999) Broad
patterns of gene expression revealed by clustering
analysis of tumor and normal colon tissues probed by
oligonucleotide arrays, Proc. Natl Acad. Sci. USA,
96, 6745-6750.

[2] Amir Ben-Dor & Zohar Yakhini (1999) Clustering
gene expression patterns. Proc. of the 3rd Annual
Int’l Conf. on Computational Molecular Biology
(RECOMB “99).

[3] A.Brazma, I. Jonassen, J. Vilo, & E. Ukkonen (1998)
Predicting gene regulatory elements in silico on a
genomic scale. Genome Research 8, 1202-1215.

[4] Ming-Syan Chen, Jiawei Han, & Philip S. Yu (1996)
Data mining: An Overview from a Database
Perspective. I[EEE Transactions on Knowledge and
Data Engineering, Vol. 8, No.6.

[5] J. DeRisi, L. Penland, P. O. Brown, M. L. Bittner, P.
S. Meltzer, M. Ray, Y. Chen, Y. A. Su & J. M. Trent
(1996) Use of a cDNA microarray to analyze gene
expression patterns in human cancer. Nature
Genetics 14: 457-460

S.M. Tseng et al.

[6] Sudipto Guha, Rajeev Rastogi, & Kyuseok Shim
(1998) CURE: An efficient clustering algorithm for
large databases. Proc. of ACM Int’l Conf. on
Management of Data, p. 73-84, New York.

[7] Sudipto Guha, Rajeev Rastogi, & Kyuseok Shim
(1999) ROCK: a robust clustering algorithm for
categorical attributes. Proc. of the 15th Int’l Conf. on
Data Eng.

[8] Maria Halkidi, Yannis Batistakis & Michalis
Vazirgiannis (2001) On Clustering Validation
Techniques. Journal of Intelligent Information
Systems, Vol. 17, No (2-3), p. 107-145.

[9] Anil K. Jain & Richard C. Dubes (1988) Algorithms
for Clustering Data. Prentice Hall.
[10] Teuvo Kohonen (1990) The self-organizing map.
Proc. of the IEEE, Vol. 78, No 9, p. 1464-1480.
[11] Mark S. Aldenderfer & Roger K. Blashfield
(1984) Cluster Analysis. Sage Publications, Inc.
[12] J. B. McQueen (1967) Some Methods of
Classification and Analysis of Multivariate
Observations. Proc. of the 5th Berkeley Symposium
on Mathematical Statistics and Probability, p. 281-
297.
[13] G. W. Milligan, S. C. Soon & L. M. Sokol
(1983) The effect of cluster size, dimensionality and
the number of clusters on recovery of true cluster
structure. IEEE Trans. on Pattern Analysis and
Machine Intelligence, Vol. 5, p. 40-47.
[14] G. W. Milligan & M. C. Cooper (1986) A study
of the comparability of external criteria for
hierarchical cluster analysis. Multivariate Behavioral
Research, Vol. 21, p. 441-458.
[15] C. JI. Roberts, B. Nelson, M. J. Marton, R.
Stoughton, M. R. Meyer, H. A. Bennett, Y. D. He, H.
Dai, W. L. Walker, T. R. Hughes, M. Tyers, C.
Boone & S.H. Friend (2000) Signaling and circuitry
of multiple map pathways revealed by matrix of
global gene expression profiles. Science, 283, 873-
880.
[16] M. Schena, D. Shalon, R. W. Davis & P. O.
Brown (1995) Quantitative monitoring of gene
expression patterns with a complementary DNA
microarray. Science 270: 467-470.
[17] P. T. Spellman, G. Sherlock, M. Q. Zhang, V.R.
Iyer, K. Anders, M. B. Eisen, P. O. Brown, D.
Botstein, & B. Fucher (1998) Comprehensive
Identification of Cell Cylce-regulated genes of the
yeast saccharomyces cerevisiae by microarray
hybridization. Molecular Biology of the Cell 9, 3273-
3297.

MINING AND VALIDATING GENE... Informatica 27 (2003) 21-27 27

[18] P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S.
Kitareewan, E. Dmitrovsky, E. S. Lander & T. R.
Golub (1999) Interpreting patterns of gene
expression with self-organizing maps: methods and
application to hematopoietic differentiation.

Proceedings of the National Academy of Science
USA, Vol. 96, p. 2907-2912.

[19] X. Wen, S. Fuhrman, G. S. Michaels, D. B. Carr,
S. Smith, J. L. Barker & R. Somogyi (1998)
Neurobiology large-scale temporal gene expression
mapping of central nervous system development.
Proc. Natl Acad. Sci. USA, 95, 334-339.

[20] K. Y. Yeung, D. R. Haynor & W. L. Ruzzo
(2001) Validating clustering for gene expression data.
Bioinformatics, Vol. 17, p. 309-318.

[21] Tian Zhang, Raghu Ramakrishnan & Miron
Livny (1996) BIRCH: An Efficient Data Clustering
Method for Very Large Databases. Proc. of the 1996
ACM SIGMOD Int’l Conf. on Management of Data,
p- 103-114, Montreal, Canada.

Informatica 27 (2003) 29-37 29

Fault Detection and Isolation Using Hybrid Parameter Estimation
and Fuzzy Logic Residual Evaluation

Belkacem Athamena

Department of Automatics, University of Biskra, BP 145, Biskra RP, 07000, Algeria.

E-mail: b.athamena@caramail.com

Hadj Ahmed Abbassi

Department of electronics, University of Annaba, BP 12, Annaba, 23000, Algeria.

E-mail: habbassi@wissal.dz

Keywords: Fault detection and isolation, Fuzzy logic, Parameter estimation, Adaptive threshold.

Received: February 11, 2002

Fault diagnosis has become an issue of primary importance in modern process automation as it provides
the prerequisites for the task of fault detection. The ability to detect the faults is essential to improve
reliability and security of a complex control system. When a physical parameter change due to failure has
occurred in a system, the failure effect will hardly be visible in the output performance. Since the failure,
effect is reflected as a change in the predictor model. In this paper we describe a completed feasibility
study demonstrating the merit of employing hybrid parameter-estimation and fuzzy logic for fault
diagnosis. In this scheme, the residual generation is obtained from input-output data process, and
identification technique based on ARX model, and the residual evaluation is based on fuzzy logic adaptive
threshold method. The proposed fault detection and isolation tool has been tested on a magnetic levitation

vehicle system.

1 Introduction

One of the most important goals of intelligent automatic
control systems is to increase the reliability, availability,
and safety of those systems. A complex automatic system
can consist of hundreds of interdependent working
elements, which are individually subject to malfunction.
Total faults of the systems can cause unacceptable
economic loss or hazards to personnel. Therefore, it is
essential to provide on-line operating information by a
scheme of observation and monitoring which detects
faults as they occur, identifies the type of malfunction of
faulty components, and compensates for the faults by
appropriate actions and management to meet reliability
and safety requirements so that the system can indeed
continues to operate satisfactorily.

In many application the problem of fault detection and
isolation FDI is a crucial issue that has been theoretically
and experimentally investigated with different types of
approaches, as can be seen from the survey papers
(Willsky 1976, Isermann 1984, Basseville 1988, Gertler
1988, Frank 1990) and the books (Basseville &
Nikiforov 1993, Chen & Patton 1999, Gertler 1998,
Patton & al. 2000, Patton & al. 1989) among other
references. It has been widely acknowledged that the FDI
problem can be split into two steps: generation of
residuals, which are ideally close to zero under no-fault
conditions, minimally sensitive to noises and
disturbances, and maximally sensitive to faults, and
residual evaluation, namely design of decision rules
based on these residuals.

In this paper, we study the possible fault symptoms
occurring in a magnetic levitation vehicle system MLV.

The method proceeds in four stages. First, the MLV
model is estimated by hybrid parameter-estimation
technique. Then fault symptoms are defined analytically
according to physical system features and the residual
signal is then designed by the prediction error. After the
residual generation, the fundamental problem is residual
evaluation, for these applications, is that, even supposing
the model to be precise, the measurements are not; thus
evaluating precisely the decision threshold value valid
for every operating condition is difficult. To go beyond
this problem, several solutions have been proposed, for
instance, using adaptive threshold evaluation of the
residuals.

The paper is organized as follows: In section 2 the hybrid
parameter-estimation and the problem formulation are
described. Section 3 devotes to the fault diagnosis
concept of the fault detection scheme. The design and
simulation examples are given in section 4, and the
conclusion is drawn in section 5.

2 Hybrid parameter-estimation

The hybrid parameter-estimation method can be briefly
described as follows. Consider a single-input single-
output system described by a linear differential equation,

yO) == ay" O+ D bu () +w1), n=m (1)
i=1 j=0

where the superscript notations means the time derivative

operation, that y“(t)=d'y(t)/dt' and y(¢), u(t) and

v(¢) are output, input and noise, respectively.

Effectively, we have linear model with regard to the
parameters, but impracticable because explanatory

30 Informatica 27 (2003) 29-37

variables y(¢#) and u(¢) are not available (Middleton &

Goodwin 1990). The principle is correct, but a previous
filtering of data is necessary in order to achieve a
transformation of model under a realist form. The
methodology is called chain moments of Poisson, which
that consists to use a stable nth-order filter. The basic
idea of the method is to transform the original system
model into an estimated model by introducing a set of
identical linear filters, operating on each term in the
original model. Let g(¢) be the impulse response of the

filter, the transformed system model is then given by,

[y@g-nd=-3a,[7" g~ v)ds
0) l i=1 0 [(2)
+ ijju(/’ (Dg(t—t)dt + Jv(‘t)g(t -1dt

0 0
where y"'(¢) and u"'(¢) denote the derivatives of order i
and j respectively. Introducing the variables y, (),

u, (t) and v, (), equation (2) can be simplified into,

Vi) = —’Z’a,.ym (0)+ ﬁb,uf,.(t) (1) 3)

In practice, we prefer use a simple structure of g(¢),

depending of minimum parameters, for this reason,
habitually we use,

g =——i1"'e" @

1
(n-1)!
The choice of o conditions the bias, but also the
convergence of the estimation. We can choose o in

manner that e,,i = I,_n, the filter coefficients approach to

the better of a,,i =1,_n , for example according to the

criterion of bandwidth (Athamena & Abbassi 2000)
then,

O =Y (e, =00+ Y bu, 4,0 O

We obtain a linear model with regard to the parameters
by a transformation of the original data to the filtered
data, where an analogue relation to the equation (1).

The estimation problem consists of the parameter
identification, which appears in the model by the
treatment of the input/output data. We consider that 0
the parameter vector, which can correctly translate the
dynamic behavior of the process, and ¢(¢) the regression

vector. The estimation problem is to find a good estimate

6 of 0. The common measure of goodness of an
estimate in the least squares cost function,

.0~ [0~ (@) dr ©)

The estimation method that we will study in this paper
basically depend on our ability to rearrange the model so
that the predicted output describable as a linear function
of a parameter vector O : that is, there exists some vector
of measured variables, @(¢), such that the model output

(t,0) ~ p(¢) can be expressed as,

B. Athamena et al.

PO =0" (10 (7N
where,
e:[el_al veoe,—a, bo bm]r

®)
0" () =y, (0 V() 1, (0) i, (1)]

In this case, we can define the algorithm of the
generalized hybrid least squared according to,

50(0) = LOPOROD — 0" (1)
L(6) + To" (1) P(1)o(t)
5p() = ~HOPOODE OPO) o)
L)+ To" () P1)e(t)
where 6 is the delta operator (Middleton & Goodwin
1990, Athamena & Abbassi 2001) and,

a(t) = A (time-varying) gain, a(f) € [0 l].

€))

I'(t) = A (time-varying) normalization term, I'(z) > 0.
and, where Q(f) represents a modification to the
covariance, with: Q(t)=Q" (1) =0.

For the least square algorithm with forgetting factors, we
use,

o) - [1 ln j{k Py TP(r)cp(r)cpT(r)P(r)J

T+ T ()PO)¢(1) (10)

a(t) =1

the algorithm also needs initial values é(O) and P(0).

Experience with this simple rule for setting A shows that
a decrease in the value of the forgetting factor leads to
two effects:

e The parameter estimates converge to their true values
quicker thus, decreasing the faulty alarm delay time.

o But at the expense of increased sensitivity to noise. If
A is much less than 1 the estimate may even oscillates
around its true value.

There are various ways around this problem, in this

method the constant A in (10) is replaced by A(¢). A

typical choice is a recursively given by,
M) = LA = 1)+ (1-2(0)) (11)
typical design values for A, and A(0) are 0.99 and 0.95

respectively. The least square algorithm is used for its
speed of convergence, ease of implementation and
numerical stability. A large body of research has been
devoted to devising choices for the forgetting factor to
allow continued adaptively without overdue sensitivity to
transient disturbances and without catastrophic numerical
effects such as “covariance blow-up”.

3 Fault diagnosis concept

The fault diagnosis concept proposed here consists of the
basic steps residual generation, residual evaluation and
fault alarm presentation as shown in Figure 1 (Athamena
& Abbassi 2002).

3.1 Residual generation

Residual generation via hybrid parameter-estimation
relies on the principle that possible faults in the
monitored process can be associated with specific

FAULT DETECTION AND ISOLATION...

parameters and states of a mathematical model of a
process given in general by an input-output relation. The
main idea is to generate residuals that reflect
inconsistencies between nominal and faulty system
operations. When faults are present, the residual
sequence distribution is changed. Many hypothesis tests
can be used to evaluate the residual sequences.

lFaults

Input Output
PROCESS - e
lMeasurements
4 .
nalytical RESIDUAL
> <
Knowledge GENERATION
Residuals
Expert RESIDUAL
 —
Knowledge EVALUATION
Evaluated residuals

FAULT ALARM
PRESENTATION

Figure 1: Fault Diagnosis Concept.

In this following, 7 (¢) represents the residual in each
variable, that is the difference between the measurement
parameter vector 0, (f) and it’s estimated ék(t) at each
time instant,

r(6)=0,()=0,(0),k=1Ln+m+1 (12)
if the process is operating normally, the innovation
process is zero-mean white noise.

Fault in dynamical systems can be detected with the aid
of an innovation sequence that has the property that if the
system operates normally the normalized innovation
sequence is a Gaussian white noise with zero mean and
with a unit covariance matrix. Faults that change the
system dynamics affect the characteristics of the
normalized innovation sequence by changing its white
noise nature, displacing its zero mean, and varying unit
covariance matrix. Thus, the problem is how to detect as
quickly as possible any change of these parameters from
their nominal value.

3.2 Fuzzy logic based decision signal

The residual evaluation is a logic decision making
process that transforms quantitative knowledge
(residuals) into qualitative knowledge (fault symptoms).
The goal is to decide if and where in the process the fault
has occurred, with a minimum rate of erroneous decision

Informatica 27 (2003) 29-37 31

(false alarms) that are caused by the existing disturbances
and modeling uncertainties. In Figure 2, the principle of
residual evaluation using fuzzy logic consists of a three-
step process. Firstly, the residuals have to be fuzzified,
then they have to be evaluated by an inference
mechanism using /F-THEN rules, and finally they have
to be defuzzified.

AlarmT
DECISION
A
ln(r) a0 - 40
‘Fuzzy logic-based
Mean - decision signal -
x,(t) ol = |
| & > § ';: ‘% ck(t)
1 §1 s é — p
a [ROH S| EE -
—> — o> 5| 3|
dt [~ v
Fuzzy logic based.
threshold selection
>l | § § S
: ‘§ S |l AJ .
S|
S5 +
e 3 e
> 518 |S
S|g|Ef|

Figure 2: Residual evaluation concept.

The mean value of the residual »,(f) on a temporal

window of p sampling periods 7, x,(¢) is given by,

xk(t)=%in(t—j) (13)

The residual derivative x,(z) will be estimated on the

same temporal window by a least square linear

approximation,
P P »
pY_Jr(t=j)=> > r(t=j)
X () =—" e (14)

2
» »
Py —(Z jj
j=0 j=0
The use of mean values over a small temporal window

(in the application p=8) somewhat filters the

measurement noise and at the same time allows a quick
determination of any change in the residuals.

Fuzzification: The fuzzification of the residuals is a
mapping of the representation with crisp values into a
representation by fuzzy sets. The values x,(¢) and x,(¢)
are then fuzzified by the fuzzy partitions
X, =0, (x, @) and X, =(X,,ux‘(fa(t))) defined over

32 Informatica 27 (2003) 29-37

the universe of x,(¢) and x,(¢), each one composed by

five fuzzy sets.

To describe the process, linguistic variables such as
“large-negative”, “small-positive”, “zero” will be used
and applied to mean value and residual derivative. To
allow an approximate reasoning based on numerical
values a “fuzzification” of these values is runaway.
Fuzzy sets are built to correspond to each linguistic

variable, and membership functions p(0<p<1) are
defined for those fuzzy sets. The total variations of x, (¢)
and x,(z) are split up into five subsets: negative-high
(NH), negative-medium (NM), zero (ZE), positive-
medium (PM) and positive-high (PH). The choice of the
numerical values for the boundary marks was made using
first the simulation results and after that, the
experimental results.

Symmetric trapezoidal membership functions are used
(Figure 3). This lead to a simple parameterization of each
partition with only 4 parameters o,, o,, o,, d,,

corresponding to the trapezoid boundaries.

4 nx)

NH: X NM z[E PM | X | PH

-0y —0Ol3 —0lp —0O4 o (0% (053 Oy SC

Figure 3: Membership functions of x,(t) and x,(t).

Inference rules: The common-sense shows clearly that
some situations describe by the combination of
membership functions of residuals and their derivatives
to some fuzzy sets are worse than others. For instance, if
the residual is medium positive with a negative
derivative, this means that it is decreasing, thus the
situation is not so bad, while if the residual is positive
high with a positive high derivative, the situation is bad
and worsening. For typical situations have been chosen
to describe the state of a variable: OK means that the
state in normal, SP means suspicious, AL means
alarming, and FA means faulty.

The 5 fuzzy sets of each partition form 25 combinations,
which lead to the decision table found in Table 1. Each
element of this table can be interpreted as a fuzzy rule of
the type,

IF x,(t)is X, AND x,(t)is X, THEN state is S, (15)
In order to accelerate the processing of this table, it has
been modeled as zero order Sugeno fuzzy inference
model (Mamdani 1977), which can be viewed as a
predefuzzification consequent rule. The rule (15) written
as a zero order Sugeno fuzzy rule has the form,

IF x,(t)is X, AND %, (t)is X , THEN C, = ®, (16)
Thus the symbolic states {OK, SP, AL, FA} in the table
are replaced by numerical constants {® o, O

@,, }. These constants have been arbitrarily chosen to

OK SP > AL 2

B. Athamena et al.

{®,=0,D, =033, D, =0.66, ©,, =1} but their
particular value is not important to the decision making
process.

The antecedent of the rule (16) represents an intersection
of the fuzzy sets, easily handled with an AND fuzzy logic
operator. The fire strength of a rule associated to the
position ij of the Table 1, denoted by w, , is evaluated, at

each sampling time, by a T-norms as a product,
W, =1y (5 O)AR, (@) =1, (6O (5 @)=ww, (17)
Where w, and w, represent the membership functions of

x,(¢t) and x,(¢) to the respective fuzzy sets.
X, (1)
NH | NM | ZE | PM | PH
NH | FA | FA AL SP SP
NM | F4 | AL SP SP SP
ZE | SP | OK | OK | OK SP
PM | SP | SP SP AL FA
PH | SP | SP AL FA FA
Table 1: Inference rules.

Defuzzification: Different methods of defuzzification
exist, but it seems that none of them satisfies all criteria
defined for an “ideal defuzzification method”. The center
of gravity method is; in fact, the most frequently used
one for diagnostic system design (Schneider & Frank
1996). As the residuals and their derivative can belong to
several fuzzy sets, several elements in the decision table
can be valid at the same time; thus, the multiple rule
conclusions need to be aggregated. Multiple rules are
interpreted as the union of the corresponding fuzzy
relations (OR operator). In zero order Sugeno fuzzy
model, the output of a rule base as (16) is evaluated as a
weighted sum,

szq)szi/
ZiZ/ W"/
The parameters o,, and o, in Figure 3 that define the

bounds of the fuzzy sets ZE and PM (or NM) in the
fuzzy partition associated to x,(¢) and x,(z) could be

X (1)

¢ ()= (18)

easily chosen from an estimation of the measurements
noise variance. The parameters o, and o, could be
taken as the lower and upper thresholds used in classical
alarm detection. The means o, is the value beyond
which the state of the variable is undoubtedly faulty, and
o, is an intermediary value.

3.3 Fuzzy logic based adaptive threshold

The most simple and straightforward method for fault
decision consists in a threshold test of the residual 7, ()

or a measure g(r,) formed from the residual. If constant

thresholds are used one has to cope with the problem of
the effects of unknown inputs. If the threshold is chosen
too small, false alarms will occur, if the threshold is
chosen too large, small faults can not be detected.
Therefore, it has recently been shown (Ding & Frank

FAULT DETECTION AND ISOLATION...

1991) that it is advantageous to use thresholds that are
adapted to the operation of the process. The problem of
adaptive threshold logic is illustrated by a typical
example in Figure 4. The shape of the threshold follows a
certain maneuver of the fault-free process only taking
into account the influence of the unknown inputs.
Suppose the time evolution of the residual is due to a
maneuver of the process in the face of unmatched
parameters with a fault at ¢, . Evidently, in contrast to a

constant threshold, where a false alarm occurs at ¢,, and
fault at 7, cannot be detected, the false alarm can be

avoided and the fault at #, can be detected.

A

False alarm Adantive threshold

Fixed threshold
Fault

Residual or decision

ty Time

tl-'A

Figure 4: Adaptive threshold test.

A fuzzy-based approach for a robust threshold selection
for fault detection has been described by (Frank &
Kiupel 1992). The gradual meaning of fuzzy sets has
been exploited by defining a threshold through fuzzy
membership functions. There are a trapezoidal
membership function has been chosen such that the
rising and falling edges of the trapeze depend on a
parameter incorporating the variance of noise,
uncertainty, and disturbances.

The adaptive threshold consists of a predefined value,
J,. » and an adaptive term, AJ, , which is determined by

heuristic knowledge. This approach has been developed
independently by Schneider (Schneider 1993) and Sauter
(Sauter & al. 1993). The threshold is adapted depending

on the changes of the values of x, (¥) and x (¢) in terms
of rules among fuzzy sets that are specified by proper
membership function. The resulting relation for the fuzzy
threshold adaptation is given by,

(%)= J o + A (3,5,) (19)
The term J,, represents an appropriate threshold for the
normal system behavior. The adaptive term, AJ, (xk ,J'ck) ,

incorporates the effects of modeling errors. The term,
A (x,,x,), has positive as well as negative values such

that an adjustable threshold band can be realized which

follows the actual residual signal. A schematic diagram

of the suggested concept is presented in Figure 2.

The main four steps for the adaptive fuzzy based

threshold selection can be stated as:

1. Observation of relations between false alarms and
characteristic process conditions.

2. Formulation of rules of thumbs, which are organized
by: IF...THEN...STRUCTURES.

Informatica 27 (2003) 29-37 33

3. Choice of appropriate variables and
membership functions.

4. Definition of a fuzzy rule table based on steps 2, 3.
After an initial setup of membership functions and a
fuzzy rule base, further knowledge can be incorporated
by changing the rules or by introducing new fuzzy
variables if necessary. In this way, unstructured
disturbances are incrementally included in the decision
process. Since this concept is based on linguistic
variables no theoretical process knowledge is required
but valuable heuristic information can be modified by
experienced operational personal.

For simple realization, a standard fuzzy rule is suggested.

The values x,(¢) and x, (¢) are then fuzzified, each one

fuzzy

composed by four fuzzy sets (Figure 5). The linguistic
labels of those sets are the common ones: positive zero
(PZ2), positive small (PS), positive medium (PM), and
positive large (PL).

T ()

Pz PS PM PL

-a -b -C c b a 7);
Figure 5: Membership function.

The 4 fuzzy sets of each partition form 16 combinations,
which lead to the decision table found in Table 2.

x, (1)
PZ PS PM PL
x,(1) PZ PM PS PM PL
PS PM PS PM PL
PM PS PS PM PL
PL PZ PS PM PL

Table 2: Inference rules.

Each element of this table can be interpreted as a fuzzy

rule of the type,

IF x,(t)is X, AND %, (¢)is X, THEN AJ (x,,%,)is AJ, (20)

The heuristics for generating the threshold can be

summarized as follows:

e For very small mean value of the residual the
threshold has to be increased to a medium level,

e For high residual derivative value the threshold has to
be increased considerably;

e For very high residual derivative value the threshold
has to be increased drastically; and

o For a very high residual derivative value the threshold
has to be increased to a medium level.

The rules are like those described with max-min

composition method and the center area of

defuzzification.

When ¢, (f) over-passes a threshold, the isolation

procedure is fired. For a proper on-line processing, the

case when a fault has been corrected must be detected as

well as a defect rise. Thus, two threshold values are used,

34 Informatica 27 (2003) 29-37

one to decide the failure detection, and the other to detect
the fault correction, then,

"Ck (t]| {S J, (xk,)'ck) . No Fault

21
>J,(x,,%,) . Fault @b

4 The magnetic levitation vehicle

4.1 System dynamics

In this section, a design example will be presented to
illustrate the design procedure of the proposed FDI.
Figure 6 shows the cross section of a MLV system. The
track is a T-shaped concrete guideway. Electromagnets
are distributed along the guideway and along the length
of the train in matched pairs. The magnetic attraction of
the vertically paired magnets balances the force of
gravity and levitates the vehicle above the guideway. The
horizontally paired magnets stabilize the vehicle against
sideways forces. Forward propulsion is produced by
linear induction motor action between train and
guideway.

Fixed reference plane

Train

Magnets

X
=

_ k\\
rac l& K
X
|

Figure 6: Cross section of a MLV train.

>
v vV

| >

The equations characterizing the train’s vertical motion
are now being developed according to the law of physics.
It is desired to control the gap distance y(¢#) within a
close tolerance in normal operation of the train. The gap
distance y(t) between the track and the train magnets is,

() = 2(t) = h(®) (22)
then, '
$(0) = 0~ () o)

y(t) = Z(t) = h(1)
where the dots denote time derivatives. The magnet
produces a force that is dependent upon residual
magnetism and upon the current passing through the
magnetizing circuit. For small changes in the
magnetizing current i(¢#) and the gap distance y(¢), that

force is approximately,

S (0) ==Gi(t) + Hy(?) 24

B. Athamena et al.

where G constant controls the input-output gain of the
open-loop system and H constant controls the poles of
the system. That force acts to accelerate the mass M of
the train in a vertical direction, so,

f(@)=Mz(t) = -Gi(t) + Hy(¢t) (25)
For increased current, the distance z(¢f) diminishes,
reducing y(¢) as the vehicle is attracted to the guideway.

A network model for the magnetizing circuit is given in
Figure 7. This circuit represents a generator driving a coil
wrapped around the magnet on the vehicle. In this circuit,

Rit) + Li(t) - % (0) = (1) 26)
—AVWWW— Y'Y
N (1)
O o 2w
+

Figure 7: Magnetizing circuit model.

The three state variables z,(¢)=y(t) (Gap distance),
z,(t) = y(t) (Gap velocity) and z,(t) =i(t) (Magnetizing

current) are convenient, and in terms of them the vertical
motion state equations are,

0] [o 1 0Tz®] [0 o
L0 l=l2 0 —£]z0|+o —{V(ﬂ @7)
0] [0 2 —2]zm) [+ o F9

where v(¢) is the voltage control input and f, (¢) is the
force disturbance of guideway irregularities.

If the gap distance y(¢) is considered to be the system
output, then the state variable output equation is,

() =z,(1) (28)
The voltage v(¢) is considered to be control input, while

S () = h(z)
disturbance. The system parameters M, G, L, and R can
be derived analytically by static test and dynamic
equilibrium of the vehicle.

The open-loop system with f,(¢1)=0, described by a

guideway irregularities constitute a

linear differential equation,

a}y(3)(t) + azy(z)(l) + aly(l)(t) + y(t) = b(]v(t) (29)
where,
LG-M 2
R Ry
MR H HR MRH

Then, the transformed system model is then given by,
y(t) = (el _a])yFl (t)+(€2 _az)yfz(t)"'(es _as)ym(t)"'bovm(t) (3 l)
The model in (31) has the form,

y(O) =9 (1)0 (32)
where,
0= [el —-a, e —a, é&-—da bo]T (33)

(Pr(t):b/m(t) sz(t) yF3(t) VF(J(t)]

FAULT DETECTION AND ISOLATION...

4.2 Fault modeling

Due to the reduced space just four faults have been
investigated in this paper. The considered faults are
represented in the Table 3.

Fault
F, | Malfunction in the parameter R

Fault situation

F, | Malfunction in the parameter L

F, | Malfunction in the parameter H

F, | Malfunction in the parameter G
Table 3: Fault symptoms of MLV system.

It is evident in (30, 33) that if ¢,(t), c,(t) and c,(?)
changes but ¢,(#) remain unchanged, this then implies a

change in R. (Throughout the paper it is assumed that
there are never two or more faults occurring
simultaneously in the system). Similarly, if both c¢,(¢)
and c,(¢) change, this then implies a change in L. If only
¢, () unchanged, this then implies a change in H. If ¢, (¢) ,
c,(t), c,(t) and c,(t) changes, this then implies a
change in G (see Table 4). Therefore, faults can be
diagnosed by observing changes in ¢, () in cooperation

with the fuzzy residual evaluation based on adaptive
threshold method. Furthermore, the size of a fault can be
diagnosed if the estimation is precise.

o@ | e, | ;) | ¢,
F 1 0 1 1
F, 1 0 1 0
F, 0 1 1 1
F, 1 1 1 1

Table 4: The decision table.

4.3 Experimental results

The effectiveness of method was verified using simulated
data. For this purpose, the MLV parameters were chosen
as:

G =44NA",H =58000Nm™",M =3kg,R =7Q, L =33mH
A 2KHz sampling frequency is considered, two real-time
simulations have been carried out. For the choice of the
confidence degree, we opt for the value 5% that wants to

say that the estimation makes it with a confidence rate of
95%.

Test I: The first set of faulty data simulates a change in
the efficiency of the armature resistance R, and a change
in the efficiently of the inductance L,

AR/R =1.00,¢>250; AL/L=1.00,¢> 350
The steady-state values of the estimated model
parameters before and after the faults are,

Informatica 27 (2003) 29-37 35

[—32.2143 |
. |-7.586210"
o] [-644286 1 | -0.0018
a,| |-7.586210° 7.9475 10"
a | | —0.0036 [1288571 |
b, 0.0016 o |-7.586210°
-0.0072
0.0016

By applying the RLS estimator with a forgetting factor,
the estimates of a,,a,,a, and b, were obtained and

converge quickly to their respective true values.

The percentage increase on a, 1is calculated as
Aa,/a, =098 and the percentage increase on a, is
calculated as Aa,/a, =0.96 and the percentage decrease
on b, is calculated as Ab,/b, =0.97 . It is observed that

the relative change in size of the estimated model
parameter is approximately equivalent to the relative
change in size of the physical parameter. Therefore, the
fault size is diagnosed (Yu 1997). In Figure 8§, it can be
seen that AR causes a significant change in the decisions
signal ¢ (f), c¢,(¢) and c,(t) and AL causes a

significant change in the decisions signal c¢,(¢) and
¢,(t). So, change in R and L can be diagnosed
respectively.
Test 2: The second set of faulty data simulates a change
in H and G according to,

AH/H =0.10,¢ >100;, AG/G =0.10,1> 400

The model parameter changes in the steady-state before
and after the faults are,

[—64.4286 |
" ~6.8966 10
a, —64.4286 -0.0033
a,| |-7.586210" | 00014
a,| | —0.0036 [—71.3429
b, 0.0016 o |-8344810"
-0.0039
| 0.0019

The percentage increase on a, 1is calculated as
Aa,/a,=0.09 and the percentage increase on a, is
calculated as Aa,/a, =0.08 and the percentage increase
on b, is calculated as Ab, /b, =0.07.

In Figure 9, it can be seen that AH causes a significant
change in the decisions signal c,(t), ¢,(¢) and c,(¢) and
AG causes a significant change in the decisions signal
(), c,(t), c,(t) and c,(¢). So, change in H and G can
be diagnosed respectively.

36

Informatica 27 (2003) 29-37

B. Athamena et al.

Magnitude

Decision signal AL
Adaptive threshold
I n I L L L L L L
a0 100 180 200 250 300 350 400 450 500
Sarnple time

Magnitude

0.2 T Decision signal b
Adaptive threshold
I n I L L L L L L
0 &0 100 150 200 250 300 350 400 450 500
Sarnple time

(b)

e

Magnitude

Decision signal

Adaptive threshold
20 T T T . . . L . L
0 80 100 150 200 250 300 350 400 450 500

Bamnple time

01

0.0a

0.0&

004

0.0z

Magnitude
o

-002
-0.04

-0.06

Decision signal T
Adaptive threshold
T n T . . . L . L
a 50 100 150 200 250 300 350 400 450 500
Sample time

(d

o
=
2
B
o
&
Rl Decision signal 7
Adaptive threshold
10 n I n L L L L L L
a0 00 150 200 250 300 350 400 450 500
Sarmple time
(a)
o)
0s T T T T T T T T T
g
D4t 1
0.3 Fault alartn at =100
0z
L R N T
:'é 01
2
=
L T I 1 PR
-0.2
03 Decision signal Fault alarm at (=400
Adaptive threshold AG
04 n I n L L L L L L
50 100 150 200 250 300 350 400 450 500
Sarmple time
o,®
10 T T T T T T T T T
Ly
=
=
B
o
=
B Decision signal Fault alarm at ¢=400 1
--- Adaptive threshold AGH
& n T n L . L L ! L
0 50 00 150 200 250 300 350 400 450 500
Sample time
(©)
o)
2 T T T T T T T T T
@
=
=
153
o
=
A Fault alarmn at e=400 b
Decision signal
= Adaptive threshold AG

.
0 a0 00 150 200 250 300 350 400 450 500
Sarmple time

(d)

Figure 8: Decision signal and adaptive threshold
residual evaluation.

Figure 9: Decision signal and adaptive threshold

residual evaluation.

FAULT DETECTION AND ISOLATION...

In above two simulations, the changes in the physical
parameters are clearly detected and isolated. Note that
the model parameter change is delayed from the physical
parameter change for all the faults, due to the
convergence of the estimates of the model parameters.
The maximum delay is about 500 sample intervals, or 2.5
seconds, which is allowable in practice. This lag-time is
greatly influenced by the size of the forgetting factor, A,
in the RLS algorithm. It is seen that this fault can be
detected at a high robustness against false alarms.

5 Conclusion

In this paper, a completed feasibility study of process
fault diagnosis for a magnetic levitation vehicle system
using hybrid parameter-estimation and fuzzy logic
residual evaluation is presented. The failure effect due to
a system parameter change appears as a difference in the
prediction error. The fuzzy logic is, of course,
particularly tailored for the task of diagnosis. The
simulation study suggests that the combination of
different methods will be more efficient for fault
diagnosis in real industrial systems.

References

Athamena B. & Abbassi H.A. (2000) Fault detection and
diagnosis based on fuzzy logic: Application to
magnetic levitation system. International conference
on Modelling and simulation, MS'2000, Las Palmas
de Gran Canaria, Spain, 25-27 September.

Athamena B. & Abbassi H.A. (2001) Diagnosis
techniques for system faults of industrial processes.
Rencontres francophone sur la logique floue et ses
applications, LFA’2001, Mons, Belgique, 26-27
November.

Athamena B. & Abbassi H.A. (2002) Robust fault
detection and isolation in a complex dynamic system.
MMAR 2002, 8" IEEE International Conference on
Methods and Models in Automation and Robotics, 2-5
September 2002, Szczecin, Poland

Basseville M. (1988) Detecting changes in signals and
systems-A survey. Automatica, 24(3), 309-326.

Basseville M. & Nikiforov 1.V. (1993) Detecting of
abrupt changes-theory and applications. Information
and system sciences series, Prentice-Hall, Englewood
Cliffs, NJ.

Chen, J. & Patton R.J. (1999) Robust model fault
diagnosis for dynamics systems. Kluwer Academic
Publishers, Boston, MA, USA.

Ding X. & Frank P.M. (1991) Frequency domain
approach and threshold selector for robust model-
based fault detection and isolation. Proc.
IFAC/IMACS Symp. SAFEPROCESS’91, Baden-
Baden, 307-3012.

Evsukoff A. & Montmain J. (1997) Dynamic model and
causal knowledge-based fault detection and isolation.
Proceeding of IFAC-SAFEPROCESS97.

Frank P.M. (1990) Fault diagnosis in dynamic system
using analytical and knowledge based redundancy- A
survey and news results. Automatica, 26, 459-474.

Informatica 27 (2003) 29-37 37

Frank P.M. & Kiupel N. (1992) Fuzzy supervision for
lean production. in Proc. 6th Inst. Automat. Robot,
IAR Colloquium, Duisburg, Germany, 19 November.

Gertler J.J. (1988) Survey of model-based detection and
isolation in complexes plants. /[EEE Control Systems
Mag., 8(6), 3-11.

Gertler J.J. (1999) Fault detection and diagnosis in
engineering systems. Marcel Dekker, New York, NY,
USA.

Isermann R. (1984) Process fault diagnosis based on
modeling and estimation methods-A survey.
Automatica, 20, 387-404.

Kumamaru K., Soderstrom T., Sagara S. & Morita K.
(1988) On-line fault detection in adaptive control
systems by using kullback discrimination index.
IFAC Identification —and System Parameter
Estimation, Beijing, 1135-1140.

Mamdani E.H. (1977) The application of fuzzy set theory
to control systems-A survey. In Fuzzy Automata and
Decision Process, Eds. Amsterdam, The
Netherlands,77-88.

Middleton R.H. & Goodwin G.C. (1990) Improved finite
word length characteristics in digital control using
delta operators. IEEE, Transaction on Automatic
Control, Vol.AC-31, No.11, 1015-1021.

Middleton R.H. & Goodwin G.C. (1990) Digital control
and estimation: A unified approach. Prentice-Hall,
Englewood CIiffs, New Jersey.

Patton R.J., Frank P.M. & Clark R.N. (2000) Issues of
fault diagnosis for dynamic systems. Springer.

Patton R.J., Frank P.M. & Clark R. (1989) Fault
diagnosis in dynamic systems-Theory and
application, International series in systems and
control engineering, Prentice-Hall, London, U.K.

Patton R.J., Chen J. & Lopez Toribio C.J. (1998) Fuzzy
observers for non-linear dynamic systems fault
diagnosis. Proceeding of the 37" IEEE Conference on
Decision & Control, Tampa, Florida USA, 84-89.

Sauter D., Dubois G., Levrat E. & Bremont J. (1993)
Fault diagnosis in systems using fuzzy logic. in Proc.
EUFIT 93, I'" Europ. Congr. Fuzzy intell. Technol.,
Aachen, Germany.

Schneider H. (1993) Implementation of a fuzzy concept
for supervision and fault detection of robots. in Proc.
EUFIT’93, I'" Europ. Congr. Fuzzy intell. Technol.,
Aachen, Germany.

Schneider H. & Frank P.M. (1996) Observer-based
supervision and fault detection in robots using
nonlinear and fuzzy logic residual evaluation. /EEE,
Transactions on control systems technology, 4(3),
274-282.

Willsky A.S. (1976) A survey of design methods for
failure detection in dynamic systems. Automatica, 12,
601-611.

Yu D. (1997) Fault diagnosis for hydraulic drive system
using a Parameter-Estimation Method. Control
Engineering Practice, 5(9), 1283-1291.

Informatica27(2003) 39-47 39

Practical Construction for Multicast Re-keying Schemes Using R-S Code and
A-G Code

Chun-yan Bai, Roberta Houston and Gui-liang Feng
The Center for Advanced Computer Studies
University of Louisiana at Lafayette

Lafayette, LA 70504

Email:cxb7146, rah1231, glf@cacs.louisiana.edu

Keywords: Multicast, Re-keying, Reed-Solomon code, Hash function, KDP

Received:August 20, 2002

Multicast Re-keying means the establishment of a new session key for the new subgroup in the multi-
cast system. Practical construction methods for multicast re-keying scheme using Reed-Solomon codes
and Algebraic-Geometric codes are presented in this paper with examples to show the detailed construc-
tions. The constructions require no computational assumptions. The storage complexity for group mem-
bers(Group Controller and other users) and the transmission complexity for the schemes have been reduced
toO(log(n)) at the same time.

1 Introduction time ¢t does not gain any information about the content of
messages communicated at time- ¢.
With the rapid development of networks, the need for Member-joining is easy to handle by just encrypting the
high bandwidth, very dynamic and secure group(multicastjew session key with the old session key which is decrypt-
communications is increasingly evident in a wide variety ofble by all old members and sending the new session key
commercial, govermnent, and Internet communities sudhdividually to each new member encrypted by their own
as video-on-demand, multi-party teleconferencing, stockecret keys. So we just focus on the member-leaving case
guote distribution and updating software. Specifically, thand assume that there is a group controller(GC) who knows
security in the multicast communication is the necessitgll the system keys in this paper.
for multiple users who share the same security attributes The initial study on the secure multicast communication
and communication requirements to securely communicagan be traced back to the early 90’s [1]. And a lot of works
with each other using a common group session key. had followed [2,3,4,5,6,7,8,9]. All in all, the work can be
The general goal of secure group communication is tdivided into two major groups, one of which [2,3,4,5] uses
dynamically transmit a message encrypted by the sesv the concept okey tree structuréo set up the new session
sion keyover a broadcast channel shared by an exponekey based on the Diffie-Hellman key agreement. In [2],
tial numbern = 2™ of users so thaall but some spec- Wallner proposed a scheme which requires adly:) =
ified small coalition ofk excluded users can decipher theO(n+ (n—1)) keys for GC,O(log™) = O(d+ 1) keys for
message, even if these excluded users collude with eaghch user and have at ma@stiog™) = O(kd — 1) trans-
other in an arbitrary manner. This is what we call themissions overhead per single eviction. The requirement is
broadcast exclusioproblem(also known as thiglacklist- further improved in[3,4,5] which greatly reduces the trans-
ing problem). The establishment of a ne&ssion kejor mission and storage complexity of re-keying schemes. An-
the new subgroup is called tiie-keyingf the system. other stronger property of the tree structured scheme is that
In the multicast communication system, the group is dyit allows the number of excluded useksto be arbitrary,
namic, which means that at different time, different subrather than fixed in advance. But some balanced tree struc-
groups of the initial group is authorized to receive the multure based schemes have the disadvantage of not providing
ticast message because of those dynamically joining adllusion prevention.
leaving group members. So the secure communication in The other group makes use of themadcast encryption
multicast environment is much more challenging than traeea proposed by Fiat and Naor[6]. The broadcast en-
ditional point-to-point communication and raises numerousryption scheme enables the GC to communicate data se-
new security problems. Examples are the forward secrecyetly to dynamically changing authorized users while pre-
and backward secrecy guarantee. A protocol provides venting any coalition of users to learn anything about the
fect backward secredf/a member joining the group attime data. Other studies on broadcast encryption schemes can
t does not gain any information about the content of mede found in [7,8] and [9]. In [7], the concept of the Perfect
sages communicated at timés< ¢. A protocol provides Hash Family(PHF) is reviewed and proved to be useful for
perfect forward secrecif a member leaving the group at the secure new session key distribution. The possibility of

40 Informatica27 (2003) 39-47 C.Y.Baietal.

using the error correcting code to construct such a schemasts

is given there without providing any practical and detailed

construction. Hartonet.al. [8] borrows the idea of Key {Ex(k"\")| k€ K.k ¢ K(W),K(W) = Ujew K (u;)}.
Distribution Pattern (KDP), based on which the broadcast)]
encryption scheme that can remove upttosers from a 3- Decryption: Each usew; € U \ W uses one of his
group ofn users and is secure against collusiort afali- OWN KEKsk € K(u;) to decryptE, (kU \") and obtain
cious users can be set up. How to use the error correctiffée New session ket//\ V.

codes to construct such a KDP is not discussed. In [9], We review the concept of PHF here for the completeness
Poovendran and Baras show that by assigning probabiff this paper. Let andm be integers such that< m < n,
ties to member revocations, the optimality, correctness arfl = {1,2,..n} andB = {1,2,..m} be two sets. A
the system requirements of some of the schemes in [6,7@1% function'is a functionh from AtoBh : A — B.
can be systematically studied using information theoreti¥/e say & hash functioh : A — B'is perfect on a subset
concepts and also show that the optimal average number$f< A if 72 is injective when restricted off . Letw be an
keys per member in a secure multicast scheme is relatedifgeger such that < w < m,and letd C {h: A — B}.
the entropy of the member revocation event, thus providdd is called an(n, m, w) perfect hash familPHF) if for

a way for us to inspect each scheme from the theory poifly X € A with [X| = w there exists at least one element
of view. h € H such thath is perfect onX.

It is proven in [7] that if there exists a
PHF(N,n,m,w), then there exists a re-keying scheme
in which the number of KEKs for each user and the GC
are N and Nm respectively and the number of broad-

) cast transmissions to remove up dousers is less than
Assume that there is a set of uséfs a group controller (m —1)N.

GC and a sef of Key Encrypting Keys (KEK) that i~y is "a1s0 proven in [7] that ar(N,n,d,m) erasure

generated and stored by th_e Qs}assion keys_ are used ,4e gives rise to @H F(N,n,m,w) as long asN >
for group member communication. A user will have a ag‘e

2 Related Work review

subset of Key Encrypting Keyds (u;) C K. KEKs are (N — d), thus can be used for the construction of

used to update the SK_in the event of membership chan above re-keying scheme. Such a scheme can prevent
due to any of the following reasons: (a) a new member ad; ysers from colluding. The performance of the re-keying
mission, (b) expiration of the SK, () member compromiséscheme based on PHF is determined by the paraméter
(d) voluntary leave, and (e) member revocation. We onlynen , andm are fixed, which should be minimized to
consider the last case, member revocation in this paper. requce the storage and transmission complexity. But the
The secure group communication requires KEKs to seuthor didn’t mention any details on which kind of error

curely distribute the updated SK. If every member has agorrecting code should be used and how it is used for the
individual public key, for a group consisting afmembers, construction.

the SK update will involveD(n) encryptions by the GC.

The linear increase of the required number of encryptio .
in group size is not suitable for very large scale applicatior?é'2 Re-keying scheme based on KDP

common in Internet, due to the amount of computationah, [g], H. Kurnio reviewed the concept of Key distribution

burden on the GC. Patterns(KDP).
Next, we will review two scalable re-keying schemes et X — {21,79,...,2,} and B = {By, Bo, ..., BN}
which can reduce the number of encryptions. be a family of subsets ak. The pair(X, B) is called an

(n, N, t)-key distribution pattern if
2.1 Re-keying scheme based on PHF |(BiNBy) \ U_1Bs,)| >1

A re-keying scheme called OR scheme in [7] specifies afr any (t + 2)-subset(s, j, s, ..., s;} of {1,2,..., N}.
algorithm by which the GC produces a common session wjth the idea of KDP, the author presented a theorem to
key kU\W for the groupl \ W without letting those users show the existence of a multicast re-keying scheme with
in I to know the new session key, whellé C U. The dynamic controller based on KDP. But how to effectively
scheme is as follows: construct KDP is still an open problem.

1. Key initialization : The GC generates and stores a Inspired by the work from [7] and [8], we look at the
setK of KEKs and securely gives; the set of his KEKs problem of multicast re-keying from the error-correcting
K(u;)) CK. codes point of view in this paper. In order to achieve con-

2. Broadcast : To remove a set of usei® from U, the structions with feasible storage that do not require com-
GC randomly chooses a session k&' and encrypts it putational assumptions, we make an improvement on the
with those keys not belonging @/, then broadcasts the constraints that must be satisfied to construct the broadcast
encrypted messages to all the users. That is, the GC broadhcryption scheme in[7,8] by avoiding the requirement of

PRACTICAL CONSTRUCTION FOR MULTICAST... Informatica7 (2003) 39-47 41

being PHF and KDP. Based on the OR model mentioned In the key initialization phase, The GC generates and
above and assumed a system with GC, we give two practtores a set ofVq keys defined ad¢ = {kp,) | b €
cal construction of schemes based on Reed-Solomon codésh € B}. For a usel;, 1 < i < n, GC secretly gives;
and avoid any computational assumptions. Conditions uthe set of V' Key Encryption Keysi (u;) = {k(x,n()) P €
derlining the constructions are also given together with exH }.
amples to show the detail constructions. In the broadcast stage of removing a set of uggérsom
Kumaret.al. [10] also consider the blacklisting problem 7, || < w, the GC randomly select a new session key and
through error-correcting codes, but their method is quitencrypt it with those KEKs that do not belong 13, then
different from ours. broadcast the encrypted messages to all the users. So those
users that have been removed can not use their own KEKs
to decrypt and obtain the new session key.
As to the decryption phase, we need to prove that any

3 Multicast Re-keying Scheme

based on R-S code useru, that does not belong t&/ has at least one key to
decrypt and obtain the new session key.
3.1 Background on code Let W = {uwi1, ..., uino }. Since the minimum distance

of the code isd, for any given pair of elements;, x5 €
U, there are at mosV — d functions fromH such that
Definition 3.1 (Linear Code) An [m, k,d] linear code the values of thes& — d functions evalu_ated om; and
xo are the same. For any usey ¢ W, it has at most
N —d functions that is the same ag, at mostN —d same
functions asu;», ... and at mosiV — d same functions as
u;,. The worst case is that the salNe-d functions that:;
Reed-Solomon code is an important kind of linear blockas withu,; is different from thoseV — d functions that;
BCH codes which had been widely used in such areas hgs withu;,, which is different from thosév — d functions
space communication systems, spread-spectrum commuiiatu; has withu;s, ... That is, all the w (N-d) functions
cation systems and computer storage systems. are different. So we conclude that¥f > w= (N —d), then
o u; has at least one function that is different from all those
Definition 3.2 (Reed — Solomon Code) Let functions belong taV. Thatis, there exists a functidn,
x1, .. Tm € GF(q) be dlstln_ct e_mdk > 0. The pgych that{ho (7)|7 = i1, 12, ..., 1w, 1} are all distinct. It
(m, k), Reed-Solomon code is given by the subspagg| s thatk,. 1. (i iSin K (u;) C K (U\W), sou; can
{(f (1), f(xm))|f € GFy i}, whereGF, . denote the yecrynt the encrypted message and obtain the new session
set of polynomials o F'(¢) of degree less thak. key kU\W . O
R-S code is a Maximum Distance Separable (MDS) The theorem holds for any sétof members who wants
code, which means that the error-correcting capability dP leave the original group as long d§ < w.
the R-S code can reach the Singleton bound. The R-
S code has the property that the:, k), R-S code is an Example 3.1 Take the(N, k,d) = (4,2,3) RS code over
[m, k,m — k + 1], linear code and it requires that < ¢. finite field GF (4) = GF(2%) = {0,1,a, a®}. The primi-
tive elementy is the root ofz? + x + 1 = 0. From theorem
3.2 R-S code based construction 3.1 we know that, if

3.2.1 First construction N —w(N —d) > 0,

Let GF(q) be a finite field.

is a k-dimensional subspadg, ;, of m-dimensional linear
spaceV,, over GF,, where the minimum Hamming dis-
tance between any pair of elements is d.

Theorem 3.1 Let (N, k, d) be a Reed-Solomon code over

GF(q), whereN is the length of the codewords,is the then there exists a broadcast encryption scheme based on

length of the information bits and is the minimum dis- Such a RS code, which means that: 1 = ;%5 = 4.

tance of the code. The number of the codewards ¢*. Sincek = 2, the information sequence is
Let W be a subset of1,2,...,n} with |IW| = w. Then
such an error-correcting code can be used to construct a m = (my, ma).

multicast encryption scheme as long as it satisfies that
The codewords, that is KEKs for all users corresponding to
N >wx (N —d). all possible information sequence is shown in Table 1.

Proof: LetT be the set of codewords of &, k, d) code,
|T| = n. We write each element & as(c;i,ci2,...,¢cin) 3.2.2 Discussion
with ¢;; € {1,2,...,q}, wherel < i <n,1 <j <N
andn is the number of codewords. For each j we defind. From [7], it is also known that any (N,k,d) error cor-
a functionh; from A = {1,...,n} to B = {1,...,¢q} by recting code gives rise to a PHF(N,n,m,w) which is proven
h;(i) = ¢;; and letH = {h;|j =1,...N}. to be effective to set up the multicast encryption scheme.

42 Informatica27 (2003) 39-47 C.Y.Baietal.

my my | h(0) h@) h(a) h(a?) then from
u; | O 0 0 0 0 0 N <wx* (N —d),
Us 0 1 1 1 1 1 we get
us | 0 o o o o o N q
ug | 0 a? | a? a? a? a2 w < N—d:logqn—l'
Uus 1 0 0 1 o o? o
we |1 1 1 0 o2 o Example 3.2 Take an[8, 3, 6]s R-S code over finite field
uwy |1 a |« o> 0 1 GF(®) = {0,1,a,02, 0%, a%, 0%, af)
ug 1 a? | o? « 1 0
uy | « 0 0 a o2 1 as an example. Sincg = 8, N = ¢ = 8,k = 3,d =
U0 | @ 1 1 o2 o 0 N —-k+1=8-3+1 =6, then the number of codewords
u1l | «@ o o 0 1 a2 n = 8% =512 and
U2 | o | a? 1 0 « < N _ q 8 4
uiz | o> 0 0 a? 1 o v N-d logm—1 3-1
ug | @2 1 1 o 0 o? L
” o o o 1 o2 0 So the[8, 3,6]s R-S code over finite fieldF'(8) can be
u15 7 ol T2 0 o 1 used to construct the secure broadcast scheme as long as
16

the number of members who want to quit is less than or
Table 1: User KEKs constructed from (4,2,3) R-S code €aual to 3whereV > w(N — d) < 8 > 3(8 — 6).

3.2.3 Extension of the scheme

There, it requires that the minimum distance of the erroin order to improve the communication efficiency, the OR

correcting codel’ satisfies that scheme we discussed can be slightly modified with erasure
code such that the bandwidth used by the GC for broad-
((w > _ 1> N casting information can be reduced.
d > 2 _ An [n, k,m] erasure code is a special class of error-
w correcting codes that allow recovery of a message if part
< 2 > of its messagés: (n —m)) are damaged or erased during

hat is.the mini ' th isfies th . i the transmission. An erasure code can be constructed using
That is,the minimumi that satisfies the above inequality geed.Solomon code over finite fieléF (). The decoding

w procedure usek pairs of (e;, p,(e;)) to recover the origi-
((9) - 1) N nal k information messages, whetgis one of the field ele-
d = + 1. ment oveiG F(q) andp(x) = vo+v1 (x)+...+vg_1 (zF71)
(w) is the polynomial for the R-S encoding.
2 The broadcast encryption scheme described in Theo-
While here, from the above theorem, since rem 3.1 can be modified as follows. In the broadcast
phase, before broadcasting the new session #é&y"
N >wx (N —d), an encoding procedure is first applied to the new ses-

sion key. The new session ké&y\" was divided intot
piecesk/\W = (KN U\ kP then encodes
J > <1 1 > N them using Nm, t, o] erasure code to obtain the codeword

the minimum distance has to satisfy that

C(kY\W) = (¢1,¢2, ...,cnm). The GC uses all the KEKs
_ o o _ _ that do not belong to the users @f to encrypt the corre-
That is, the minimumi that satisfies the above inequality sponding components ¢f(kV\W) and broadcasts the en-

1S 1 crypted messages to all the users. That is, the GC broad-
d= VJ_ J +1. casts
v {Ek,(ci) | ki € Kk & K(W)}
Becaused < d’, the requirement for constructing theAS long as each non-excluded user has at ledstys that
broadcast encrypting scheme using R-S code had been (&, yecrypty messages dfEy, (¢;)}, he can then apply the
duced since it is more easier to find such a RS code, whighiagre code to obtain the new session key. While for those

allows us to increase the length of the information bit |,cars ini7 same as before they can not find the session
when the code length is fixed and further more to redqueys_ ’ '

the requirement for the bandwidth.
2. For any(n, k, d], R-S code over finite field,, when Theorem 3.2 The above scheme works as long as the fol-
N = q, k = log,n, where n is the number of codewords, lowing inequality holds:

d =N-k+1 = qg—loggn+1, N —-—w(N —d) > a.

PRACTICAL CONSTRUCTION FOR MULTICAST... Informatica7 (2003) 39-47 43

For an[n, k, m] erasure code overF(q), we expectt Then a broadcast encryption scheme can be constructed
to be as large as possible in order to minimize the extnahich can remove up t@ users from a group of users.
bandwidthn/k for the transmission. Actually, the basic
scheme we discussed in Theorem 3.1 is a special case ofn this scheme, The GC generates and stores & st
using[n, 1, 1] erasure code for the construction. KEKs in the key initialization phase, and sends each user

u; a subset/; C U of X as the user's KEKs. When a set of
Example 3.3 Consider the same example as in Exampl@sersi¥’ want to quit from the group, the GC selects a new
3.1: the RS codéN,k,d) = (4,2,3) over finite field session keyt”\" and encrypts the session key with all
GF(4) = GF(2?) = {0,1,, &*}. The primitive element KEKs except those belong to userdin thatis, GC broad-
ais the root of? + 2 +1 = 0. The KEKs for all users cor- casts{E (kY\W) | k, € X \ (U, UU,,...UU,,)}. So,
responding to all possible information sequence is showhose users i’ can not decrypt the encrypted message.

in Table 1. While, since forvu; thatU; € X \ W,
For the above scheme to work, it needs that

U \U_Us, | > 1,
R, 0\ VAT

it has at least one key that does not belongitpso it can

that is, A o3> decryptEy,, (kV\"') and obtain the new session key\"" .
—wd-3) 20, From the theorem we know that for any giverandn,
that is, we should makex* as small as possible. Same, for any

4—w>a. givenw andn*, we hopen to be as large as possible.
Next, we will show how to use Reed-Solomon code to

Fora=1,wcanbe 1,2 0r 3. Forr =2, w can be 1 or 2.
construct the KEK set X and U and how the scheme works.

And fora = 3, w can only be 1. We take = 2 anda = 2
as an example. _
We divide the new session ké{/\" into two parts 3.3.2 R-Scode based construction

U\wW , U\W .
FOW = (kg k), then encodedV\W using @ we take the R-S codéN, k,d) over the finite field

[16,2,2] erasure code to obtain a codeword GF(q) = {0,1,q,..a9"2}, The number of users = q".

LU\WY 1 14 The RS codeword: of length N is generated fromk

o) = (@l0),ex1),es(@), - rs(a)), information symbols taken from the finite fiel@F'(q)
where through polynomial

ci(e;) = plei),e; € GF(16)

_ 2
and h(z) = mo +miz + mox® + ...

p(x) = ko + k1.

Suppose any two usel¥ = {us,,us,}, |W]| = 2 want

to leave the group, the GC uses all the KEKs that do ndthere

belong to this two users to encrypt all these 16 pieces of m = (mo,ma, ...mj—1)
encoded keys and broadcasts the encrypted messages tg;al

the users. Then each user that is nofih has at least 2

keys to decrypt 2 messages, thus can recover the original (co, 1,
new session key.

k—2 k-1
+mg—2x +mi_1x” 7,

'~'»Cq71)

- (h(O), h(l)a h(a)v h(a2)7) h(aqiz))'
3.3 Second R-S code based construction For each uset;, the KEK set that corresponds to the k
In [8], Hartono proposed a broadcast encryption schemgformation symbols
based on the KDP(Key Distribution Pattern) which can be
used for dynamic GC. If the GC is fixed in the system and my = (M1, Mz, ..M,

is trustable, then the condition for the scheme can be im-
is

roved to make it work for general case.
P g Us = {(1a(0), hi(1), hi(a), s (09 2)},
3.3.1 Scheme description where|U;| = ¢ = N. So, the KEK set for all users is
Theorem 3.3 Let X = {xy, x5, ...z~ } be a set of KEKSs, U=U,U.

U = {U,Us,...,U,} be the set ofisers’ KEKs, which

is a family of subset ok, that is, forvi, U; C X. Let The total KEK setX for GC is

W = {Us,,Us,,...Us, } be a subset o/ with [W| = w.

If for V1, it satisfies that: X ={X;, i=1,2,..,n%},

|U; \ UP_1Us, | > 1, wheren* = N ¢ = ¢2, and

44 Informatica27 (2003) 39-47 C.Y.Baietal.

4 Construction of the Scheme using
X; = {(h,) | h € {h(0), h(q), .., h(a®")}, A-G code

3 € GF(q).} Since the R-S code ovéFF'(q) requires the length of the
codewordsN < ¢, we can not make the codeword longer
Next, we will use an example to show the exact procehan 4. Using Algebraic-geometric code(A-G code), the
dure on the RS-code construction of the scheme. scheme can be extended to the case when codeword length

N > q. Next we will show an example on how to use A-G

Example 3.4 Take the same example as in E>§a.mplg 3-Tode to construct the OR model for the multicast re-keying
that is the(N, k,d) = (4,2,3) RS code over finite field

GF(4) = GF(2%) = {0,1,a,a?}. The primitive element

a is the root ofz? + = + 1 = 0. The KEKs for all users

corresponding to all possible information sequence i¢-1 A-G code

shown in Table 1. After extending the users’ KEKSs by usgqyr those who are interested in more details about A-G
of the way shown in section 3.3.2, we obtain the KEKs SEBde, please refer to the paper [11] and [12].

X ={X;,i=1,2,...,16} as shown in Table 2.

From Table 2 we can see that 4.2 Example of A-G code based multicast
re-keying scheme
Uy = {1, 25,29, 013} Let us consider the Hermitian code ov&F'(4) = GF(2?)
— {(h1,0), (ha,0), (h3,0), (ha,0)} with & = 2. The Hermitian curve ovelGF(2?%) is

2% 4+ y? + y = 0. The curve has rational points:

Us = {x2, 6,10, T14}

= {(hla 1)’ (h27 1)7 (h37 1)’ (h‘47 1)}

{(0,0),(0,1), (1, @), (1,0?),
(2,), (0, 0®), (0®,a), (%, %)}
Vo =t man s =4 {((z1,91), (w2, 92), (3, 93), (T4, Ya),
= {(h,), (he @), (hs, @), (ha,)} (25.5). (6. y6). (27, 97). (3, s)}.

Uy = {4, 78,212, T16} Let code polynomial be(x) = mg + myz, it has 16

codewords:
= {(hlv 0[2)7 (h27 az)v (h?n 0[2), (h47 0[2)}
¢ = (c(x1,11), c(z2,Y2), c(x3,Y3), c(T4, Ya),
Us = {1, %6, 211,16}

c(xs,Y5), c(w6, ys), c(7,y7), c(Ts, ys))
= {(hl,()), (hQa 1)’ (h370‘)7 (h4a a2)}

All the codewords, that is, the KEKs set are shown in Table

3.
In this examplec(z) has at most 2 zero pointd, =
Uie = {w4, 25,711, T14} 8 —2 = 6. sinceq = 4, N = 8,d = 6, the number of users
5 .
- 5 n = ¢* = 16, the number of keys i& x g = 8 x 4 = 32.
= {(h1,07), (h2,0), (h3, @), (ha, 1)} For the OR multicast re-keying scheme to work, it re-
o) quires that
All the KEKs hold by the GC is given by: N> w(N — d),
U =Ut Ui that is,
8 > w(8 — 6),

Suppose there are = 2 users who want to quit from the _
group {uy, ua, ..., u16}, say userdV = {ur,ug}, we can SOWcan be 2 or 3. Since w can be 3, frdm-w(N —d) =
check that for each user; ¢ W, «, we know thatv can be 2.

Ui Uw: Usk Z 1 i
Ui \ Ui=1 U, | 5 Conclusions

For example,
In this paper, two practical constructions for Multicast Re-
|UL \ Upyts, | = {on, 25} =2 > 1. keying Schemes using Reed-Solomon Codes are given with
examples to show the detailed construction procedure. Be-
So such a set of KEKs can be used to implement the broaghuse it has many properties we expected, RS code pro-
cast encryption scheme. vides us a practical way to construct the multicast re-keying

45

Informatica7 (2003) 39-47

PRACTICAL CONSTRUCTION FOR MULTICAST...

% waOOllOOOOOlOOlOO
Y 3 Slolo|ld|loloHjololo|lo|o|-|H|o|o|o
<= 8
h41m0100001010000001
Jo FldlololololololHlolHlololololH|o
2o Joolo|HlolH|ololHolo|ololo|-|o
mlw
® 5 HlololHlolH|o|lo|lo|lo|H|lolo|o|o|o|H
~ 8
S leOOOOOlOOlOlOOO
Lo FHoolooo|Hooolo|dHO|H|O|O
Q% glolele|deloHoloHlololH|loloo
[l ~
Qs SloloHloloooHlHlolo|lo|lo|— oo
S SolHoo|lHooloo|lolo|—H|olo|+ O
Jo fHoojoodHoloololHo|lolo|O|H
S% Jelele|dlelole|dloolo|d|loloo|
S 3 SloloHlolooHololoH|o|loo— O
S fJolHoojloHlooo|dolo|lolH|oo
SO FlHlolololHo|lojolHlololo|+|o|o|o
| | o = 1w o | o o S| D I B F| 1 L
SRISHISHISHESE RS N I R ey ey ey Jpey Jieg ey o)

Table 2: Construction of Re-keying scheme with (4,2,3) R-S code.

h(a?)

h) h(a)

h(0)

mi

ma

(%

U1

U2

us

Ug

Us

Ue

ur

ug

Ug

U10
Uil

U2
U13
Ui4
Uis

Table 3: User KEKs constructed from (8,2,6) A-G code.

46

Informatica27 (2003) 39-47

C.Y.Bai et al.

scheme efficiently. The storage complexity and transmis- [9] R.Poovendran and J.S.Baras, An Information Theo-

sion complexity have been reduced at the same time, which
is another advantage of the method proposed in this paper.

Because this paper is only an initial work for using RS-

code in constructing the re-keying scheme, a lot of work is[10]
being done and will be done in the future such as how to

improve the communication transmission efficiency by en-

coding the new session key with error correcting code first,

how to deal with multiuser and multistage leaving from the

group, how to handle when a new user is joining, but the
members in the group has reached the maximum, how to
apply AG code instead of RS code in the construction to
improve the performance, how to make the GC be a group
member also, how to extend these two schemes to apply for

the distributed environment and so on.

References

[1]

(2]

3]

[4]

[5]

[6]

[7]

(8]

S.Berkovits. How to Broadcast a SecrAtlvances
in Cryptology - EUROCRYPT'91, Lecture Notes in
Computer Science 54p535-541, 1991;

D.M.Wallner, E.J.Harder and R.C.Agee. Key Man-
agement for Multicast: Issues and Architectutes.
tenet Draft September, 1999;

C.K.Wong, M.Gouda an dS.S.Lam, Secure Group
Communication using Key graphBroceedings of
SIGCOMM'98 p68-79, 1998;

A.Perrig, Efficient Collaborative Key Management
Protocols for Secure Autonomous Group Commu-
nication.CrypTec'99 Hongkong, December, 1999;

I.Chang, R.Engelet.al, Key Management for Se-
cure Internet Multicast using Boolean Fnction Min-
imization Techniques.INFOCOM’'99 September,
1999;

A.Fiat and M.Naor, Broadcast Encryptiohdvances
in Cryptology - CRYPT'92, Lecture Notes in Com-
puter Sciencevol.773, p481-491, 1993;

S.Naini R. and H.Wang, New Constructions for
Multicast Re-Keying Schemes using Perfect Hash
Families. 7th ACM Conference on Computer
and Communication SecurjtyACM Press,p228-
234,2000;

H.Harnio, R.S.Naini, W.Susilo and H. Wang, Key
Management for Secure Multicast with Dynamic
Controller. Information Security and Privacy, 5th
Australasian Conference, ACISP’00, Lecture Notes
in Computer Science 184p4178-190,2000; Septem-
ber, 1998;

retic Analysis of Rooted-Tree Based Secure Multicast
Key Distribution SchemedEEE Transactions on In-
formation TheoryMay, 1999;

R.Kumar, S.Rajagophlan and A.Sahai, Coding con-
structions for blacklisting problems without com-
putational assumptionsAdvances in Cryptology -
CRYPTO’'99 Lecture Notes in Computer Science,
p609-623, 1999;

PRACTICAL CONSTRUCTION FOR MULTICAST...

(11]

[12]

G.L. Feng and T.R.N. Rao, Decoding Algebraic Ge-
ometric Codes up to the Design Minimum Distance.
IEEE Transaction on Information Theqryol.1,
No.1, p37-45, Jan. 1993;

G.L. Feng, V.K. Wei, T.R.N. Rao, and K.K. Tzeng,
Simplified Understanding and Efficient Decoding of
a Class of Algebraic-Geometric Cod#SEE Trans-
action on Information Theorywol.40, No.4, p981-
1002, Jul. 1994,

Informatica7 (2003) 39-47

47

Informatica 27 (2003) 49-55 49

Building and Managing Software Reuse Libraries

Zina Houhamdi

Computer Science Institute, University of Biskra, BP 145, Biskra, 07000, Algeria.

E-mail: z_houhamdi@yahoo.fr

Keywords: Reuse library, Taxonomy, Classification, Reuse Description Formalism, Software defects.

Received : October 1, 2002

Software reuse has been claimed to be one of the most promising approaches to enhance programmer
productivity and software quality. One of the problems to be addresses to achieve high software reuse
is organizing databases of sofiware experience, in which information on software products and

processes is stored and organized to enhance reuse.

The Reuse Description Formalism (RDF) is a generalization of the faceted index approach to
classification. It was initially designed as a tool to help increase reusability of software components at
the code level (e.g. functions or subroutines). The goal of this study is to show that RDF can also be
used effectively to represent and reuse other types of software knowledge. The emphasis here is on
those proprieties of RDF that facilitates the representation of these objects.

This paper demonstrates RDF'’s representation power by constructing sample classification taxonomy
for software defects, and explains how this taxonomy can be used by the system tester to predict the

types of defects associated with software components.

1 Introduction
Current software reuse systems based on the faceted
index approach [14] to classification suffer from one or
more of the following problems [3,9]: they are applicable
to a restricted set of domains; they posses poor retrieval
mechanisms; their classification schemes are not
extensible; and/or they lack mechanisms for ensuring the
consistency of library definitions. The primary
contribution of this study is the design and
implementation of the Reuse Description Formalism,
which overcomes these problems.

e RDF is applicable to a wide range of software and
non-software domains. The RDF specification
language is capable of representing not only software
components at the code level, but it is also capable of
representing more abstract or complex software entities
such as projects, defects, or processes. What is more,
these software entities can all be made part of one
software library and can be arranged in semantic nets
using various types of relations such as "is-a",
"component-of", and "members-of" [4].

e RDF provides an extensible representation scheme.
A software reuse library system must be flexible
enough to allow representation schemes to evolve as
the needs and level of expertise in an organization
increases. The RDF specification language provides
several alternatives to extend or adjust a taxonomy so
as to allow the incorporation of new objects into the
library without having to classify all other objects [5].

e RDF provides a consistency verification mechanism.
Most software reuse library systems are based on
representation models, which must satisfy certain basic
predicates for the library to be in a consistent state. The
RDF specification language includes an "assertion"
mechanism whose purpose is to help specify and

ensure the consistency of the object descriptions

contained in a library.
In short, RDF addresses the main limitations of current
faceted classification systems by extending their
representation model.
The remaining of this paper presents a detailed definition
of the RDF system. It introduces the concepts behind
RDF's representation and similarity models by
developing a sample software reuse library. These
concepts were formalized [10].
To create and organize reuse library, an extensive
domain analysis must be performed beforehand [13].
This analysis must produce a classification scheme
(including attributes and their types) as well as an
approximate measure of similarity between objects.
This section develops a small software library to classify
operations to manipulate data structures consisting of
repeated element (e.g., stacks, trees, Hash tables). For
representation purposes we start with a trivial library and
enhance it as more features of RDF are introduced.

2 Creating taxonomy
Booch [2] classifies operations over a data structure in
the following three classes, based on how the structure is
accessed.
e Constructors: operations that alter the data structure.
e Selectors: operations that evaluate the data structure.
e [terators: operations that visit all element of the

structure.
We can describe this simple classification scheme by
defining an attribute called function as follows:

Attribute function : {construct, select, iterate};

Another attribute for classification of operations is
execution time as a function of the size of data structure.

50 Informatica 27 (2003) 49-55

Attribute timing: {constant, log, linear, loglinear, quadratic,
slow};

Attributes function and timing define a simple
classification scheme that can be used to describe four
operations for stack manipulation. Each of these
descriptions is called instance.

Push = [function = constructor & timing = constant];
Pop = [function = constructor & timing = constant];
Top = [function = select & timing = constant];
New = [function = constructor & timing = constant];

This section has introduced two basic concepts of RDF
language: attributes and instances. The type associated
with both attributes is an enumeration of terms. Each
instance defines the attribute values of a particular data
structure operation.

3 Extending Taxonomy

The characterization of the functionality of operation

presented above is too coarse. In fact, the descriptions of

push, pop and new are identical. This section refines this

characterization by extending the classification scheme.

There are at last three approaches to do this.

e Add or replace terms in the type of attribute.

e Add more attributes.

e Describe attribute values in terms of more primitive
attributes.

The first two approaches are common practice while

designing a taxonomy and the only alternatives a library

designer has with other classification systems such as

AIRS or faceted classification system. The third

approach is unique to RDF, and allows the construction

of hierarchical classification system.

3.1 Adding values to a type

In this approach, the classification scheme is refined by
including additional values to the type of an attribute. In
particular, we add new terms to the functionality
attribute. In the context of data structures consisting of
repeated elements, the constructor term will be replaced
by three new terms create, insert, and remove. With this
new definition we can now tell push from pop and tell
those from new. The updated definitions are as follows:

Attribute function : {create, insert, remove, select, iterate};
Push = [function = insert & timing = constant];
Pop = [function = remove & timing = constant];
Top = [function = select & timing = constant];
New = [function = create & timing = constant];

This drawback of this approach is that instance
definitions had to be manually modified (e.g., changing
construct by the corresponding new term in each
instance). Moreover, these extensions create flat
taxonomies with few attributes and many terms, instead
of hierarchies.

Z. Houhamdi

3.2 Adding attributes

In RDF, it is possible to define a new attribute and then
use it to refine the classification of selected instances.
Unlike other faceted classification system, this new
attribute does not have to be used in all instances. Hence,
the addition of attributes requires modifying only those
instances for which the new attribute is meaningful and
important.

For example, we extend the taxonomy by adding a new
attribute called exception. This attribute is used to
describe those operations that can signal a fatal exception
such as a stack overflow or underflow. The following
definitions are added or modified in our library:

Attribute exception : {underflow, overflow};
Push = [function = insert & timing = constant & exception =

overflow];
Pop = [function = remove & timing = constant & exception
= underflow];

Only those operations that can generate an exception
(push and pop) have been described using the attribute
exception. The remaining in the library (top and new)
were not modified and, therefore, have no defined value
for the attribute exception. It can be argued that the
attribute exception could have been defined with an
additional term called noexception to describe those
operations that do not generate exceptions. In this
solution, all instances would been defined using the same
set of attributes and therefore a system like AIRS could
still be used to model our taxonomy. Although this
argument is valid in the current example, in fact that
RDF can handle descriptions with different sets of
attributes in particularly important in the case of libraries
containing objects of different classes such as "project",
"systems", "packages", and "operations". The attributes
of these sample classes are most probably disjunct, but
they can all be classified in a single library.

3.3 Describing values of an attribute

RDF provides a new approach to extend a classification
scheme: describe all terms of an attribute using more
primitive attributes. This process is illustrated by refining
again the functionality attribute. Within the domain of
data structure consisting of repeated elements, the
functionality is described in term of three new attributes:
access (whether the data structure is written or only
read), target (which elements are affected), and newsize
(how the number of elements varies).

Attribute access : {write, read};
Attribute target : {leftmost,rightmost,keyed,any,all,none};
Attribute newsize : {increase, decrease, reset, same};

These new attributes are used to define each of terms that
belong to the attribute functionality.

Create = [in constructors & newsize=reset & target=none];
Insert =[in constructors & newsize = increase];
Remove =[in constructors & newsize = decrease];

BUILDING AND MANAGING SOFTWARE...

Select
lterate

= [in selectors];
= [in iterators];

Where constructor, selectors, and iterators each define a
class of instances. The class mechanism is used both as
an abstract mechanism and, also, as an abbreviation for
expressions. These classes are defined as follows:

Constructors = class (access = write);
Selectors = class (access = read & newsize = same);
Iterators = class (target = all);

The definition of the attribute functionality can now be
changed, because its element no longer belong to
enumeration type to a class of instances, namely the class
of instances defined in terms of one or more of the
attributes access, target, and newsize.
Attribute function : class (has access | has target | has
newsize);

Since all former terms of attribute function are defined,
instances described using these values (e.g., push) do not
need to be redefined. That is, this extension of the
classification system does not affect the classification of
objects already in the library.

This extended classification scheme allows us to define
new categories of functionality. For example, we can
define modify as a possible value of functionality, and
also describe more specific iterators.

Modify = [in modifiers];

Passive_iterate = [in iterators & in selectors];

Active_iterate = [in iterators & in constructors];
Modify_iterate = [in iterators & in modifiers];

Modifiers = class (access = write & newsize = same);

Where modifiers is the class of all operations that update
elements in the data structure.

In summary, the process required to extend a
classification scheme by redefining the terms of the
attribute is as follows:

1. Select an attribute a whose terms are to be
refined. Let T be the type of a. In the example, a
= functionality and T = {create, insert, remove,
select, iterate}.

2. Perform a domain analysis on the domain of the
terms of a. From this analysis, define a set A of
new attributes that describe terms in T, and
determine the type for each attribute in A. In the
example, A = {access, target, newsize} with their
corresponding term enumerations.

3. Redefine attribute a. possible values for a are not
terms as before (type T is no longer part of the
library), but instances that belong to a class
defined using the attributes in A.

4. Define each former term t € T as an instance
using the attributes in A, following the same
procedure used to describe data structure
operations.

Informatica 27 (2003) 49-55 51

5. If needed, other values for a can be described.
This values can be specializations of former
terms (e.g., passive_iterate) or they can represent
new concepts (e.g., modify).

In principle, this process of refinement can be done
indefinitely providing deep hierarchical taxonomies, but
there is a point in which using this formalism is no
longer useful (e.g., do not use RDF to describe detailed
functionality, including pre- and post-conditions).

4 Creating object hierarchies

Reusable software usually consists of packages or
modules, made from operations and their packages. We
want to represent this modular structure, but we do not
want to force any granularity of reuse. That is, we want
to have a library consisting of packages and operations,
assuming that both complete packages and isolated
operations will be reused. The following declarations
define the kinds of reusable software components for a
library of data structure packages. Because a package can
have several subunits, the subunits attribute has a set type.

Attribute subunits : set of components;

Attribute parent : packages;

Components = class (in packages | in operations);
Packages = class (has subunits);

Operations = class (has function | has timing);

Two other attributes for packages are defined: maxsize
(whether there are limits in the number of elements of the
structure) and control (whether concurrent access is
supported).

Attribute maxsize : {bounded, limited, unbounded};
Attribute control : {sequential, concurrent};

With these declarations, a stack package comprising the
operations already described can be defined using one
extra attribute (parent). The implementation has no preset
bound on size and does not provide support for
concurrency.

Stack = [subunit = set (parent = stack) & maxsize =
unbounded & control = sequential];

Push = [parent = stack & function = insert & timing =
constant & exception = overflow];

Pop = [parent = stack & function = remove & timing =
constant & exception = underflow];

Top = [parent = stack & function = select & timing =
constant];

New = [parent = stack & function = create & timing =
constant];

Where the construct "set (parent = stack) denotes the set
of all instances defined in the library for which the
attribute parent is equal to stack, in other words, the set
{pop, push, top, new}.

5 Dependencies among attributes

52 Informatica 27 (2003) 49-55

All classification schemes assume that certain semantic
relations between attributes values are being maintained.
For this purpose, RDF provides a mechanism that uses
assertions to define semantic constrains between attribute
values. For example, consider the case of attributes
describing the functionality of an operation. If the data
structure is not written then there is no size change, and
if the structure is reset then there is no specific target.
These two relations can be expressed as follows:

Assertion access = read = newsize = same;
Assertion newsize = reset = target = none;

In addition, the attribute maxsize and control are only
relevant for packages, and all units that declare a package
as their parent must indeed be subunits of the package.

Assertion has maxsize | has control = in package;
Assertion in packages = subunits (parent = self);

The keyword self denotes the instance being analyzed for
compliance with the assertion.

6 Defining synonyms
One of the difficulties of describing operations given our
current taxonomy is remembering the precise terms used
in the library. Besides, certain concepts can be given or
referenced by more than one name. The introduction of
synonyms for terms has been suggested as a partial
solution to this problem.
One could declare that distance between two terms is
zero, making them synonyms from the point of view of
queries based on similarity. However, queries based on
exact matches will considered them different. In RDF is
possible to declare an identifier 7; to be a synonym of an
identifier i, by simply declaring i; = i,. For example:
Update = write; Preserve = read;
These definitions introduce the synonyms update and
preserve for the terms write and read of attribute access,
respectively.

7 Queries and comparing objects

In order to find reusable software components in the
library of packages and operations; it is necessary to
define the distance values associated with the terms of
enumerations types.

This allows RDF to compute distances not only
between these terms, but also between instances defined
using these terms. Distances between terms are defined
with a distance clause. For example attribute access and
newsize and their distance clauses are given below. The
distances shown here are just sample values. {The
process of assigning distances is not described in this
paper because the emphasis is not on how to define
similarity distances between object}.

Attribute access : {write, read}
Distance {write — read: 4 , read — write: 6};

Z. Houhamdi

Attribute newsize : {increase, decrease, reset, same}
Distance {increase — decrease: 5, same: 7,
decrease — increase: 5, reset: 3, reset — same:
10, same — reset: 10};

By transitivity, we can determine other distance not
explicitly given. For example, the distance from increase
to reset is 5 + 3 = &, and the distance from decrease to
same is 12. Note that a bigger value for this distance (13)
can be obtained going from decrease to reset to same, but
RDF always uses the smallest value.

Basically, the distance between two instances is
computed by adding the distances of their corresponding
attribute values. For example, the distance from remove
to select is 16, given by the distance from write to read (4)
plus the distance from decrease to same (12).

Remove = [access = write & newsize = decrease];
16 = 4 + 12
Select =[access =read & newsize = same];

Distances between instances are used by RDF to select
reuse candidates from a library. This selection is
performed using the query command. For example, the
following query finds components that are similar to an
operation that retrieves an arbitrary element from a data
structure in at most logarithmic time.

Query function = [in selectors & target = any] & timing =
log;

Consider another example. Find a data structure with
three operations: one to initialize, one to insert an
element, and one to traverse the structure without
modifying it; concurrent control is not needed, but the
structure must be able to handle an unbounded number of
elements.

Query maxsize = unbounded & control = sequential &
Subunits = {[function = create], [function = insert],
[function = passive_iterate]};

In this query, only the functionality of the operations has
been specified. Attribute timing is not defined; meaning
that any value for timing is equally acceptable in the
retrieved operations.

8 Sample RDF taxonomy

RDF was initially designed as a tool to help increase
reusability of software components at the code level (e.g.
functions or subroutines). The goal of this section is to
show that RDF can also be used effectively to represent
and reuse other types of software knowledge. This
section includes a taxonomy for representing software
defects, and explains how RDF' library of software
defects can help a system tester.

One obvious necessity of software systems is the ability
to function without defects. Traditional software
construction processes have specific subprocesses to
detect defects (e.g., "unit test", and "acceptance test").
However, detecting faults is not enough: to reduce the

BUILDING AND MANAGING SOFTWARE...

number of defects associated with a product and its
development process requires the ability to explain and
predict them. The ability to explain a defect helps to find
its source, thus reducing the coast associated with its
correction. In addition, being able to predict defects in a
software system helps to select processes, methods and
tools to avoid defects of a particular kind, reducing the
need for later detection and correction procedures.
Prediction also helps to improve the effectiveness of
testing mechanisms by increasing the chances of finding
defects.

In order to explain and predict software defects, we need
to characterize the different kinds of defects associated
with a particular software environment and project [1].

3.1 Characterizing defects using RDF

A software product can be defined by two distinct types
of entities [1,15]: data and processes. The first attribute
we use to discriminate among defects is whether they are
directly associated with processes or with documents. If a
defect is related to document, it is called a fault. If it is
related to process, it is called either a failure or an error:
failures are associated with processes that are performed
automatically and errors are associated with human
processes.

The attribute entity classifies the kind of entity (either
data or process) in which the defect occurs. The attribute
creator classifies the creator or agent of that entity (either
computer or human). These attributes are used to define
faults, errors, and failures.

Attribute entity : {data, process};
Attribute creator : {computer, human};

Defects = class (has entity | has creator);

Faults = class (entity = data);

Failures = class (entity = process & creator = computer);
Errors = class (entity = process & creator = human);

Cause of defects. Failure, faults and errors are
interrelated. Failures are caused by one or more faults
(system failures are also caused by environmental
accidents; here we only consider software related
failures). For example, a failure during the execution of a
program is caused by a fault in the program. Faults in a
document are the consequence of defects in the processes
that create the document or in the date used by these
processes. For example, failure in a software tool can
produce a fault in a document. The cause attribute
describes these relationships. Because we do not model
human processes, this attribute does not apply to errors.

Attribute cause . set of defects;
Assertion has cause = in failures |in faults;

Severity of a defect. Another way to characterize defects
is by their severity: this information helps prioritize
activities aimed at correcting defects. We distinguish
four levels of severity: fatal (stops production or
development completely), critical (impacts production or

Informatica 27 (2003) 49-55 53

development significantly), noncritical (prevents full use
of features), and minor.

Attribute severity : {fatal, critical, noncritical, minor};

Defects and the Lifecycle. We are interest in determining
when and where a defect enters the system and when it is
detected. Because the phases of the lifecycle are related
to documents (e.g., the requirements phase is related to
the requirement document), we use phases to measure the
time at which errors and failures occurs as well as to
determine the (kind of) document in which a fault occurs.
The occurrence attribute relates a defect to phase at
which it is detected. We explicitly declare the phase type
that is used in these two attributes.

Type phase = {requirement, specification, design, coding,
unit_test, integration, operation, integration_test,
acceptance_test, maintenance};

Attribute occurrence : phase;

Attribute detection : phase;

So far we have defined attributes to characterize defects
in general. The remaining analysis defines specific kinds
of failures, faults, and errors.

Kinds of failures. A failure occurs during the execution
of either the software product or a software tool. Our
focus is on failures associated with the execution of a
particular kind of software product: implementation of
data structures.

Attribute failure_kind : {overflow, underflow, illegal_access,
wrong_output, infinite_loop, tool_failure};
Assertion has failure_kind = in failures;

Kinds of faults. Faults are defects in documents: they
occur in executable documents (i.e., code) and also in
other types of documents. Again, our focus is on
documents interpreted by the computer, so we consider
only faults on those documents.

Attribute fault_kind : {control_flow, algebraic_computation,
data_use, data_initialization, data_definition, interface };
Assertion has fault_kind = in faults;

In general it is difficult to isolate defects in documents.
However, if a particular area in a document contains a
defect, one is interested in knowing whether something is
missing (omission) or something is wrong (commission).
We use the fault_mode attribute to distinguish between
these two cases.

Attribute fault_mode : {omission, commission};
Assertion has fault_mode = in faults;

Kinds of errors. Defects introduced by humans (i.e.,
errors) are ultimately the cause of the most other type of
defects in a software product; hence understanding their
nature is critical. On the other hand, a complete

54 Informatica 27 (2003) 49-55

characterization of errors involves modeling human
processes, which is out of the scope of this work. We
simply characterize errors by the particular domain that
is misunderstood or misused, using the error kind
attribute.

Attribute error_kind : {appilication_area, problem_solution,

syntax, semantics, environment, clerical};
Assertion has error_kind =in errors;

3.2 Sample descriptions

The following examples of defects and their
characterization use the proposed classification scheme.
The particular software project is the construction of a
package to manipulate Hash tables.

Case 1. Consider a programmer coding a particular
function, which according to the specifications must
receive as, input two integer arguments. The programmer
understands exactly what must be implemented, but
mistakenly declares the function with only one formal
argument. This fault is detected while reading code
during unit testing. These defects are classified as
follows:

Fault_1 = [in fault & occurrence = coding & detection =
unit_test & severity = critical & cause = {error} &
fault_mode = omission & fault_kind = interface];

Error1 = [in error & error_kind = clerical];

Case 2. Consider the case that deletions in a Hash table
do not always reclaim storage. This causes a system
crash during operation due to an overflow in a Hash
table; the problem is corrected promptly by reformatting
the table. The specific problem is that a code optimizer
swapped two statements. These defects are classified as
follows:

Failure_2 = [in failures & severity = noncritical &
occurrence = operation & cause = {Swapped_stmt} &
failure_kind = overflow];

Swapped_stmt = [in faults & severity = critical & occurrence
= coding & detection = operation & cause =
{Failure_op} & fault_kind = control_flow & fault_mode =
commission];

Failure_op = [in failures & occurrence = coding &
detection = operation & failure_kind = tool_failure];

3.3 Explaining and predicting defects
Having a database with software components, software
defects, and their interrelations are useful to explain and
predict defects. These explanations/predictions are not
automatic: they are done by a person who obtains
relevant information using queries to the database. (We
assume that distances between terms of all attributes are
defined.)

The following is a description of a failure that has been
diagnosed as an overflow in a data structure; this failure
occurred during integration test.

Z. Houhamdi

Overflow_fail = [in failures & severity = fatal & occurrence =
integration-test & failure_kind = overflow];

We do know the kind of fault that caused overflow_fail,
so we query the database for faults that have caused
failures using the following query command.
Query in faults & occurrence = coding & cause =
{overflow_fail}.

To predict defects in packages, defects descriptions must
be integrated with package descriptions in a single
database. We relate packages with their faults (and thus
indirectly with errors and failures) by adding attributes to
both packages and faults. The docum attribute for faults is
the package in which the fault occurs; the fault_set
attribute for package describes the set of know faults.

Attribute docum : Packages;

Assertion has docum = in faults;

Attribute fault_set : set of faults;

Assertion has fault_set = in Packages & fault_set = set
(docum = self);

Assume that we want to predict the kinds of defects that
may be associated with the hashing data structure
package. The following query retrieve packages that are
similar to the Hash package. The subunits are assumed to
be already defined.

Query maxsize = bounded & control = sequential &
subunits = {hash_create, hash_insert, hash_lookup,
hash_delete};

Assuming that similar packages will have similar defects,
we can use the faults of the retrieval packages to predict
the faults that may occur in the Hash package.

9 Conclusion

In summary, we have presented a software reuse library
system called RDF and show how its representation
model overcome the limitations of current reuse library
systems based on faceted representations of objects [3,8].
RDF overcomes part of the limitations of current faceted
system by extending the their representation model. Two
main concepts form the core of RDF's representation
model: instance and classes. Instances are descriptions of
reusable objects, while classes represent collections of
instances with a set of common properties. Objects are
described in terms of attributes and associated values.
Unlike faceted classification, which is limited to having
only terms as attribute (facet) values, RDF allows
attributes values to be instances and even sets of
instances.

This generalization can be used to create one-to-one,
one-to-many, and many-to-many relations between
different object classes within a library. In other words,
RDF's specification language [5] is powerful enough to
represent a wide variety of software domains, ranging
from standard software components such as data
structure packages and their operations, to more complex

BUILDING AND MANAGING SOFTWARE...

domains such as software defects and software process
models. In addition, RDF language provides facilities
for ensuring the consistency of the libraries.

We have already study tree other domains to demonstrate
RDF’s representation power by representing taxonomy
definitions of various software domains. First, it includes
taxonomies for describing components of a commercial
software library called the EVB GRACE library [6] and a
library for Command, Control, and Information Systems
(CCIS) developed at Contel Technology Center [9].
Second, it includes a taxonomy for describing software
evaluation models using GQM (Goal/Question/Metric)
paradigm [7]. Finally, it presents taxonomy for
describing software process models.

Yet, no evaluation has been performed on RDF’s
similarity-based retrieval mechanism. Towards this end,
we are currently developing a reuse software library—
based on information contained in the software
engineering laboratory (SEL) database [11]. This
database contains thousands of records containing
functional and structural descriptions, a well as statistical
data, related to hundreds of projects developed at the
NASA Goddard Space Flight Center. In addition, this
database contains information regarding the origin of the
project components [12], which indicates whether they
were implemented from scratch or by reusing other
components at NASA. This reuse history will allow us to
evaluate our similarity-based retrieval mechanism by
comparing the reuse candidates it proposes with the ones
that were actually used at NASA.

References

[1]. V. Basili and Rombach (1987) Tailoring the
Software Process to Project Goals and
Environments. In proceedings of the 9"
International Conference on Software Engineering,
IEEE Computer Society Press, California, pages
345-357.

[2]. G. Booch (1987) Software Components with Ada,
Benjamin-Cumming Publishing Company, Menlo
Park, California.

[3]. Z. Houhamdi and S. Ghoul (2201) A Reuse
Description Formalism, ACS/IEEE International
Conference on Computer Systems and Applications,
AICCSA°2001, Lebanese American University,
Beirut, Lebanon, pp. 25--32.

[4]. Z. Houhamdi and S. Ghoul (2001) A Classification
System for software reuse, Fifth International
Symposium on Programming System, ISPS2001,

Informatica 27 (2003) 49-55 55

USTHB Computer science Institute, Algiers, Algeria
,pp. 339—345.

[5]. Z. Houhamdi (2001) A Specification language for
software reuse, CSS/IEEE Alexandria Chapter. 11"
International Conference On computers: Theory
and Application, ICCTA2001, Head of Electrical
Control, Alexandria, Egypt, pp. 125-133.

[6]. Z. Houhamdi (2001) Developing a Reuse Library,
CSS/IEEE Alexandria Chapter. 11™ International
Conference On computers: Theory and Application,
ICCTA2001, Head of Electrical Control,
Alexandria, Egypt, pp. 134--148.

[7]. Z. Houhamdi (2001) An adaptative approach to
reuse software, SCS/IEEE 2001. The third Middle
East Symposium on Simulation and Modeling,
MESM’2001, Amman University, Amman, Jordan,
pp-108--113 .

[8]. Z. Houhamdi (2002) Software Reuse: a new
classification = approach, The International
Symposium on Innovation in Information and
Communication Technology, ISIICT 2001,
Philadelphia University, Amman, Jordan, pp. 247--
258.

[9]. Z. Houhamdi and S. Ghoul (2001) Classifying
software for reusability. Mail of technical and
scientific knowledge. Periodic magazine of the
university of Biskra, Algeria, N°01, pp.41-47.

[10].Z. Houhamdi and S. Ghoul (2002) RDF: A
Formalism for reusing software. The South African
Computer Journal, SART/SACJ, N° 29, (accepted).

[11].R. Kester (1990) SEL Ada reuse analysis and
representation, Technical Report, NASA Space
Flight Center, Greenbelt, Maryland.

[12].Software engineering Laboratory (SEL) database
Organization and User’s guide (1990), NASA
Goddard Space Flight Center, Greenbelt,
Maryland., revision 1 edition.

[13].R. Prieto-Diaz (1987) Domain analysis for software
reusability, In proceedings of the 11" international
Computer Software and applications Conference
(COMPSA’87). IEEE Computer Society Press, pp.
23--29.

[14].R. Prieto-Diaz (1991) Implementing faceted
classification for software reuse, Communication of
the ACM pp. 88--97.

[15].P.A. Straub (1992) The nature of Bias and Defects
in the Software Specification Process. Ph.D. thesis,
computer Science Department, University of
Maryland

Informatica27 (2003) 57-73 57

Deriving Self-Stabilizing Protocols for Services Specified in LOTOS

Monika Kapus-Kolar
Jozef Stefan Institute, POB 3000, SI-1001 Ljubljana, Slovenia
monika.kapus-kolar@ijs.si

Keywords: distributed service implementation, automated protocol derivation, LOTOS

Received:September 6, 2002

A transformation is proposed which, given a specification of the required external behaviour of a distributed
server and a partitioning of the specified service actions among the server components, derives a behaviour
of individual components implementing the service. The adopted specification language is close to Ba-
sic LOTOS. Unlike in other protocol derivation algorithms based on LOTOS-like languages, distributed
conflicts in the given service are allowed, and resolved by self-stabilization of the derived protocol.

1 Introduction col. Therefore, algorithms for automated protocol deriva-
tion are most welcome! They automate exactly that part of
In top-down distributed systems design, one of the moserver decomposition which is the most difficult for a hu-
difficult transformations is decomposition of a process intanan, requiring simultaneous reasoning about the numerous
a set of co-operating subprocesses. Such a transformatigmoperating parties.
is considered correct if it preserves, to the required degree,Even if one decides for automated protocol derivation,
those actions of the process which are considered essentigfemains possible to strongly influence the resulting pro-
Such actions are often referred to asskevicethat the pro- tocol, by introducing dummy hidden service actions. For
cess offers to its environment, i.e. the process is observedample, introducing a pair of consecutive service actions
in the role of aserver executed by two different server components introduces a
A service consists of atomic service actions, of which thprotocol message from the first to the second component.
most important arservice primitivesi.e. atomic interac- Prefixing each of a set of alternatives by a service action
tions between the server and its users, executsgivice at a particular component makes the choice local to the
access pointsin addition, one might decide to introducecomponent. In other words, instead of spending time on
somehidden service actiongo represent various impor- protocol design, one should rather concentrate on detailed
tant events within the server. service design, specifying all important dynamic decisions
When decomposing a server, the first step is to decide &§ explicit service actions [16]. By various allocations of
its internal architecture. It can be represented as a set € actions to server components, service implementations
server componeni{g.g. one component per service acces¥ith various degrees of centralization are obtained.
point), with channels for their communication. We shall A prerequisite for automated protocol derivation is that
assume that all components are on the same hierarchitia¢ service is specified in a formal language. It is desir-
level, for a multi-level architecture can always be obtainedble that the derived behaviours of individual server com-
by gradual decomposition. ponents are specified in the same language as the service,
The next step is to assign individual service actions t80 that the same algorithm can be used for further decom-
individual server components, paying attention to the locaosition.
tion and capability of components. It is desirable that a protocol derivation algorithm is to a
The final step is to specify details of the inter-compolarge extent compositional, so that it can cope with large
nent communication, i.e. to derive an efficigmbtocol Sservice specifications, provided that they are well struc-
implementing the service, where efficiency is measured itred. Moreover, a compositional algorithm reflects the ser-
terms of the communication load. While the first two stepyice structure in the derived protocol specification, increas-
require creative decisions, protocol derivation carabe ing the service designers’ confidence into the automatically
tomated Given a formal specification of the architecturegenerated implementation.
of a server, of its service and of its distribution, one can Itis difficult to construct a general protocol derivation al-
mechanically decide on the protocol exchanges necess@yrithm with high-quality results and low complexity. Typ-
to implement the specified distributed causal relations andal algorithms work on small classes of service specifica-
choices between service actions. tions.
A protocol is typically much more complex than the ser- Protocol synthesis has been subject to intensive research
vice it implements. Besides, one usually does not cagnce the middle eighties. An exhaustive survey can be
about the exact nature of an otherwise satisfactory protfound in [26], so we provide no systematic review of the

58 Informatica27 (2003) 57-73 M. Kapus-Kolar

existing methods and refer to them only where necessaryName of the construct Syntax

for comparison with the proposed solutions. Specification w := spec b where D endspec
The protocol derivation transformation proposed in our Process definition Zz ﬁ;{g blpisb

paper is an enhancement of that in [10]. As in [10], we N

. ; . Process name p ::= Procldentifier
assume that a server consists ofabitrary fixed num- Parameter name 2 w= Parldentifier
ber of componentsxchanging the necessary protocol mes- genaviour b e

sagesasynchronouslyover reliable, unbounded, initially |naction stop
empty first-in-first-out (FIFO) channels with a finite, but Successful termination | &
unknown transit delay. The adopted specification language Sequential composition | b1 > b,

is a syntactically simplified sublanguage of LOTOS [7, 2], Action prefix | a;ba
a standard process-algebraic language intended primarilyChoice N | b1[]b2
for specification of concurrent and reactive systems. Ser- Parallel composition | b1[[G]]b2

vice primitives are not allowed to carry parameters, neither Disabling | b1[>b>

do we allow specification of real-time constraints. How- H'ding | hide G in by endhide
. . . . Renaming | ren R in b; endren
ever, the principles for enhancing a basic protocol deriva- : o
. .) Process instantiation | p(v) | p
tion method to cope with data and real time are well known G = setof g
(11,12, 23]. Interaction gate gu=s|h
For a service containing distributed conflicts, a precise Data value v = termof typen*
implementation takes care that they never cause divergencendex nu=1]2
in service execution. Firstly one should try to make all con- R = setof r
flicts local to individual components, by inserting auxiliary Gat_e renaming rou= gJ’/g
hidden service actions, but that is acceptable only as longActon az=1ils|h|ho
Service primitive s = u’

as no external service choice is undesirably converted into
an internal server choice. For the remaining distributed :

. . . . o Server component ¢ ::= Compldentifier
conflicts, dlvergence_ prevention requires extensive inter- Auxiliary gate hi= st |15 | a” | by |t
component communication [9, 20., _21]. Although evensuch poio offer 0 e o | ?Uc‘ 22w
protocols can be derived compositionally [17], the commu-
nication costs they introduce are usually acceptable only if Table 1: The adopted specification language
exact service implementation is crucial or during the pe-
riods when server users compete strongly for the service.

In a typical situation, the probability of a distributed con- The paper is organized as follows. Section 2 introduces
flict is so low that divergence should rather be resolved thahe adopted specification language and its service specifi-
prevented. cation sublanguage, some building blocks for the derived

In LOTOS, there are two process composition operatoiotocol specifications, and the adopted protocol correct-
allowing specification of service actions in distributed conn€ess criterion. Section 3 describes the adopted principles
flict, the operator of choice and the operator of disabling®f Protocol derivation. The derivation is guided by various
In [10], only local choice is allowed. For disabling, theService specification attributes. In Section 4, we introduce
derived protocols are supposedstif-stabilize after diver- rules for attribute evaluation and suggest how to obtain a
gence but the proposed Solution iS not correct in the gen\Ne”'formed SerVice Specification. SeCtion 5 Comprises diS'
eral case [15]. Besides, [10] has problems with implemergussion and conclusions.
tation of parallel composition [15]. In an unpublished re-
sponse to [15], Bochmann and Higashino proposed some o]
solutions for the problems, but have not integrated the@d ~ Preliminaries
into their protocol derivation algorithm and have not been
able to specify the solution for disabling in LOTOS. 2.1 Specification language and its service

We specify self-stabilization upon disabling purely in the specification sublanguage
adopted LOTOS-like language, and also suggest how to
implement distributed choice. Further improvements overhe language employed, defined in Table 1 in a Backus-
[10] are implementation solutions for processes with sudNaur-like form, is an abstract representation of some LO-
cessful termination as a decisive event, for processes whi€®S constructs, in the exclusive setting of the protocol
might enter inaction without first declaring successful terderivation problem. Not shown in the table are parentheses
mination, for combining terminating and non-terminatingor control of parsing, the syntax for sets, and shorthands.
alternatives, for process disabling with multiple initiators, A b denotes a &haviour, i.e. a process exhibiting it, for
and for interaction hiding and renaming. The proposed sd@nstance a server as a whole, an individual server compo-
lutions can be seen also as an improvement over [3], anent, a service part or some other partial server behaviour.
other algorithm for the purpose in which we have identifiedror a particular server, I€tdenote the universe of its com-
a bug [15]. ponents.

Service-primitive type u ::= PrimlIdentifier

DERIVING SELF-STABILIZING PROTOCOLS... Informatica7 (2003) 57-73 59

spec ¢ where D endspec = spec § where D endspec No. e
e|[G]lb =0b|[Glle =b a;e =a;d (1) w:=specbwhere D endspec
eE>b=b>e=0 esb="> 2) d==pisd
hide G in € endhide =¢ ren Rine¢endren =¢ (3) b::=stop
4 bu=90
Table 2: Absorption rules far (5) b:u=b1>by
(6) b:=a;bs
(7) b= b1][S])b2
stop denotes inaction of the specified process. (8) b:=b1[]b2
d denotes successful termination. (9) bu=bi[>b2
In some cases, the protocol derivation mapping defined (10)b ::= hide S in b, endhide
below introduces an specifying execution of no actions. (11)b == ren R in b, endren
is similar tod, because execution of no actions is successful (12)b::=p)
by definition. With the help of the absorption rules in Ta- (13)a =5 | i
L . . e S .= setof s
ble 2, it will be possible to make the derived specifications N
free ofe.
i denotes an anonymous internal action of the specified Table 3: Service specification sublanguage

process. Besides internal actions, processes execute inter-

actions with their environment. Such an external action is

primarily denoted by the interaction gate on which it oc-

curs. If it is a service primitive, it is specified asiaand ~ "b1[> b2" denotes a process with behavidur poten-
denotes a type: interaction between server component tially disabled upon the start of process While b, is still
and a service user. If it is an action on an auxiliary gat@ctive, the process might terminate by executing b, .

h, it might be associated with a data offerthat has t0 "pide ¢ in b, endhide" denotes a process behaving as
match with the data offer of the process environment. Thg ith its actions on the gates listed @ hidden from its

only data that our processes can handle are strings of Z&{Qironment. For the environment, the hidden actions are

or more elements 1 and/or 2. equivalent td.
A componentc can ®nd messages to another compo-
nentc’ over gates®,, while ¢’ receives them over gai€ . ren R in b; endren” denotes a process behaving as

For specific purposes! will sometimes call the gate” b1 with its visible g{;\tes (and thereby the act_ions on them)
(accept), wheren will be a partial context identifier. If renamed as specified iR, where in anr, the first and the

¢ is unable to immediately handle a message received §gecond item respectively define the new and the old name.

gater¢ , it will store it into a FIFO_luffer and subsequently Explicit processes can be defined and instantiated, possi-
claim it on an internal gaté.. Gatet will always be an ply with an input parameter. In the original LOTOS syntax,
internal gate of a server component, serving for hidden insxplicit processes are defined on formal gates, that are asso-
teraction of its parts. ciated with actual gates upon process instantiation. In our
A data offer lv" denotes exactly the data value specifiegimplified language, gate instantiation can be expressed as
by the termv. A data offer 7z : v" or "?v" denotes any renaming of the gates on which a process is originally de-
data value which has a prefix specified by When the fined applied to the particular process instance.
interaction occurs, one of the values legal for the data offer

is selected, and if variable is specified, stored into it for
future use.

"b; > by" denotes a process first behavingasand after
its successful termination &g, wheres of b, is interpreted
in"by > by" asi. "a; by" is the special case of the sequentia
composition wheré, is an individual action, so that rias
needed for transfer of control tg.

"b1[]b2" denotes a process ready to behaveasr as

A specificationw defines a behavioudrand the processes
instantiated in it, except for the processes predefined in
Section 2.2. IfD is empty, ‘where D" may be omitted. If
it is a service specification (Table 3), then 1) any specified
F\ction must be a service primitive or an2) gate renam-
ing is allowed only locally to individual server components,
and 3) all the explicitly specified processes must be without
parameters. Some rows in Table 3 are numbered, so that the
corresponding rows in some of the remaining tables can re-

ba. Sometimes we will use[]" as a prefix operator, where fer to th n all | : ificati
choice from an empty set of processes is equivalestian rertothem. n all our example service specifications, every
i and everys is furnished with a superscript denoting the

"b1|[G]|b2" denotes parallel composition of processes server component responsible for it
andb., whereG specifies the degree and form of their syn- '
chronization. An action on a gate listed @hor ad can The relation used throughout the paper for judging
only be executed as a common action of the two processegjuivalence of behaviours igbservational equivalence
while the processes execute other actions independently" [2], i.e. we are interested only into the external be-
The usual shorthand fof[]|" is "|||". Sometimes we will haviour of processes, that is in the actions which they make
use 'l||" as a prefix operator, where parallel composition ofvailable for synchronization with their environment (all
an empty set of processes specifies an actions exceptand actions transformed intdoy hiding).

60 Informatica27 (2003) 57-73 M. Kapus-Kolar

2.2 Some building blocks for protocol (Service ~ b) V ((|C] > 1) A (Service = (6>>0)))
specifications whereService = hide G in (|||cecbe)|[G]|Medium
endhide
The contribution of our paper lies in functions for generat- G = Uezer {ss, e}
ing protocol specifications in the proposed language. These
specifications will be based on some characteristic patterns, Table 5: Precise service implementation
for generation of which we define some auxiliary functions
(Table 4). not reveal any of the conflicts. When divergence in ser-
Se(C,v) = [[lere(onfepySo v vice execution occurs, the server should continue to sup-
Rc(C,v) := |||ecrieprav port only the direction of service execution with the highest
E.(C,C’,v) := (if (c € C) thenS.(C’,v) elses endif||| pre-assigned priority, while the directions competing with
if (c € C') thenR.(C, v) elses endif) it must be abandoned as quickly as possible.
P(5) := {u”|(u” €)} For a 'b;[>by", it is appropriate thaks has a higher pri-
Po(R) == {(u/u)|(w"/u) € R)} ority thanb;. We adopt this arrangement also fof [|b;".

There are, however, two exceptions. If the server compo-
nents responsible for the start bf manage to agree on
successful termination df; beforebs starts,b, must be
abandoned. In the case df;{]b2", b2 must be abandoned
already when the components manage to agree on the start
of by.

Table 4: Auxiliary specification-generating functions

S.(C,v) generates a specification of parallehsling of
protocol message from componentc to each member
of C other thanc. Likewise, R.(C,v) specifies parallel
receiving ofv atc from each member af’ other tharr.

E.(C,C’,v) specifies_gchange of message in such
a way that each component @f receives it from every L . .
component irC other than itself. 3 Principles of protocol derivation

P.(S) andP.(R) are pojection functions.P.(S) ex- . .
tracts fromS the service primitives belonging to compo-3.1 Service attributes and the concept of a
nentc, while P..(R) extracts fromR the renamings of such well-formed service specification

rimitives.
P We also assume that there are three predefined processi¥§€N mapping a service specification subexpression into

Processes "Loop” and "Loop(v)" execute an infinite serigs counterparts at individual server components, one refers
of "g" or "g?v" actions, respectively. Shorthands for inlo its various attributes. A subexpression attribute reveals

stantiation of the processes on a gatéor a prefixv are SOMe property of the subexpression itself or some property
"Loop(g)" and "Loop(g?v)", respectively. of the context in which it is embedded. Computation of

Process "FIFO(v)" is an unbounded FIFO buffer ready€rVice attributes is discussed in Section 4.1.
to store messages with prefix "v" and to terminate when- There is always a dilemma whether to conceive a very
ever empty. A shorthand for instantiaton of the procesgéneral mapping, i.e. a mapping with very few restrictions
on an input gatey; and an output gate, for a prefixu 0N the at.tr'lbutes, orasimple mapping with avery restricted
is "FIFO(g1, g2, v)". To specify that aFTFO(gy, go,v) @Pplicability. We take the following pragmatic approach.
should accept all kinds of messages, onesétsan empty ~ Above all, we try to avoid restrictions on the specifica-
string, that we denote by. Such are the buffers pairwise tion style (see [28] for a survey of the most typical styles)

connecting server components. They constitute the cori€cause, even if a service specification can be restyled au-
munication medium, defined as tomatically, the derived protocol specification will reflect

Mediumis ||| .. FIFO(s,, ¢ e) the new style, and as such be hardly comprehensible to the
designers of the original specification.

On the other hand, we rely without hesitation on restric-
tions which can be met simply by introducing some addi-
Given a service behaviodr we derive a,. for each indi- tional hidden service actions. Such insertion can always be
vidual component. The protocol must satisfy the mini- automated and causes no restructuring of the service speci-
mal correctness criterion that every protocol message sdination. Besides, there is usually more than one way to sat-
is also received. We further expect that in the absence ©ffy a restriction by action insertion. By choosing one way
distributed conflicts, the server behaves towards its useds another, it is possible to influence the derived protocol,
precisely as required (see Table 5). Note that(h>>§)" i.e. its efficiency and the role of individual server compo-
might also be sufficient, because successful termination oeénts. Hence by relying strongly on such restrictions, we
a distributed server, as an act of multiple server compaot only simplify the protocol derivation mapping, but also
nents, does not qualify as one of the regular service actiormsake space for protocol customization.

i.e. service actions assigned to individual components. A service specification satisfying all the prescribed re-

If b contains distributed conflicts, precise service exestrictions is avell-formed specificatiar\We postpone sug-
cution is expected only for those server runs which dgestions for obtaining such a specification to Section 4.2.

2.3 Protocol correctness criterion

DERIVING SELF-STABILIZING PROTOCOLS... Informatica7 (2003) 57-73 61

3.2 Compositional approach to service In an environment of competing service parts, it is im-
implementation portant to have a simple characterization of all protocol
messages belonging to a particular partin a T(b, 2),
When mapping a service specification in a compositionalych a message will carry either identif@f (b) or identi-
way, we map each of its constituent process specificationfger C'1(') of a subpart’ of b. To indicate that messages
including the main service process. Mapping a specificaf the second type also belongitaCI(v') will in all cases
tion of a procesy, we map specificationsof the individ- have C1(b) as a prefix. In alerm(b, z), the addition-
ual parts of the behaviour specified by its body. ally introduced messages will carry identifiéd * (b). As
During service execution, each instantiation of sugh a (s, 2) is a part of Term(b, z), CI(b) will have CI*(b)
gives rise to a new instance of the behaviour specified ka5 a prefix. So it will be possible to specify readiness to
such ab. Each such instance is an individual service pafeceive any message belonging t@erm(b, z) simply by
and, as such, expected to be implemented in an indepen-.C'1+(b) in the receptions.
dent way. In other words, such an instance represents aThe basic building blocks of context identifiers, hence
special context, that first of all needs a dynamically uniquglso of protocol messages, arand?2, because they refer
identifier. The identifier can then be included in all prototypically to partsh; andb, of ab. That is, of course, not
col messages belonging to the particular instance, to ma only possible choice. By changiido 0, for example,
its distributed implementation communication-closed. Th@ne could obtain pure binary identifiers. In any case, itis
simplest way to produce such an identifier is to concatémportant that the number of different messages on individ-
nate (specified by operator’) z, the dynamically unique ual channels is kept low, for message encodings can then
identifier of the particular instance pfandCI(b), the dy- be short. For that reason, messages (i.e. the context iden-
namically unigue ontext dentifier ofo within the body of tifiers they contain) are re-used extensively, except where
p[14]. that could corrupt their dynamic uniqueness.
Mapping a specification of a processnto ac results in o o)
a specification of a local proceswith a formal parameter Example 1 For the example service in Table 7, itis crucial
"z". When the local process is instantiated, "z" propagatéQat the |mplementa_t|0ns of the two concurrent instances o_f
into its body the identifier of the particular process instancdrocess Proc use different protocol messages. Likewise it
so that it can be used in the associated protocol messagsmportant that protocol messages are re-used, because
The main service process is instantiated only once, so {§0C is instantiated an infinite number of times.
"z" can be assigned statically. For a dynamically created The reception buffers 'of the three components (see Sec-
process instance, "z" is the identifier of its instantiationfion 3.9) are not shown in the example, to make the spec-
Those properties are reflected in Table 6, more preciself ations more readable. The buffers are not crucial for

described below. eadlock prevention, anyhow.
(1) Te(w, 2) := spec Term.(b, z) 3.3 Termination types
where {T.(d)|(d € D)} endspec
(2) T.(d) := p(z) is Term.(b1,7) For ab representing the entire service that is being imple-
(12)T'c(b, 2) := p(z-CI(b)) mented, it is evident that its successful termination (if any)

i , o must be implemented a@qor as itss equivalent) at each of
Tgble 6: MappingT .for a service specification and map-ihe server components. In other words, edelrm., (b, 2)
ping T* for process instantiation must be terminating, i.e. eachmust be adrminating
component ofy for mappingTerm, formally TCF(b), i.e.
T, (b, z) will be the basic function for mapping a servicec must be an element GfC* (b).
partb onto a component within a contextz. Sometimes If a b is not the last part of the servicdCf(b) is
the implementation of & generated by mappinig will be not mandatory. It is sometimes better to Btrm..(b, z)
enriched with some additional protocol messages repoffinish by stop instead, i.e. =T'C:F(b) [14]. Such in-
ing its successful termation to server components not yetaction atc is later disrupted by activities of outside
knowing it. The mapping which generates such enriche@erm..(b, z). If b never successfullyetminates, formally
implementation will be calle@Cerm. (b, z). MappingT — —TM (b), =T C (b) is the only option.
of a structured combines the mappinggerm of its con- If TCF(b), one has to decide whetheshould detect or
stituent parts. declare termination df already within theT'.(b, z) part of
For ab, it might be that a has no duties in its distributed Term..(b,), i.e. whethefl'C'} (b) should implyT'C.(b),
implementation, i.e. thatis not a @rticipating omponent i.e. thatc is an element of’C(b). If TC}(b) but not
of b (formally ~PC.(b), i.e. not a member aPC(b)). In TC.(b), formally RT,(b), ¢ terminatesTerm..(b, z) upon
such a caseT.(b, z) will be € or stop, while in the case of receiving ermination reportsz-C I+ (b)" from all the end-
PC.(b), T.(b, z) will more precisely be called@ .(b, z). ing components of'(b, z) [14] (see Table 8). Where the
In the following, letTerm(b, z) denote alerm imple- danger exists of such a report being received already within
mentation ob, i.e. allTerm..(b, z) plus the protocol chan- T.(b, z), care is taken that it is different from any message
nels. Likewise,I'(b, z) denotes & implementation. referred to withinT.(b, z). Hence protocolTerm(b, z)

62 Informatica27 (2003) 57-73 M. Kapus-Kolar

w = spec ren a® /A%, b7 /BY,¢c? /C? in Proc endren ||| ren d*/A%,e7/B”, % /C? in Proc endren
where Proc is (((A%;6%)|||(B?;87)) > (C?; Proc)) endspec
Tao(w,e) = spec ren a®/A” in Proc(1) endren ||| ren d*/A® in Proc(2) endren
where Proc(z) is (A%;s3!z; rj!z; Proc(z)) endspec
Ts(w,¢) =~ spec ren ¢? /C? in Proc(1) endren ||| ren f?/C? in Proc(2) endren
where Proc(z) is (((r2!z; 8)||(r5!z; 6)) > CP; ((s2!2;6)|||(s512; 6)) >> Proc(z)) endspec
T, (w,e) ~ specren b”/B” in Proc(1) endren ||| ren €7 /B” in Proc(2) endren
where Proc(z) is (B”;s}!z; r}!z; Proc(z)) endspec

Table 7: An example of multiple process instantiation

T.(b, z) :=if
Term.(b, z) :

PC.(b) thenT’.(b, 2) elseif TC.(b) thene elsestop endif endif
= if TC} (b) thenif TC.(b) then(T.(b, 2) if EC.(b) then>>S.((TC™"(b) \ TC(b)),z-CI" (b)) endif)
else((T. (b, 2)[>)| ||R(EC(b), z-CI* (b)) endif
elseT. (b, z) endif

Table 8: Function§ andTerm

has two phases, namely protod(b,) and exchange of 3.5 Implementation of successful
termination reports. termination

A cis an eding @mponent ofb for mappingT, for- |, some cases, it is crucial to have in mind that success-

mally EC.(b), i.e. ¢ is a member offC(b), if it might | torminations is also a kind of an action. These are the
be the last component to execute an act|op W',m('b’ 2)- cases where it is in a decisive position, like an initidh
If EC.(b), c must, of course, declare termination already, "h, [|b" OF the § of by or an initial of by in a "b; [> by"

within T (b, z), i.e. EC.(b) by definition impliesI'Ce(b), (141 S0 one selects, as convenient, for edalserver com-
and thereby"C." (b). ponent responsible for its execution, its only participating

In many cases, we are free to decide whethél (b)) component. Mapping” for the component is &(Table 9).
should implyT'C.(b) or not, but it is not always directly

evident how our decision would influence the overall num- (AT c(b,2) =0
ber of the involved protocol messages. Therefore we fol- o o
low the classical solution thatC:+ (b) should always im- Table 9: Mappindl” for successful termination

ply TC.(b) (i.e. ~RT.())), except where that would lead

to an erroneous service implementation (discussed in the

operator-specific sections). If there are no such cases, m@6 |mplementation of hiding and renaming

ping Term systematically reduces to mappifigi.e. there

is a single mapping function, like in the earlier approache&he only properties of actions within a service pathat

[3, 10]. influence protocol message exchange are their position

. within b and their assignment to server components. That

I TPCC(b)’ TC.(b) will always be equal tdFCj(b_), is not changed by hiding or local renaming, so implemen-

reducingTerm,(b, z) to a merees or stop (see function

) ion of th ions is trivial (Table 10).
T in Table 8). Hence the components participating in th(taanon of those operations is trivial (Table 10)
distributed mplementa‘uon of & remain thoselllsted N {20)T.(5, 2) = hide P.(5) in Term., (b1, z) endhide
PC(b), even if we enhance the mapping function frdm (1)1 (5,) .= ren P.(R) in Term.(bs, z) endren
to Term.
For a protocolT' (b, z), we define that it successfully ter- Table 10: Mappingl” for hiding and renaming
minates when alll'.(b, z) with TC.(b) successfully ter-
minate. Likewise, successful termination Bérm(b, z)

requires successful termination of dlerm. (b, z) with 3 7 Implementation of action prefix
TCF(b).

To map an &; by" onto a participant (Table 11), one first
needsP.(a), the projection of. If ¢ is not the executor of
a, i.e. its only participant, the projection is empty.alfs a
. . . service primitive, its executor is evident from its identifier.
3.4 Implementation of inaction If it is an i, one selects its executor as convenient.
If a componentc might be the first to execute an ac-
A stop has no participating component, so the first rule ition within Term(b,, z), it is a garting @mponent of
Table 8 implies that every server component implementsiét, formally SC.(b2), i.e. ¢ is a member ofSC(bs).
as astop. Such ac is responsible for preventing a premature start of

DERIVING SELF-STABILIZING PROTOCOLS... Informatica7 (2003) 57-73 63

(13)P(a) :=if PC.(a) thena elsee endif 3.9 Implementation of parallel composition
(6) T'c(b,2) := (Pc(a); Ee(PC(a), SC(b2), 2-CI1(b))
> Term, (b2, z)) For ab specified as? |[S]|b2", we assume that all actions

specified inb; or bo, including §, are actually executable
Table 11: MappindI’ for action prefix within b, i.e. that they are all relevant.

ProtocolT(b, =) (Table 14) consists basically of proto-
colsTerm(b;, z) andTerm(bs, z) running in parallel and
locally synchronized on service primitives frash

If there are ay distributed conflicts irb; and/orb,, for-
mally AD(b), Term(b, z) and/orTerm(by, z) are typ-
ically imprecise implementations @f and by, unable to
synchronize properly of. So if S is non-emptyAD(b) is
3.8 Implementation of sequential forbidden.

composition If S is empty,b; andb, are nevertheless synchronized
on their successful termination (if any). H#rmination ofb
is subject to a dtributed conflict withinb; and/orb,, for-
mally 7D (b), negotiation of more than one component is

Term(bs, z), i.e. it must not starfCerm..(by, z) until it
executesu or receives a reportz" CI(b)" on it. Hence
protocol T'(b, z) has three phases, namely executior of
exchange of reports an and protocolTerm (b, z).

For ab specified as?; > by", we require thab,, at least
sometimes, successfully terminates, because othebwise

would be irrelevant. required withinTerm (b, z) and/orTerm(bs, z). That is

Protocol T(b, z) (Table 12) has three pr,fases',,namel){macceptable,forsuch termination is a decisive termination
protocol Term(by, z), exchange of reports:" CI(b)" on (see below). S@"D(b) is forbidden.

its termination, and protocdlerm(b,, z). Where dan- £ 5 qenendent concurrent executionBérm (b,)

ger exists that a message belonging to the sgcond ph%sh%l Term(bs, z), it should be sufficient to take care that
is received already within &erm.(by, z), care is taken

AN - their protocol message spaces are disjoint [10]. Unfortu-
that it is d|fferer_1t from_ any message referr_ed to_ V‘_/'th"hately, it turns out that on a shared channel, unprompt re-
Term,(by, 2). Itis cr_umal that every with duties W'tr_"n ception in one of the protocols might hinder reception in
the second. or Fhe third pha_se termmaJMmlc(bl, 2) in the other. In the case of a non-emy that might even
all the terminating runs df, i.e. thatl’C (b,) is true.

lead to a deadlock [15].
)T (b, 2) = (Torm. (b1, 2) Kant and Higashino suggested that eacbulld solve the
>>EC(EC+(61),SC(bg),zC’I(b)) problem by prompt reception of messages into a pool, for
> Term, (b2, 2)) further consumption byTerm.(by,z) or Term,(bs, z).
So in Table 14, we introduce for each pdiérm. (b, z)
Table 12: MappindI’ for sequential composition for each channel from & to ¢ that is skared (formally

SH (b)), a FIFO buffer for incoming messages. Such
As in the case of action prefix, reports on terminatiora buffer is, unlikeTerm.(b,, z), always ready to receive
of the first phase are sent to the starting components 5bm the channel on gatef,, thereby removing the pos-
by, but now their senders are the ending components ehility of blocking. Term..(b,,, z) can subsequently claim
Term(by, z) [19]. A cis an ending component &f for the received messages from the buffer on a hiddenlgate
mappingTerm, formally ECf(by), i.e. ¢ is a member of As demonstrated in the following example, such buffers
EC(by), if it might be the last component to execute ammight be necessary evensfis empty. On the other hand,
action within Term(by, z). It is crucial that a terminat- buffers are often redundant, but that is hard to establish.
ing b; has at least one ending component, and that in ev-
ery non-terminating run of suchta, there is at least one Example 3 In the first part of Table 15, there is a parallel
ending component not terminatingTerm..(b;, z), so that composition implemented properly.
start of Term(b,, z) is prevented. In the second part, the reception buffers are omitted, and
We want the second phase (i.e. termination reportinghere is a scenariod®; s3!1; d*; s3!2" leading to a dead-
to completely isolatélerm (bs, z) from Term(by, z), SO
that protocol messages frofflerm(b,2) and termina-
tion reports may be re-used withlBerm(bs, z). That is
particularly important for implementation of iteration and
tail recursion, as in Example 2. To achieve the isolation, . o o
where Proc is (rz!11; c®;s3!11; Proc)
we take care that upon the start Bérm(b-, z), compo- endspec
nents receiving within it no longer want to receive within Ts(w, 1) ~ spec ((r2111; Proc)[|(r2112; 6)) >s°11; 6
Term(by, 2). where Proc is (¢?;s2111;r2111; Proc)
endspec
w, 1) = spec rz,!l; b”; 6 endspec

w = spec ((a®; Proc)[[(b%; 6%)) > (b7;467)
where Proc is (c?; ¢®; Proc) endspec
To(w, 1) = spec (a®;s3!11; Proc)[](b*; s5!12; 9)

Example 2 In Table 13, we implement a service consisting (
of two consecutive parts. It might happen that the first part

does not terminate, but a premature start of the second partble 13: An example combining finite and infinite alter-
is nevertheless prevented. natives

64 Informatica27 (2003) 5773 M. Kapus-Kolar

)T (5,2) = (Par..1|[P.(5)][Par.)
wherePar. ,, := hide {b./|SH. .(b)} inren {(b. /rl)|SH. .(b)} in Term.(b,, z) endren
[{be S Her O] (s, o FIFO(ES, bis, 2-CI* (b)) endhide

Table 14: MappindI’ for parallel composition

w = spec (((a%;6%)[[[(b7;67)) > (¢7;67))|[b7]|(d*; b7; 67) endspec
To(w,e) = spec (a%;s3!1;6)|||(d%;s3!2; 0) endspec
Ts(w,e) = spec hide b, in (b?; b, !1;c?;8)|[ba]|FIFO(rS, ba, 1) endhide
|[b?]|hide b, in (ba!2;b?; 8)|[ba]|FIFO(rs, ba, 2) endhide endspec
Tao(w,) = spec (a”;s3!1;0)|||(d%; s5!2; §) endspec
Ts(w,e) = spec (b%; r211;c?; 6)|[b?]|(r2!12; b?; §) endspec
w = spec (a7 6M[[(b7; 07)) > (73 7)) [[[(d"; e7; 07) endspec
Tao(w,) = spec (a®;s3!1;0)|||(d%; s5!2; §) endspec
Ts(w,e) = spec (b?;rB!1;c?; 8)|||(r212; ¢?; §) endspec

Table 15: An example of parallel composition requiring buffered reception

w = spec (6°[> (a®; b”;6%))[[a°]|(6* [|(I*; a%; 67)) 3.10 Implementation of choice
endspec
To(w,1) = spec ((6[> (a%;s5!11;r5!11;6)) For ab specified as?[]b2", we assume that there are ser-
[[a*]|(8]](i;2%;6))) vice actions (at least & in both alternatives, so that both
>s;3!1; 0 endspec are relevant. The operator introduceéstdbuted onflicts,
Ts(w, 1) = spec ((ra!11;b%;s3!11; stop)[> §) formally DC(b), if b has more than one starting compo-
|[|(ra!1; 6) endspec nent.

. ProtocolT(b, z) combines protocolferm(b;,z) and
'Term(bg,z). by is the higher-priority alternative, so
Term(by, z) upon its start always quickly disables
Term(by, z), even if Term(by, z) has already started. On
the other hand, when a component detects the start of
Term(b, z), it tries to prevent starting dlerm(bs, 2),
In the third part, we no longer require that the two con-put might be unsuccessful.
current parts are synchronized d’. We also rename the Until one of the alternatives is abandoned, protocols
secondb” into ¢, to distinguish it from the first one. The Term(by, z) and Term(b,,) run in parallel, so we re-
above scenario no longer leads to a deadlock, but its destjuire that their protocol message sets are disjoint.
nation state erroneously requires that is executed before ithin Term(by,z), any darting action must be
e. Again, reception buffers would help. promptly reported to any starting componenbf b, for-
mally SR.(b1), to inform it that execution ob, should
not start unless it already has. Analogously, we re-
For ab specified asb:|[S][b2", successful termination quijre SR.(by) for any starting component of b;. If
of T(b, z) requires successful termination ®érm (b, z) DC(b), any component might already be executing
and Term(bo, z). If such _ermination is_écisive for one whenTerm(bs, z) starts, so we requiré R, (b,) also for
or both of the component protocols, i.e. represenfSrd the non-starting participants of, to make them quickly
a decisive position withirb; or by, formally DT'(b), its apandon execution df. Note that the executor of an ac-
implementation is problematic [14, 15]. It has been sugjon is informed of the action by the action itself.
gested that such &should be put under control of a sin- |t ot earlier, a participant abandonsTerm.,(bs, z)
gle server component, its pre-assigned executor, respongjson successful termination @lerm, (by, z), if any. At
ble both for its decisive role and for its synchronization rolgnat moment, it must already be obvious tiTatrm by, 2)
[14]. If successful termination oT'(b, z) is to be a matter i never start, i.e. every starting component if
of a single component, the latter must be the only membeg st have already executed an action witBerm (by, 2),
of TC(b), and consequently the only memberBE(b), thereby refusing to be an initiator aferm(by, z). In
TC*(by), TC* (b2), EC(b1) and EC (by). other words, such a starting componehmust giard the
termination at, formally GT:c, (b1).
If not earlier, a participant abandonsTerm,(b;, z)
Example 4 An example of decisive and synchronized tefgpon successful termination @erm.(bs, z), if any. At
mination is given in Table 16. Terminationtdfias been put that moment,c must already have detected the start of
under exclusive control of componentwhile component Term(b,, z), and that is true if and only it is a partic-
[receives only a report of it. ipating component of.

Table 16: An example of decisive and synchronized term
nation

lock, because message 2 is not the first in the channel.

DERIVING SELF-STABILIZING PROTOCOLS... Informatica7 (2003) 57-73 65

(8) T'c(b, 2) :=if =DC(b) then(Term, (b1, z)[| Termc (b2, 2))
elseren Up—1 ({(u/u5)] (u° € AS.(bn)} + {(x /a2)|CH (b)) in hide t in
((Const,,1|[StGtc2 + RecGt,2 + {t}]|Const.)
[[StGt.,1 + RecGt,, 1 + StGtc,2 + RecGt. 2]|Const, 3)
|[RecGtc,1 + {a2 |CH! ,(bl)}HConstcA
endhide endren
whereConst.,; := (((Taskc,1 > t;stop)[> (OneStRec. 2> (AllStRec.z|||AllRec.,1)))[>)
whereTask. 1 := ren {(uf/u)|(u® € ASc(b1))} + {(a};,/rg,)|CHj,7£(b1)} in Par. 1 endren
wherePar. ; := see Table 14
Const. 2 := (Task.2[|(t;0))
whereTask 2 i= ren { (u5/u”)|(u° € AS.(b2))} + (a2 /r&)|CHZ (b))
in Term. (b2, z) endren
Const. s := (((OneStRec.,2 > (AllStRec. :|||AllRec.,1))]]
(OneStRec.,1 > (AllStRec.,1
[> (OneRec.>>> (AllStRec. ||| AllRec.,1)))))

[>9)
Const. 4 := ((|HCH3 (b1>(Loop(/22-CTT(b1))[>Loop(a% ?2-CIT(b2))))[>0)
StGten := {us|(u® € SS.(bn))}
RecGt.,, := {al, |CH, <(bn)}
OneRec,,, := (ngRecGth(g?z~CI+(bn); 5))
OneStRecc,, := (([Jgestat, . (g;9))[[OneRece,n)
AllRec. . := (stop|||(|[|gerecct. , Loop(g?z-CT" (bn))))
AllStRec. » := ((|||gestat. . Loop(g))|||AllRec.,) endif

Table 17: MappindI’ for choice

A participant ¢ combines Term.(b;,z) and in Term.(bs,2) into u5. Besides, we internally to
Term,(be,2) as specified in Table 17. 1DC(b), T'.(b,z) split every reception gate’, into gatesa!, and
Term(by, z) is known to be the selected alternativea?, where messages f@erm.(b;,z) are, according to
as soon as it starts, so everyis allowed to execute their contents, routed to the first gate, and messages for
Term, (b, z) andTerm, (b2,) as alternatives. Term,(bs, z) to the second gate. The renamings are

If DC(b), Term.(b;,z) and Term. (b, 2) must be guided by service attributedS.(b,) (lists dl the service
combined in such a complicated way that no LOTOS opactions ofb,, atc) andCH:,Qc(bn) (true if the channel from
erator can express it directly. So we resort to the so calledto c is employed withirfCerm(b,,, z)).
constraint-oriented specification sty[@8]. This is the Applying all the above renamings t®ar.; and
style in which two or more parallel processes synchroniz&€erm. (b, z), we obtain processéBask,. ; andTask. o,
on the actions they collectively control, and each procesespectively, that have disjoint sets of service primitives
imposes its own constraints on the execution of the actionand reception gates. Every action witfiM.(b, z) is an ac-
so that they are enabled only when so allowed by all thigon of Task. ; or an action ofTask. 2, except that there
processes referring to them. is also an action on a hidden gatgerving for synchroniza-

A T'.(b,z) consists of four constraints. Const.; tion of Const,.; andConst, > upon successful termina-
and Const,. » are respectively responsible for executiortion of Task. ;.
of Term,(b,, z) and Term.(bs, z), while Const. 3 and The critical actions oflask, ; are its starting actions.
Const. 4 serve for their additional co-ordination. They must influence execution @&ask. 2, so they are sub-

In the first place, we must be aware that in the cagect to synchronization betweddonst. ; andConst, 3.
of DC(b), protocolsTerm(by, z) and Term(bo, 2) are A starting action ofTask. ; is a arting srvice action of
actually executed in parallel for some time, so every; atc, i.e. a member 0o65.(b1), or a reception. If it is
shared incoming channel in principle requires an ina member ofSS.(b;), it might also be an or ad, i.e. not
put buffer for Term.(b1,z) and an input buffer for suitable for synchronization, so we in principle require that
Term. (b2, z) (see Section 3.9). But as nod ever trans- every member o6S.(b1) is a service primitive. It is not
mits to ¢ within Term. (by, z) after it has transmitted a starting component @4, Const, 3 is redundant, hence
to ¢ within Term,. (b3, z), input buffers for prompt re- the requirement is not necessary.

ception are necessary only f@lerm.(b;,z). So we en- The critical actions ofTask. » are its starting actions.
hanceTerm.. (b, z) into Par, 1, as described in Table 14, They must in principle influence execution sk, 1, SO
though the buffers are usually redundant. they are subject to synchronization betw&sonst. ; and

Internally to T'.(b, z), we rename every service prim- Const. . A starting action ofTask.» is a member of
itive u¢ in Term,(by, z) (i.e. inPar. ;) into u§. Like- SS.(bz) or a reception. If disruption oTask. ; is nec-
wise, we internally rename every service primitiué essary, i.e. ifPC.(b;), we require that every member of

66 Informatica27 (2003) 57-73 M. Kapus-Kolar

w = spec ((a”;9)[[|(b%;8))[1((c”; 0)][|(b”; 6)) endspec
wlzspec ((@%; (NN (B3 8 NO((s (37 [[187)]1](% (57]1]67))) endspee
2 = spec (a7 (6713717175 (6% [[157) [((c”5 (6% [113°)) 167 (6%]157))) endspee
w3 = spec ((aaz(é"l\lm))ll\(bﬁ i (5“|H5B)))H(((1% 8)[[187)I11(6% ((1%:.67)[]167))) endspee

Tao(ws, €) ~ spec ren lxy/alwlrﬁ/alﬁ7 rd /a2 in hldet in
(((’ (hide b, in ((a®; ((s§!1;0)||/(s$!1;6)))|||(b4!1; 6))|[b,]|FIFO(al, b,, 1) endhide > t; stop)
[> (((a572;0)[1(2372; 6)) > (Loop(aj372)[[[Loop(a372)]|[Loop(a’ 71))))[> 9)
|[az237a37t}|(’ ((a312;8512;6)||/(a!2; 5512 6)) | [(t; 6))
I[al,a?]|((Loop(al?1)[>Loop(a2?2))[>d)
endhide endren endspec
Tps(ws,e) ~ specren b’ /b7 rf/al, ¢ /a%bﬂ/bg,rg/ai,rg/ag in hide t in
([(hide ba, by in ((ba!1;)[[[(bJ: 5511 b, 113.8))
|[ba, b,]|(FIFO(ay, ba, 1)|||FIFO(al, by, 1)) endhide > t; stop)
[> (b3 6)[)(a372; 6)) > (Loop(by)[[[Loop(a3 ?2)|[[Loop(as, ?1)||[Loop(a’ ?1))))[>)
Hbg?agﬂt]l(’ ((a312;0)[1](b5; ((sa12; 0)]1](s512; 6)) > a2 !2; 5))‘[](9)))
b7, ak, a}, by, a3]| (55 8)[](a372; 6)) > (Loop(b3)|[|Loop(a3 72)|||[Loop(as ?1) ||| Loop(a} ?1)))
(((b756)0(an?1;6) (a3 ?1;6)) >
((LOOP(bB)IHLOOP(71)|\|LOOlD(al(’1))
[[5)(3272 ; (Loop(b3)|||Loop(a3 72)||[Loop(as ?1)||[Loop(a} ?1))))))
>
|[aa, a3, a2, a3][(((Loop(as?1)[>Loop(a3 ?2))||| (Loop(a}, 71) [> Loop(a372)))[> §)
endhide endren endspec
T, (w3, €) ~ spec ren rg/ai,rg/ab,rg/ai,rg/aé in hide t in
(((((hide ba,bg in ((ba!l;6)|[|(bs!1; ((sa!1;6)[l[(s5'1;6))))
|[ba, bs]|(FIFO(al, ba, 1)|||FIFO(as, bs, 1)) endhide > t; stop)
[>(((c7;9)[(a572;6)) > (Loop(c”)|[[Loop(aj?2)[[[Loop(as 1) [[Loop(as?1))))[> §)
|[c7, %, t]1(| ((c7; ((s212;0)[[[(s312; 6)) > a!12; 6)|[|(a5!2;9)) | [|(t; 9)))
[aa, a5, ¢, ag][(((((c7; 5)[](%"2 8)) > (Loop(c™)[[[Loop(a?2)|||[Loop(as 71)|||[Loop(a;?1)))]
(((aa?1;6)[(a5?1;6)) >
((Loop(ai"l)IHLoop(a 1))
[[6))(%?2 (LOOP(C”)H|L00p(a?172)||\LOOP(ai'?l)lHLOOP(a}s?l))))))
>
|[a, a5, a2, a3]|(((Loop(as ?1)[> Loop(aZ 72)) ||| (Loop(aj?1)[> Loop(a372))) [> 6)
endhide endren endspec

Table 18: An example of distributed choice

(9) T'c(b,) :=if =DC(b) then(Term,(b1, z)[>Term, (b2, z))
elseren Un—1,5 ({(u”/us)|(u” € AS.(bu))} +{(x% /a2)|CHY (b)) in hide t in
((Const.,1|[StGt. 2 + RecGtc 2 + {t}]|Const.)
[[StGtc,2 + RecGt. 2 + {pi}]|Const,,3)

[[RecGt, 1 + {a? \CHZYC(bl)}HConstcA

endhide endren

whereConst. 3 := ((AllStRec. 2[|(p{; OneRec. 2> AllStRec. 2))[>)

the rest of definitions as in Table 17 endif

Table 19: MappindI” for disabling

SS.(b2) is a service primitive. ogous toOneStRec. , and AllStRec. ,, respectively,

except that they refer only to receptions.
The gates on which the starting service primitives and

receptions within @lask., occur are listed irStGt, Const, ; prescribes the following: 1) Basically, execute
and RecGt. ,, respectively. OneStRec. , specifies a Task.; and indicate its successful termination by.a2)
process ready to synchronize on one actiorifatk., If Task. . Starts in the meantime (that will always be be-
on gates fromStGt., and RecGt.,. AllStRec., foret), stop the basic activity, but remain ready for recep-
specifies a processes ready to synchronize on all such dion of protocol messages sentTask. ;. 3) Always be
tions. Processe®neRec., and AllRec., are anal- ready to terminate, thougBonst. > will ensure that that

DERIVING SELF-STABILIZING PROTOCOLS... Informatica7 (2003) 57-73 67

w = spec ((a™;9)][|(b”;8))[> ((c*; 9)[[|(b”; 6)) endspec
w1 = spec hide p®, p” in (((a®;6%)|[|(b%;67)) > ((p*; 8%)[||(p%; 67)) > (8°(||6”)) [> ((c*; 67)|||(b”; 6*)) endhide
endspec
To(wr,€) 5 spec hide p,t inrenrj/aj,rj/aj in
(((((hide bg in (a”; ((s5!1;0)[||(bp!1;8))>p; ((s5!1;0)][|(bs!1;6)))
|[bs]|[FIFO(aj, bg, 1) endhide > t; stop)
[> (((c*;9)[1(a572; 6)) > (Loop(c®)||[Loop (a3 ?2)[[[Loop(a;?1))))[> 9)
e, a3, el (55512 0)l1(2312:9)) | (8 6)))

[[p%, ¢, a%, t}|(((Loop(ca)|||Loop(a%?2))[](pa; a?@?Q; (Loop(c“)H|Loop(a%?2))))[> 8))
|[ah, a3]|((Loop(aj?1)[>Loop(a3?2))[>J) endren endhide endspec
Ts(w1,e) =~ spec hide p?,t in ren bﬁ/b?7 r/al, bﬁ/bg, rg/ai in
(((((hide by in (b7 ((s2!1;8)[]|(ba!l;6)) > b ((s2!1;8)[[| (ba!l; 6)))
|[ba]|FIFO(al, ba, 1) endhide > t; stop)
[> (((b356)[(a272; 6)) > (Loop(bj)| [Loop(aZ, ?2)[[[Loop(ai ?1)))) [> 6)
165, a2, t]1 ((a212;)] 1035 5312:) | 1(8:9)))
IIp%, b3, a2, t]1(((Loop(b5) [|Loop(aZ 72))[|(p”; a2 72; (Loop(by) ||| Loop(az 72))))[> 6))
[[ak, a2]|((Loop(ak ?1)[>Loop(a2 ?2))[>) endren endhide endspec

Table 20: An example of distributed disabling

will happen only after successful terminationBdsk, ; or starting components of the second alternatiwg.in addi-
Task, o. tion secures that every channel employed for the first alter-

Const, » prescribes the following: ExecutBask., or native is also employed for the second one.
terminate upon &indicating thatTask. ; has successfully In each individual component specification, the first and
terminated. the second alternative are highlighted by a box. When di-

Const, 3 in addition prescribes that in the case that theergence occurs, components execute the first alternative,
first action belongs tdrask. i, Task., may start only butgradually switch to the other. We see that every protocol
upon a reception, i.e. upon detecting ttiatrm(b2, z) has message of the first alternative is a 1, and every message of
already started at a remote site. the second one is a 2. All the specified FIFO buffers are

With the described measures for prompt start reportedundant.
ing and for prevention of premature local termination,

T (b, 2) will progress towards completion dfask.; or 3 11 Implementation of disabling
Task, 2 as appropriate.

There is, however, still a problem to solVBask. , must For ab specified as 8;[> by", we assume that there are
not terminate whilec may still expect messages sent toservice actions (at leastd in both parts, so that both are
Task,. 1. So we require thalask, - (i.e. Term,.(b2,2)) relevant. The operator does not introduce distributed con-
never successfully terminates without receiving on each dlicts, formally ~DC(b), if there is ac which is the only
the channels on whictterm..(b;, 2) receives. Upon a re- participating component of; and also the only starting
ception within Term,(by,), ¢ knows that on the chan- component obs.
nel, there will be no more messages Te#rm,.(by,). For ProtocolsTerm (b, z) and Term(by, z) are combined
some channels, the requirement might be redundant. as for 'b;[Jb2", except thafTerm (bs, 2) is allowed to start

It is convenient ifc indeed promptly becomes unwilling as long as there is a starting componenft b, which has
to receive on gates iRecGt,. 1, to improve the possibility notyet detected tha is successfully terminating and con-
of re-use of protocol messages belongin@tam.(b;,z). firmed this knowledge by executing a special-purpose ser-
Therefore we introduc&Const. 4. An analogous con- Vice primitivep® in b;.

straint for protocol messages belongingTerm, (b, z) A participant ¢ combines Term.(b;,z) and
would also be desirable, but we have found its automati€erm, (b2, 2) as specified in Table 19. 1-DC(b),
specification too difficult. activation of Term(bo, z) is a local matter of the starting

component ofb,. For any otherc, Term,(b1,z) is
Example 5 An example of distributed choice is given inequivalent tostop, i.e. the component just waits for an
Table 18. The original service specificatianis gradu- eventual start oTerm. (b, 2).
ally transformed into a well-formed specification, follow- If DC(b), we require thab; consists of a regular pal
ing suggestions from Section 4.2u; secures prompt re- followed by a dummy parb, indicating its successful ter-
porting of each individual starting service actionu, in mination (if 7'M (b;), by is never activated, and as such
addition secures that no component terminates the first ahot specified), i.e. we pretend that the service we are imple-
ternative until it is selected by componeritsand v, the menting is actually b3[> b,". More precisely, we require

68 Informatica27 (2003) 57-73 M. Kapus-Kolar

bs = ((llsc.(62) (P 6°)) > (7o (4,)0%)) No. 55 No. 55
wherep primitives are supposed to be hidden on a highe2) SSc(p) = 55c(b) (4) SSc(b) = {5\PC (0)}
service level and not among the visible primitivesbgf (3) 55:(b) =0 (6) SSc(b) = S5c(a)
Note that we also prescribe the executor of each indivig{12) S5 (b) = 53e(p) (13)SSc(a) = {“|PC (@)}

: : : (7)) 55c(b) = ((SSc(b1)\S) U (SSc(b2)\S)U

ual 6. SinceDC(b) andT M (by) imply thatb in no way (5S.(b1) N 8S.(b2) N S))
synchronizes with concurrent service parts, pfiynay be (8,9) SS.(b) = (SSc(b1) U SSe(b))
regarded entirely as an internal actiorlof (b, z). () SS.(b) = ((SS.(b1) \ {6}) U {i[(§ € SS.(b:1))})

For such ab1., protocol Term (b1, z) consists of tWo (10) SS.(b) = ((SSe(b1)\ S) U {i|((SSc(b1) N S) # B)})
phases. The first phase Berm(bs, z) followed by re- (11) SS.(b) = ((SS.(b1) \ {s|3(s'/s) € R})U
porting of successful termination to all the starting com- {s'|3s € SS.(b1) : ((s'/s) € R)})
ponents ob,, i.e. exactly to the starting componentshgf ~ No. AS. No. AS.
In other words, the components are, as required, prompti{2) AS (p) = ASc(b) (4) ASc(b) = SSc(b)
informed when starting ofTferm (b, z) becomes unde- Se(b) =0 (12)Asc(b? = AS.(p
sirable. If the first phase successfully terminates befor g; ﬁg EZ; - Egész(l)”&\f‘l{g}gug} U ASe(b2))
Term(bs, z) starts,T(b, z) starts executing the usual dis- (7 9)AS. (b) _ (ASC (Zl) U AS. (bs)
tributed implementation of a well-formed;{|b.". If the (10) AS.(b) ((Aé (b)) \ S) U {i[((AS.(b1) N S) % B)})
start of Term (b, z) is sufficiently delayed, the executed (11) 5. (s) = ((AS.(b1) \ {s]3(s'/5) € R})U
alternative ish,, i.e. by is not disrupted by,. In any case, {s'|3s € AS.(by) : ((s'/s) € R)})
no participant abandori¥erm (b, z) until every starting (3—12)(SC (b) = (S5c(b) # 0))A
component of b, has executed p¢, i.e. refused to be an (PC.(b) = (AS.(b) # 1))
initiator of Term(by, z). (4) Fe: (PC(b) ={c})

Comparing T/ (b1[> by, z) With T/ (by[Jbs, 2), we (13) (Gc: (PC(a) = {c})) A ((Fu: (a = u%)) = PCc(a))
see that, instead of waiting for the starting actions of
Term, (b1, z), Const.s now waits for the onlyp® in
Term,(by, 2), if any. Consequently, instead of synchro-

Table 21: Service actions and their executors

nizing on the gates i8tGt.; andRecGt. ;, Const, ?Izc)’ g;(p) — D7) ?‘1% 115;;(5) = DT(6)

and Const. 3 have to synchronize just op{, hence B4)DT(b) = false (12) DT(b) = DT(p)

Constc,g is much easier to specify. (5,6)DT(b) = DT (b2) (7) DT(b) = (DT(b1) V DT (b))
(8) DT(b) =

(DT (b1) V DT (by) V T(b))
Example 6 An example of distributed disabling is givenin (9) DT (b) = (TM(b1) V IT(b2) V DT (b2))
Table 20. To obtain a well-formed service specification, we(3-12)TM (b) = ac (6 € AS.(b))

furnish the first part with the required hiddgmactions, (3-12)IT(b) = 3c: (J € SS.(b))

and make sure that the starting actions of the second part
are promptly reported and that both protocol channels are
used for the part.

Table 22: Successful terminations

No. AD No. AD
(2) AD(p) = AD(b) (3.4) AD(b) = false
: . . (6) AD(b) = AD(by) (5,7)AD(b) = (AD(b1) V AD(bs))
4 Computation and tuning of service ;5 AD(B) = AD(p) (10.11)AD(b) = AD(by)
attributes (8,9)AD(b) = (AD(b1) V AD(by) vV DC(b))
No. T'D No. TD
; : (2) TD(p)=TD(b) (10,11)I'D(b) =TD(b1)
4.1 Attribute evaluation rules 3.4)TD(b) :false (12) TD(): Dip)
The attributes in Table 21 provide information on service(®: G)TDEZ; = {1%(1(712))) 5/7);2% Yv (((1311\;5(19)()1))2))
actions and their executors.S. and AS. respectively list i 1 2
for ana, b or p its garting rvice actions andlldts service % ((2)) __((7[56(,122;‘ >(1) (b) A (TM(b) V IT(b2))))
actions ate. SC. and PC.. respectively indicate for an DC(b) : ; (IPC(b1) U SC(b)|> 1)

a or b thatc is its darting @mponent or its articipating
component. Table 23: Distributed conflicts
The attributes in Table 22 provide information on suc-
cessful terminationsT’M, I'T and DT respectively indi-
cate for ab or p that it might successfullyerminate, that it there are ay distributed conflicts in it and whether there are
might terminate hitially, or that the érmination might be distributed conflicts involving its successf@rmination.
decisive. The attributeS R, in Table 24 indicates for aor p that
The attributes in Table 23 provide information on disdts start must be promptlyaported tac.
tributed conflicts. DC indicates for ab that dstributed The attributeEC,. in Table 25 indicates for & or p that
conflicts are introduced by its top-level composition operae is its ending ®@mponent for mapping. EC.' is the ana-
tor. AD andT' D respectively indicate for aor p whether logue for mappingrerm.

DERIVING SELF-STABILIZING PROTOCOLS... Informatica7 (2003) 57-73 69

No.SR. No. SR. No.CH, . No. CH,.
(1) SR.(b) = false (5,7,9-11)5Rc(b1) = SRc(b) (2) CH..'(p) = CH],(b) (10,11)CH, /(b) = CH_,, (b1)
(2) SR.(b) = () (5.6) SRe(b2) = false (34)CH, . (b) = false (12) CH,.(b) = CH, . (p)
(7) SRC(b2): Re(b) (12)SRe(p) = (SRe(p) V SRe(b)) (5) CH., o (b) = (CH}', (b1) V CHY, (b2)V
(8) SRe(bi) = (SRc(b) V SC.(b2)) ((c # &) A ECH(b1) A SC. (b))
(8) SRe(b2) = (SRe(b) v SCe(b1) V (DC(b) A PCc(b1))) (6) CH. o (b) = (CH!, (b2)V
(9) SRe(b2) = (SRe(b) V PCe(b1)) ((c % &) A PCe(a) A SC (b2)))
) (7-9)CH. . (b) = (CH} (b)) VCH/ ,(b2))
Table 24: Start reporting No.CT, No. C7..
() CT.(p) =CT],,(b) (10,11)CT. o (b) = CT., (b1)
No. EC. No. EC. (3) CT..r (b) = (12) COT.w(b) = CT..o (p)
@) c(p) = ECZ(b) (5,6) EC.(b) = ECS (b2) (4) CT, ./ (b) = alse
3) Ce(b) = false (10,11)EC.(b) = ECS (b1) (5) CT..r(b) = (CTL(1)V CT, (bo)V
(4) EC:(b) = PCe(b) (12) EC:(b) = ECe(p) (¢ # &) AN ECH(b1) A SCu (b2)))
(7-9) EC.(b) = (EC+(b1) VEC*(bz)) (6) CT..cr(b) = (CT,, (b2)V
(3-12)EC (b) = (EC.(b)A A’ : RT./ (b)) V RT.(b)) ((¢ # ¢) A PCe(a) A SCui (b2)))

(7) CT..r(b) = (CT/,, (b1) v OT, (b))
(8.9)CT.,. +() (CTZ, (b D) ACTZ, (b))
(3-12)CH.,(b) = (CH,./(b) V (EC.(b) A RT.: (b)))
No. 7TCF No.7CF (3- 12)066,@) (CT.cr(b) V (ECe(b) A RTr (b))

Table 25: Ending components

(1) TCIH(b) =TM() (2) TCS(b) = TC (p)
(6) TC(by) = (EC.(b1) v PCe(b2) V TCo(b)) (7-9)5He,v () = (CH, (br) A CH.,, (b2))
(5-9) TCF (bs) = (TCe(b) A PCe(b) A TM (b)) _ I
e 11)ch(bj) — (TC..(b) A PC.(b) /\TM(bj)) Table 27: Channel utilization
() — +
('\-’ll-(f) ;gc (p —_ (TCC (p) A TCC(b)) NO. GTC o NO GTC o
@=6.10117C.(b) = TC=(0) @) GT.o(p) = GT,(b) (1011)GT. . (b) = GT,,(b1)
(7) TC.(b) = (TCF (b) A (EC.(b) V ~PCe(b)V (3) GTeer(b) = tru (12) CTow() = Ol (p)
(-DT()A A : SHo (b)) (4) GT. . (b)= (ﬁTg c(b) V ((c :+C) Ce(b)))
(8,9) TC.(b) = (TC(b)A ’ (5) GT..(b) = (GTC (b)) Vv GTC’C/(b2)
(V¢ € SC(be) : GT, (br))N (PCe(b2)A
(~DC(b)V A" (ECS (01) AGT, ,(b1))))
((EC.(b) V =T M (b1))A (6) GTeer(b) = ((PCer(a) A((e =)V PCe(b2))V
A (CHY (b)) A—CT _(b2)))A GT, ./ (b2))
(<TM(b) Vv PCe(ba))) (7) GTewr(b) = (GT.,, (b1) V GT], (b2))
V=PC.(b))) (B.9GT, (b) = (GT,, (b1) A GT, (b))
(12) TC.(b) = (TCH(b) A (TCS (p) vV ~PC.(b))) B-12)GT,,, (b) = (-TCI(b) V (TC.(b) A GT. s (b))V
(3-12)RT.(b) = (T'CF (b) A ~TC.(b)) (=TC.(b)A
3 (ECC”(b) A GTC”,C’ (b))))
Table 26: Termination types
Table 28: Termination guarding
The attributes in Table 26 provide information on termi- No. CIT No. CIT
nation types.T'C. andT'C. respectively indicate for & (1,2)CTT(b) =¢ (5,6)CT"(ba) = CI(b)
or p thatc is its terminating_ omponent for mapping@ or (5,10,11)CI " (b1) = CI(b)

Term. RT, indicates for & thatc detects itsérmination (7-9)if 3e, ¢’ ;SHc,a (b) .

upon receiving a speciadport on it. %‘5# (bbl) _:glﬁ(bg)'l 7—061‘1 (:2()3;”01(11)'2
The attributes in Table 27 provide information on utiliza- No. CI (b1) = (b2) = CI(b)

tion of protocol channelsCH, s andCH:fc, respectively (3—.6 10,1001(0) = CT7 (b

indicate for ab or p that mappingT or Term introduces (7-9)if (((C’I*(b (b))) (CI* (b)) # CI(b))V
(

) #
ch

protocol messages on theasinel frome to ¢/. CT,. » and A, (b § RT, (b) A CH.. (b))
CT',, respectively indicate that thénannel is used in ev- thenCI(b) = CI*(b)
ery successfullygrminating run. For & consisting of two @CI()=CI*(b) 1 endif
competing parts$H., . indicates if the channel is ared. (12) if Ac,c’ (T ?(b) A RTr (b) A CHe, (b))
The attribute€77,. .- andGT,',, in Table 28 respectively thenC1(b) = CI7(b) _
elseC1(b) = CI* (b)-1 endif

indicate for @ orp that in mapplngT or Term, its success-
ful termination at is guarded by Table 29: Context identifiers
By the rules in Table 29, we choose fobauch identi-
fiersCI andCI™ that all protocol messages introduced by
mappingT or Term, respectively, are dynamically unique. Attribute evaluation rules for a service specification con-

70 Informatica27 (2003) 5773 M. Kapus-Kolar

stitute a system of equations which might have more than(®) 7'M (b1)

one solution for the attributes of the explicitly defined pro- (7) ((Ueec ASc(b1)) N (S + {4}))
cesses. One should always maximize their attrifue", = ((Uecec ASe(b2)) N (S + {0}))
while other attributes must be minimized. (8.9) (IPC(by)[>0) A g'PC(b?N >0)

(7) DT(b) = (|JEC(Hb)|=1)
(3-12)EC, (b) = TC.(b)
4.2 Additional restrictions and their (1) Ac: (p° € AS.(b))
satisfaction (9) DC(b)= 3bs:
((bl = (b3 E TM(bl) then
Table 30 summarizes the additional restrictions introduced > (scev2)(P569) > (et b,9°)
so far for a well-formed service specification. endif)
The first three restrictions state that no irrelevant service A Ac: (p° € ASc(bs)))
part may be specified. The restriction for parallel compo- (7) ((S # 0) = ~AD(b)) A =T'D(b)

sition is actually more rigorous than its approximation in (4} SEc(b) = PCe(b)
Table 30 (see Section 3.9). (6) SRe(b) = (PCc(a) v SCc(b2))

The next two restrictions refer to the ending components Eg)g) gg% z (i%(lz?) = (({{lj %2?@6(?))
of a b. Usually they can be satisfied simply by proper — (PC(br) = (i1, o(b2))

0))
0)

choice of executors for individual in b, but not always. Table 30: Restrictions
It might be that a §;[]b2" or a "b;[> be" is terminating,
but no ¢ qualifies for its ending component, because a No. AP NO. AP

GT:c,(bl) or PC,(by) or aCijc(bg) is not true as re- (2) AP(p) = AP(b) (3,4,6) AP(b) = true

quired. GT.", (b1) can be satisfied by securing that in the (7.9)AP(b) = false (8) AP(b) = (AP(b1) A AP(b2))
terminating runs ob;, the last (possibly dummy) action at (12) AP(b) = AP(p) (5,10,11)AP(b) = AP(b:)

c always comes after a (possibly dummy) actior’atFor
PC.(b2), it suffices to insert intd, a dummy action at.
ForCT: .(bs), it helps to introduce into every terminating
run of b, an action at prefixed by an action at.

The next two restrictions require that there are hidden
primitives at certain places in the service specification.
p primitives are already used for other purposes, any other
reserved service primitive type will do.]]]

The next restriction states thabaith distributed con- 9 Discussion and conclusions
flicts must not synchronize with a concurrent service part,
in order to avoid deadlock resulting from imprecise impleb.1 Correctness
mentation ofb. However, if the concurrent service part is
sufficiently flexible (like, for example, a skilled user of anA formal proof of the protocol derivation method is given
imprecisely implemented service), there will be no dead? [18], and briefly outlined below.
lock and the restriction may be ignored. For every service par, the only property that really

The next two restrictions secure prompt start reportnatters is correctness of itf’ and Term implementa-
ing. An ordinary actior: is always specified in a context tions for the context in which it is embedded, wher&'a
"a;by". A report recipient: must be the executor efor a implementation consists of the membersFiaf’(b), while
starting component df,, so that the message will be gen-a Term implementation might also involve some other
erated to implement the action-prefix operator. i@ a server components. However, when proving the property,
missing starting component bf, that can be solved by in- we also assume over twenty auxiliary properties of the im-
troducing intob, a dummy starting service actionatFor plementations.
reporting of &j, there is no suchs, following, so we have All the properties are proven by induction on the ser-
only the first option. vice structure. Most of them are synthesized properties.

In a general case, execution of a disruptiveight start We prove them for th&” implementations oftop andd.
by concurrent execution and reporting of several startingor every composité (i.e. for every service composition
actions. To avoid as much as possible such multiple repoperator), we prove that iferm implementations of the
ing of the start ob, it is advisable to rewrite the specifica- constituent service parts possess the propertiesI thm-
tion of b into the ation-prefix form (as required in [10] for plementation ofh possesses their analogues. In addition
by in @ "by[> by"), i.e. make sure thatlP(b) (defined in we prove that if thél” implementation of & possesses the

Table 31: Action-prefix form

vice primitive. For both cased)C(b) implies thatb runs
Iip such a context that the transformation is irrelevant.

Table 31). properties, itsTerm implementations possess their ana-
The last two restrictions state that a service action in lagues. For the few inherited properties, the proof goes in
particular position must not be @nor ad. If itis ani, the reverse direction. By proving the main property for the

change it into a service primitive and hide it on a highemain service process, we prove that the entire service is
level. Ifitis a4, prefix it with a subsequently hidden ser-properly implemented.

DERIVING SELF-STABILIZING PROTOCOLS... Informatica7 (2003) 57-73 71

5.2 Message complexity and is consequently much less complex. Moreover, the al-

. . . orithm derives protocols in a compositional way, support-
The operators potentially introducing proiocol messag lg implementation of sequence, choice and iteration. For

are ff[he opergtt)?rst of Zeque?hce, ChOtI)CG a:(nd d;}sablmg:[those operators, the structure of services is quite well re-
E’ ° e? pcths_l etho reauce the n#.m t(_ar ° .sucb opers_ %fdcted in the derived protocols. Unfortunately, FSMs are
py restructuring the Service spectiication, 1.€. by MakiNgysg suited for explicit specification of more complex op-

Its mher_ent paralielism more explicit. If such rt_astyllng Oferators, particularly for such introducing concurrency. We

the service (and consequently of the protocol) is not unag- e solved the problem by switching to the more expres-
ceptable for readability reasons, it can greatly reduce tfg?\,e LOTOS

message complexity, and. can even .be automated [25]'_ One\Ne know no comparable LOTOS-based protocol deriva-
should also strive for optimal insertion of dummy S€VICqion transformation. Some hidden divergence is allowed in

actions and optimal assignment of hidden service actior[uf] but it is resolved with the help of global controllers.
to server components. '

Anyway, some of the messages introduced by our proto-]
col derivation mapping are redundant. 5.4 Handling of data

— In some cases, it would be possible to omit a messa%ged'm??]d dto ex;er;i our method r;[ohse_r(\jncel ?}CUOES associ-
based on the observation that for the service part te .V\.”t) ata[5, 11], to approach the ideal that the service
n pecification language should be the same as the protocol

to which it belongs, it sequences two service actio gpeciicatl S
@ecn‘lcatlon language. The strategy for flexible integrated

which are already sequenced for a concurrent servi
partb synchroni;/ed c?n them [13] ?:andling of messages implementing proper ordering of ac-
2 ' tions and those carrying data is simple [11]: 1) In the ser-

— It would be possible to further optimize terminationsvice, identify the points where inter-component exchange
of implementations of individual service parts, andof data would be desirable. 2) At each point, introduce a
their reporting in individual runs [14, 24]. (possibly dummy) action of the data sender followed by a

(possibly dummy) action of the data recipient, so that there

— When implementing abi []b2", one could make better will be an action-ordering message between the two com-
use of the fact that only the initial parts bf andbs ponents. 3) Let the message carry the data. In our case, data
are concurrent. could also be carried in a message reporting termination of

ab to ac with RT.(b).

Data exchange is also desirable as a powerful means for
compositional service specification. Whenever the more
specific operators (e.g. sequential composition, choice and

'g,abling) do not suffice for describing a particular kind of
mposition of a set of service parts, one can still run the
arts in parallel and let them exchange and process infor-
mation on their respective states.

— When implementing abi [> b>", one could make bet-
ter use of the fact that only the initial part 6f is
concurrent ta.

With more extensive re-use of messages, their encodin
could be shorter, but messages would no longer direct
identify the service part to which they belong, leading t
more complicated protocol specifications.

5.5 Handling of quantitative temporal

5.3 Comparison with similar methods)
constraints

The popular formal technique for specifying self-
stabilizing protocols have long been finite state machindance being able to handle service actions with data, one
(FSMs) [6, 27, 22]. With their explicit representation of¢an easily implement quantitative temporal constraints [12,
states, they are very convenient for the purpose. NameR3l- Such a constraint specifies the allowed time gap be-
when a process proceeds along a selected path in the tri#een two service actions. So the time when the first action
sition graph representing its FSM, the fact that it ignorel$ executed is just another piece of data generated by the
messages belonging to the abandoned paths can be sﬁEét action and needed for timely execution of the second
ified simply by furnishing each state on the selected pa®ne. Temporal constraints can also be employed for pre-
with loops representing reception of such messages. ygnting distributed conflicts and for further optimization of
a process-algebraic language like LOTOS, there is no eRrotocol traffic [23].
plicit notion of states, so specification of self-stabilization
is a tricky task. . - 5.6 The problem of co-ordinated

Th(_arg are two basic approaches to deriving self- self-stabilization
stabilizing protocols. In the older approach [6, 27], a pro-
tocol is first derived for the ideal case with no divergence$he most difficult challenge for future research seems to
and subsequently furnished with the reception-ignoringe implementation of self-stabilization after divergence in
loops. The derivation algorithm in [22], like ours, handlesynchronized service parts. The problem is important be-
the ideal and the non-ideal cases in an integrated manneause synchronized processes are the core of the constraint-

72 Informatica27 (2003) 57-73 M. Kapus-Kolar

oriented specification style, that is indispensable for ex-[8] ISO/IEC: Information Technology - Enhancements to
pressing more exotic forms of service composition. To LOTOS (E-LOTOS). IS 15473, 2001

solve it in a general case, one would need a protocol in-]]]
corporating negotiation of implementations of concurrent[9] Kahlouche H, Girardot JJ: A stepwise refinement

service parts, so an enhancement along the lines of [29] Dased approach for synthesizing protocol specifica-
could help. tions in an interpreted Petri net model. Proceedings

of IEEE INFOCOM'96, pp 1165-1173, 1996

5.7 Conclusions [10] Kant C, Higashino T, Bochmann Gv: Deriving pro-

Automatic implementation of self-stabilization after diver- tocol specifications from service specifications wri-

gence is an important achievement in LOTOS-based pro- tigglg LOTOS. Distributed Computing 10(1):29-47
tocol derivation, because many realistic services contain ()

distributed conflicts (e.g. a connection establishment s 11] Kapus-Kolar M: Deriving protocol specifications
vice with both parties as possible initiators). In the era ~ .o service specifications including parameters. Mi-

of service integration, the problem is even more acute, be- croprocessing and Microprogramming 32:731-738
cause one often wishes to combine services which are not (1991)

exactly compatible. Take for example feature interactions
in telecommunications, which can be nicely detected and2] Kapus-Kolar M: Deriving protocol specifications
managed based on specifications in LOTOS [4]. With the from service specifications with heterogeneous tim-
possibility of compositional derivation of self-stabilizing ing requirements. Proceedings SERTS'91. IEE, Lon-
protocols, it suffices to specify dynamic management of don 1991, pp 266—-270
such interactions on the service level.

In our future work, we will focus on protocol derivation [13] Kapus-Kolar M: On context-sensitive service-based
in E-LOTOS [8], the enhanced successor of LOTOS, be- protocol derivation. Proceedings of MELECON'96.

cause it supports specification of real-time aspects. IEEE Computer Society Press 1996, pp 955-958
[14] Kapus-Kolar M: More efficient functionality de-
References composition in LOTOS. Informatica (Ljubljana)

23(2):259-273 (1999)
[1] Bista BB, Takahashi K, Shiratori N: A compositional _ .
approach for constructing communication servicebl® Kapus-Kolar M: Comments on deriving protocol

and protocols. IEICE Transactions on Fundamentals specifications from service specifications written
E82-A(11):2546—2557 (1999) in LOTOS. Distributed Computing 12(4):175-177

(1999)
[2] Bolognesi T, Brinksma E: Introduction to the 1SO

specification language LOTOS. Computer Network$16] Kapus-Kolar M: Service-based synthesis of two-
and ISDN Systems 14(1):25-59 (1987) party protocols. Elektrotehniski vestnik 67(3):153—

. . . . 161 (2000)
[3] Brinksma E, Langerak R: Functionality decomposi-

tion by compositional correctness preserving trang17] Kapus-Kolar M: Global conflict resolution in au-
formation. South African Computer Journal 13:2-13 tomated service-based protocol synthesis. South
(1995) African Computer Journal 27:34-48 (2001)

[4] Dietrich F, Hubaux J-P: Formal methods for commur1g) Kapus-Kolar M: Deriving self-stabilizing protocols
nication services: meeting the industry expectations. " for services specified in LOTOS. Technical Report
Computer Networks 38(1):99-120 (2002) #8476, Jozef Stefan Institute, Ljubljana, 2003

[5] Gotzhein R, Bochmann Gv: Deriving protocol spec-)
ifications from service specifications including pa—[lg] Khendek F, Bochmann Gv, Kant C: New results on

: deriving protocol specifications from service speci-
rameters. ACM Transactions on Computer Systems e .)
8(4):255-283 (1990) fications. Proceedings of ACM SIGCOMM'89, pp

136-145, 1989
[6] Gouda MG, Yu YT: Synthesis of communicat- N o
ing finite-state machines with guaranteed progres&0] Langerak R: Decomposition of functionality: A

IEEE Trans. on Communications COM-32(7):779—- correctness-preserving LOTOS transformation. Pro-
788 (1984) tocol Specification, Testing and Verification X. North-

]) Holland, Amsterdam 1990, pp 203-218
[7] ISO/IEC: Information Processing Systems — Open

Systems Interconnection — LOTOS — A Formal De{21] Naik K, Cheng Z, Wei DSL: Distributed implementa-
scription Technique Based on the Temporal Ordering tion of the disabling operator in LOTOS. Information
of Observational Behaviour. IS 8807, 1989 and Software Technology 41(3):123-130 (1999)

DERIVING SELF-STABILIZING PROTOCOLS...

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

Nakamura M, Kakuda Y, Kikuno T: On constructing
communication protocols from component - based
service specifications. Computer Communications
19(14):1200-1215 (1996)

Nakata A, Higashino T, Taniguchi K: Protocol syn-
thesis from timed and structured specifications. Pro-
ceedings of ICNP’95. IEEE Computer Society Press
1995, pp 74-81

Nakata A, Higashino T, Taniguchi K: Protocol syn-
thesis from context-free processes using event struc-
tures. Proceedings RTCSA'98. IEEE Computer Soci-
ety Press 1998, pp 173-180

Pavon Gomez S, Hulstrdém M, Quemada J, de Frutos
D, Ortega Mallen Y: Inverse expansion. Formal De-
scription Techniques IV. North-Holland, Amsterdam
1992, pp 297-312

Saleh K: Synthesis of communication protocols: An
annotated bibliography. Computer Communication
Review 26(5):40-59 (1996)

Saleh K, Probert RL: An extended service-based
method for the synthesis of protocols. Proceedings
of the Sixth Bilkent Intern. Symp. on Computer and
Information Sciences. Elsevier, Amsterdam 1991, pp
547-557

Vissers CA, Scollo G, Sinderen Mv: Specification
styles in distributed systems design and verification.
Theoretical Computer Science 89:179-206 (1991)

Yasumoto K, Higashino T, Taniguchi K: A compiler
to implement LOTOS specifications in distributed
environments. Computer Networks 36(2—3):291-310
(2001)

Informatica7 (2003) 57-73

73

Informatica27 (2003) 75-80 75

Embedding Complete Binary Trees into Faulty Flexible Hypercubes with
Unbounded Expansion

Jen-Chih Lin and Steven K.C. Lo

Department of Information Management

Jin-Wen Institute of Technology,

No. 99, An-Chung Rd., Hsin-Tien City,

Taipei, Taiwan, R.O.C.

E-mail: yachi@ms13.hinet.net

Department of Computer Science and Information Engineering,
Tamkang University, Tamsui, Taiwan, R.O.C.

Email: kclo@cs.tku.edu.tw

Keywords: Flexible Hypercube, hypercube, embedding, complete binary tree

Received:July 1, 2002

We develop novel algorithms to facilitate the embedding job when the Flexible Hypercube contains faulty
nodes. We present strategies for reconfiguring a complete binary tree into a flexible hypercube with
expansion. These embedding algorithms show a complete binary tree can be embedded into a faulty
flexible hypercube with load, congestioni and dilation4 such thatD(n? — m?) faults can be tolerated,
where(n — 1) is the dimension of a Flexible Hypercube and — 1) is the height of a complete binary

tree. These methodologies are proven and these algorithms are present to save them.

1 Introduction addresses in the system.
Graph embedding problems have applications in a wide

In the study of parallel computing, networks of processorgariety of computational situations. For example, the flow
are often organized into various configuration such as treasf, information in a parallel algorithm defines a program
rings, linear arrays, meshes and hypercubes. These configaph, and embedding this into a network tells us how to
urations can be represented as graphs. If the properties anrgdanize the computation on the network. Other problems
structures of underlying graph used effectively, the compuhat can be formulated as graph embedding problems are
tation and communication speeds can often removed. laying out circuits on chips, representing data structures in

Among the various interconnection networks that haveomputer memory, and finding efficient program control
been studied and built, hypercube networks have receivstructures.
much attention. This attention is mainly due to the hyper- The power of a message-passing parallel computer de-
cube advantages of rich interconnection, routing simplicitypends on the topology chosen for underlying interconnec-
and embedding capabilities. However, due to the power-aofion network, which can be modeled as undirected graph.
2 size and logarithmic degree, hypercubes suffer two maj@ifferent graphs have been proposed as static interconnec-
disadvantages, namely, high cost extensibility and large ition topology for multiprocessors. They include linear ar-
ternal fragmentation in partitioning. In order to conquerays, rings, meshes, complete binary trees mesh of trees,
the difficulties associated with hypercubes and these getie Bruijn networks, and so on. Therefore, we model both
eralizations of the hypercubes, the Flexible Hypercube[3he parallel algorithm and the parallel machine as graphs.
has been proposed during past years. The Flexible Hyp&iven two graphsiZ(V, E) andG’(V’, E’), embedding[9]
cube unlike both the supercube[14] and the hypercube, m#ye guest grapld: into the host graptz’ maps each ver-
be expanded (or designed) in a number of possible configex in the setV into a vertex (or a set of vertices) in the
urations while guaranteeing the same basic fault-toleraset V' and each edge in the sétinto an edge (or a set
properties and without a change in the communication. Thef edges) in the seE’. Let these nodes in a graph corre-
existence of hypercube subgraphs in the Flexible Hypespond to processors and edges to communication links in
cube ensures that hypercube embedding algorithms devatt interconnection network. Embedding one graph into an-
oped for the hypercube may also be utilized in the Flexiblether is important because an algorithm may have been de-
Hypercube. The flexibility in node placement may possiblgigned for a specific interconnection network, and it may
be utilized to aid in supporting a specific embedding. Thee necessary to adapt it to another network. Four costs
Flexible Hypercube, while maintaining the fault-toleranceassociated with graph embedding are dilation, expansion,
of the other topologies and the ease of communication, dbad and congestion. The maximum amount that we must
lows the placement of new nodes at any currently unuseretch any edge to achieve an embedding is called the di-

76 Informatica27 (2003) 75-80 J.-C. Linetal.

lation of the embedding. By expansion, we mean the ratiexpansion. In section 3, we embed a complete binary tree
of the number of nodes in the host graph to the number @fto a Flexible Hypercube witlh-expansion under partial
nodes in the graph that is being embedded. The congdaulty model. Finally, we conclude this paper.
tion of an embedding is the maximum number of edges of
the guest graph that are embedded using any single edge
of the host graph. The load of an embedding is the maxi Preliminary
mum number of nodes of the guest graph that are embed-
ded in any single node of the host graph. An efficient simThe Flexible Hypercube is constructed by any number
ulation of one network on another network requires thadf nodes and based on a hypercube. A Flexible Hy-
these four costs be as small as possible. However, for mgsrcube, denoted by Hy, is defined as an undirected
embedding problems, it is impossible to obtain an embedyraph FHy = (V, E), whereV is the set of processors
ding that minimizes these costs simultaneously. Thereforéalled nodes) and’ is the set of bidirectional commu-
some tradeoffs among these costs must be made. nication links between the processors (called edges). In
One approach to achieve faulty-tolerance in hypercub@n-dimensional Flexible Hypercube withi nodes where
is to introduce spare nodes or links[4, 12], so that hy2” < N < 2"*! (n is a positive integer), each node can
percube structure can still be maintained when nodes falle expressed by am + 1)-bit binary stringi,,...io where
This approach can be expensive and it is difficult to mak& € {0,1} and0 <p <n.
hardware modifications on those machines already in the
market place. Another approach exploits the inhereddefinition 1 [8] A (2" — t)-node Flexible Hypercube is
redundant nodes or links in hypercube to achieve faudt lack oft nodes, which are referred to herein as virtual
tolerance[6, 15]; that is no extra nodes or links are added twdes. For any virtual nodg, denoted ad (x) wherex
alter the structure of hypercube, but instead use the unusedany node of the Flexible Hypercube, if the functiga)
nodes as spares. In this dissertation, we consider only thgists, therx,,_; = 7,—1, andz; = y; for0 <i <n — 2.
second type of fault-tolerance design in faulty hypercube-
derived computers. Definition 2 [8] The Hamming distance of two nodes
In a multiprocessor system, we follow two fault modelsand y, denoted byi7 D(z,y), is the number of’s in the
defined in [6] and [11]. The first model assumes that, in it set of resulting sequence of the bitwis@ R of = and
faulty node, the computational function of the node is lost-
while the communication function remains intact; this is
the partial faulty model. The second model assumes thabefinition 3 [8] For any two nodes: andy in a supercube,
in a faulty node, the communication function is lost tooletx = =, _;...20, ¥ = Yn_1 ... %0, thenDim(z,y) ={
this is thetotal faultymodel. In this dissertation, our modelj in (0...n — 1) | 2; # y;}.
is the partial faulty model. That is, when the computation
nodes are faulty, the communication links are well and onliy . i 4 [5] SupposeFHy — (V,E) is an (n — 1)-
the faulty nodes are remapped. _ N dimensional Flexible Hypercube, then the node géis
Thg paper presents nove_l algorithms to faC|I|tat.e the enly,. Vi, Va, Vs are defined as follows
bedding job when the Flexible Hypercube contains faulty
nodes. Of particular concern are the network structuresq Hy ={z |z €V andz,_, =0},
of the Flexible Hypercube that balance the load before as
well as after faults start to degrade the performance of the2, iy, = {z | x € V and(z,,_1 = 1 or (I(z) ¢ V)},
Flexible Hypercube. To obtain replaceable nodes of faulty
nodes,2-expansion is permitted such that up (to — 2) 3. Vi=H; - H,
faults can be tolerated with congestidn dilation 4 and
load 1, where(n — 1) is the dimension of a Flexible Hy- 4 V2 = Hi N H;
percube. Results presented herein demonstrate that em-
bedding methods are optimized. Furthermore, we presen?' Vs =Hp; — H,
strategies for reconfiguring a complete binary tree intoa _ . .
Flexible Hypercube witm-expansion. These embeddingD€finition 5 [S] SupposeF Hy = (V, E) is an (n —1)-
algorithms show a complete binary tree can be embeddd§nensional Flexible Hypercube, then the edge/sét the
into a faulty flexible hypercube with loat} congestioni ~ Union ofEx, E», E and £y, where
and dilationd such tha (n? —m?) faults can be tolerated,
where(n — 1) is the dimension of a flexible hypercube an
(m — 1) is the height of a complete binary tree.
The remainder of this paper is organized as follows. In
the next section, some nqtations and de_finitions willbe in-3, g, = {(z,y) |z € Vs,y € V; andHD(z,y) = 1},
troduced. At the same time, we describe how to embed
a complete binary tree into a Flexible Hypercube véith 4. E, = {(z,y) | z € V3,y € Vo andHD(x,y) = 2}.

d 1. El = {(I7y) | T,y € Hl andHD(Ivy) = 1}’

2. By ={(z,y) | z,y € VaandHD(z, y) = 1},

EMBEDDING COMPLETE BINARY TREES INTO... Informatica7 (2003) 75-80 77

the embedding by lemma 1. There exists an embedding of
DTy, in a2h-node hypercube. The expansion(2+! —
2)/(2" — 1) = 2. Therefore, thel}, can be embedded
into a(2"*+! —2)-node Flexible Hypercube with dilatidh
congestionl, load1 and expansiog. &

Lemma 3 [10]A (2"+!—2)-node Flexible Hypercube con-
tains an embedding df,.

Proof. The total number of nodes in a complete binary tree
DTy, is 2. Because the node set &f, of the Flexible
Hypercube is a hypercube, it ha% nodes. We can infer
that the embedding method is from lemma 1. There exists
an embedding o7}, in a 2"-node hypercube. The ex-
)]] pansion ig(2"*+1 — 2)/2" — 1 = 2. ThereforeT}, can be

Figure 1: A Flexible Hypercube contaiid-node embedded into &2"+! — 2)-node Flexible Hypercube with

dilation 2, congestiori, load1 and expansiog. ll

Addresses of nodes in a Flexible Hypercube are con-
structed as follows. As discussed above, addresses c
sist of binary strings ofi-bits. The first2”~! addresses
correspond to nodes iff; and must be the binary repre-
sentations of) through2”~! — 1. Each of the remaining
nodes (up t®”~! — 1 nodes) in the sets = Hy, — H;
may be placed adjacent to any nadén H; and is given
the addres$(x). Any node inH; is a Hamming distance
of 1 from at most one node iiir;. This method of node

addressing effectively relaxes the constraint that all nodey N-Expansion Embedding
in the network must be numbered consecutively. This is

unique among the hypercube topologies mentioned aboygew, we extend the result fron2-expansion ton-
Notably, supercubes and hypercubes are both special cagggansion. In other words, we eliminate the limitation of
of Flexible Hypercubes. In addition to expanding the Flexexpansion. We assume the total number of nodes of Flexi-
ible Hypercube incrementally, it can also be expanded flexsie Hypercube Hy is N, 271 < N < 2" and the total

ibly with respect to the placement of new nodes in the sysrumber of nodes of a complete binary tfBg of height
tem while maintaining fault-tolerance. When a new node i, — 1) is2m — 1.

added to a Flexible Hypercube systemmew connections

should be added and at mdst — 1) existing edges must Lemma 6 A complete binary tree of height» — 1) can be

be removed. embedded into £2™ — t)-node Flexible Hypercub&) <
An inevitable consequence of the flexibility of construc+ < 271 m < n) with dilation2 and load1.

tion and the fault tolerance of the Flexible Hypercube is

an uneven distribution of the utilized communication port®roof. The result is trivial from lemma 1

over system nodes. Although the Flexible Hypercube loses We present these algorithms as follows:

its property of regularity, more links help obtain the re- Algorithm replacing — method :

placement nodes of the faulty nodes of the Flexible Hy- { if the rootr is faultythen

mma 4 [10]There exists an embedding df, in a
2h+1 _ 2)-node Flexible Hypercube with dilatiof con-
gestionl, expansior2, load 1 andO(n) faults.

Lemma 5 [10]The embedding methods in the Flexible Hy-
percube are optimized mainly for balancing the processor
and communication link loads.

percube. The Flexible Hypercube with-node is shown 1.1 search the other root nodé
in Figure 1. In the Figure 1, = {0,1,2,3,4,5,6,7}, 1.2 if the other root node’ is faulty then
H, = {1,3,8,10,12,13,14,15}, V; = {0,2,4,5,6,7}, 1.2.1 return the root

Vo = {1,3} andVs = {8,10,12,13, 14, 15}. 1.2.2 replacing — rule(r)

1.3 else
1.3.1 noder is replaced by node'.
1.3.2 exit the algorithm replacing —

Lemma 1 [1] A double-rooted complete binary tree can
be contained in a hypercube with dilati@n congestion,
expansionl and load1.

method
Lemma 2 There exists an embedding of a complete binary 2 if the other node: is faulty then
tree T}, in a (2"+! — 2)-node Flexible Hypercube. 2.1 replacing — rule(z)

Algorithm Replacing — rule(x)
Proof. The total number of nodes of a complete binarytree 1 =20;j =0
Ty, is2"~1. The nodes set dff; of the Flexible Hypercube 2 whilei < (n —m + 1) do
is a hypercube and it h&% nodes. We infer the method of 2.1 we can search the node

78 Informatica27 (2003) 75-80 J.-C. Linetal.

*w eV, HD(z,w) = 1, Dim(z,w) =
m + i*/.
2.2 if nodew is not a virtual node and it is free then
2.2.1 nodez is replaced by nodes
2.2.2 remove all of nodes in a queue
2.2.3 exit thewhile-loop
2.3 put(w,i+m — 1) ina queue
24i=i+1;,j=45+1
2.5 end;
3 whilethe queue is not empgo
3.1 remove the first paifa, 8) from the queue
3.2if a € V7 then
3.21:=0
3.2.2 whilei < (8+1)do))
3.2.2.1 we can search the node Figure 2: Embed d into al"Hi4
* X e V, HD(a,\) = 1,
Dim(a, \) = */.
3.2.2.2if nodeA is not a virtual node and
itis free then
3.2.2.2.1 node z is replaced by
node\
3.2.2.2.2 exit thewhile-loop
3223i=i+1;j=j+1
3.2.2.4 end;
3.3 elsev — replacing — rule(a, B)
3.4 end;
4if j = [(n —m)(n+m+ 1)/2] then
4.1 declare the replaceable node of searching is
faulty. Figure 3: The root node is faulty
4.2 exit thereplacing — rule(x)
Algorithm v — replacing — rule(a, 3)
1i=0 node n — m + m + 1) =
2 whilei < (3+ 1) do OXn_QXn_l...X,:n/_,_lX,,LX,,L_l...XlX(/)
2.1 we can search the node :

* ke Vs, HD(a, k) = 2, Dim(o, k) = (6 — node [(n — m)n + m + 1)/2] _
L,4), E(a, k) € E3*l. 1X! o Xpe1ee Xon Xom—1... X1 X0
2.2 if nodek is not a virtual node and it is freeen e jllustratetwo examples of finding a replaceable node
2.2.1 noder is replaced by nodé as shown in Figure 2 to Figure 4.
2.2.2 exit thewhile-loop
23i=i+1,j=j+1 Theorem 7 The ending of searching path includes at least
2.4 end; {[(n — m)(n+m + 1)]/2 — t} nodes.

The searching path of the replacing node of a Flexibl
Hypercube is shown as follows.

node 0 = OXn,Qang...deFleXm,l...X1X0

node 1 = OXn,Qang.‘.Xm+1X7/nXm,1...XlXO

node 2 = OXn,_2X7L_3 X! +1Xme_1 s X1X0

Broof. By lemma 3, we can embed a complete binary tree
into a Flexible Hypercube from nodeto node(2™ — 1),
which can be expressed bynabit binary stringi,,_1...ig
wherei,, € {0, 1}. First, we can change a bit in a sequence
from bit m to bit (» — 1) and push the node in the queue.
We can ge{n — m) different nodes. Second, we pop the

m

;wde (n _ m _ 1) _ node from the queue. From the first node we can change a
0X" 5 Xn—530 X1 X Xm—1...X1 X0 bit in a sequence from bit to bit (m — 1), and_V_/e can get

node (n _ m) _ mdifferent nodes. Then, we can change a bitin a sequence
1X 2 X530 Xom 1 Xom Xom— 1. X1 X0 from bit 0 to bit m from the second node and we can get

node (n —m +1) = 0Xn_2Xn_5.. X, Xon1... X1 X4 (m + 1) different nodgs. Until the.queue is empty we can
node (n—m+2) = 0Xn_oXp_1..X" Xom_1.. X, Xo getthe sum (_)f searching (_)f node$r_‘rs+(m+1)+...+(n—
_ ‘ 1)]. The ending of searching path includes—m) + [m +
: (m+1)+...+(n—1)] = (n—m)+[(n—m)(n+m—1)]/2 =
node (n—m+m) =0X,,_2X,,_1..X, X, _1..X1Xo [(n—m)(n+m+1)]/2nodes. We assume we havartual

EMBEDDING COMPLETE BINARY TREES INTO... Informatica7 (2003) 75-80 79

Proof. By theorem 8, there afd(n—m)(n+m+1)]/2+

1 — t} faults can be tolerated. By theorem 9, there are
{[(n —m)(n+m+1)]/2 — t} faults can be tolerance. To
sum up, we can show that there exigtn? — m?) faults
can be tolerated.

Theorem 11 These results hold dilatiod, congestionl
and loadl.

Proof. We show that we can embed a complete binary tree
of heightm into a(2™ — ¢)-node Flexible Hypercube using
nodes ofl; U V5 with dilation 2.

Case 1 First, If a nodez of a subtree is faulty, we can
search the nodes, HD(xz,w) = 1 by thereplacing —
rule(x). Second, If the nodev is used or fault, we
nodes. Therefore, in the worst case we can search at leagt search the other nodes HD(w,)\) = 1 by the
{[(n —m)(n +m + 1)]/2 — t} nodes. By [13] and [14], replacing — rule(x). At last, we can get the dilation
we infer the edges of the replacing-method exist and norie the worst case.
of node has a duplicate searchilily. Case 2. First, if the root noder is faulty, we can

search the other root nodé. If the other root node’
Theorem 8 If the root of the tree is faulty and the numberis faulty, we can search the node, HD(z,w) = 1 by
of faulty nodes is less th&t(n—m)(n+m+1)]/2+1—t} thereplacing — rule(z). If the nodew is used or fault,
, we can find the replaceable node of nod¢fim—m)(n+ we can search the other nodes H.D.(ww, \) = 1 by the
m + 1)]/2 + 1} iterations. replacing — rule(z). Atlast, we can get the dilatiohin

the worst case.
Proof. We assume that we can not find the replaceable nodeBecause every replaceable path is only one path by the
of the faulty node. That is, all of nodes on the searchingigorithm replacing — method, we can get congestich
path are already used or fault. So, at least we can searghd loadl. Therefore, when the root node and spacer node
the other root node’ and {[(n — m)(n + m + 1)]/2 — are faulty, it is a worst case the dilatien2 +2 = 4. How-
t} nodes. In the worst case, the searching path includesver, the dilation is= 1 4+ 2 = 3 in others condition. The
virtual nodes. Therefore, we can seafdtn — m)(n + other costs associated with graph mapping are congestion
m+1)]/24+1—t} nodesin(n—m)(n+m+1)]/2+1] 1andloadl.
iterations. Because the number of faulty nodes is less than
{[(n—m)(n+m+1)]/2+1—t}, we can find the replaceable
node. The originally assumption is wrong. We can find the .
replaceable node of the rooin {[(n—m)(n+m+1)]/2+ 4 Conclusion
1} iterations

Figure 4: The other nodgis faulty

In this paper, we develop new algorithms to facilitate the
Theorem 9 If a node of a subtree is faulty and the numbeembedding complete binary tree. We inferexpansion
of faulty nodes is less thafii(n — m)(n+m+1)]/2—t}, from 2-expansion. Our results demonstrate tBdh? —
we can find the replaceable node of faulty nodd[im — m?) faults can be tolerated. Also, the methodology is
m)(n + m + 1)]/2} iterations. proven and an algorithm is presented to solve them. These

existent parallel algorithms on complete binary tree archi-
Proof. We assume that we can not find the replaceable nodgctures to be easily transformed to or implemented on
of the faulty node. That is, all of nodes on the searchin§lexible Hypercube architectures with loadcongestion
path are already used or fault. So, at least we can seartiand dilatiord.
the {[(n — m)(n + m + 1)]/2 — t} nodes. In the worst After any arbitrarily complete binary tree structures can
case the searching path is includingrtual nodes at most. be reconfiguring in a Flexible Hypercube with faulty nodes,
Therefore, we can seardlfi(n — m)(n +m +1)]/2 —t} we are also interested in the mapping of an arbitrary binary
nodes in[(n — m)(n + m + 1)]/2] iterations. Because tree and multi-dimensional meshes into a Flexible Hyper-
the number of faulty nodes is less thilin —m)(n+m+ cube with faulty nodes. In addition, several variations of
1)]/2—t}, we can find the replaceable node. The originallfhe hypercube structure have been proposed and investi-
assumption is wrong. We can find the replaceable node ghted in recent years to overcome the shortcomings of the
the other node in {[(n —m)(n+m+1)]/2} iterationsB topology of the hypercube. In the future, we will develop

these algorithms to facilitate the embedding job in other
Theorem 10 O(n? — m?) faults can be tolerated. hypercube-derived computers.

80

References

(1]

(2]

(3]

(4]

(5]

(6]

[7]

(8]

9]

(10]

(11]

(12]

Informatica27 (2003) 75-80

D. P. Bertsekas and J. N. TsitsiklRarallel and Dis-
tributed Computation: numerical methgdBrentice
Hall, Englewood Ciffs, New Jersey, 1989. [

L. N. Bhuyan and D. P. Agrawal, “Generalized Hy-

percube and Hypercube Structure for a Computeﬁs]

Networks,”|EEE Trans. ComputVol. C-33, pp. 323-
333, 1984.

V. Chaudhary and J. K. Aggarwal, “Generalized Map-
ping of Parallel Algorithms onto Parallel Architec-
tures,”Proc. International Conf. on Parallel Process-
ing, pp. 137-141, 1990.

S. Dutt, and J. P. Hayes, “An automorphism approach
to the design of fault-tolerance Multiprocess@ttoc.
19™ International Symp. on Fault-Tolerant Comput-
ing, 1989.

T. Hameenanttila, X.-L. Guan, J. D. Carothers and
J.-X. Chen, “The Flexible Hypercube: A New Fault-
Tolerant Architecture for Parallel Computing,”Par-
allel and Distributed ComputMol. 37, pp. 213-220,
1996.

J. Hastad, T. Leighton, and M. Newman, “Reconfig-
uring a Hypercube in the Presence of Faul&CM
Theory of Computingpp. 274-284, 1987.

H. P. Katseff, “Incomplete HypercubeEEE Trans.
Comput, Vol. C-37, pp. 604-607, 1988.

H.-C. Keh and J.-C. Lin, “On fault-tolerant embed-
ding of Hamiltonian cycles, linear arrays and rings in
a Flexible Hypercube Parallel Computingpp. 769-
781, Vol. 26, 2000.

J.-C. Lin and H.-C. Keh, “Reconfiguration of Com-
plete Binary Trees in Full IEH Graphs and Faulty Hy-
percube,International Journal of High performance
Computing Applications\vol. 15, No. 1, pp. 55-63
2001.

J.-C. Lin, T.-H. Chi, H.-C. Keh and A.-H. A.
Liou, “Embedding of Complete Binary Tree with 2-
expansion in a Faulty Flexible Hypercubdgurnal
of Systems Architectur&bol. 47, No. 6, pp.543-548,
2001.

F. J. Provost and R. Melhem, “A Distributed Algo-
rithm for Embedding Trees in Hypercubes with Mod-
ifications for Run-Time Fault Tolerance]. Parallel
Distributed Comput\ol. 14, pp. 85-89, 1992.

D. A. Rennels, “On implementing Fault-tolerance in
binary hypercubes,Proc. 16 International Symp.
on Fault-tolerant Computingpp. 344-349, 1986.

J.-C. Linetal.

[13] Y. Saad and M. H. Schultz, “Topological Properties

of Hypercube,1EEE Trans. Comput\ol. 37, No. 7,
pp. 867-872, 1988.

14] A. Sen, “Supercube: An Optimally Fault Tolerant

Network Architecture,Acta InformaticaVol. 26, pp.
741-748, 1989.

S. B. Tien, C. S. Raghavendra, and M. A. Sridhar,
“Generalized Hypercubes and Hyperbus structure for
a computer networkiawaii International Conf. on
System Sciengpp. 91-100, 1990.

Informatica 27 (2003) 81-88 81

Supporting the Development of Time-Triggered Co-Operatively
Scheduled (TTCS) Embedded Software Using Design Patterns

Michael J. Pont

Embedded Systems Laboratory, Department of Engineering,

University of Leicester, University Road, LEICESTER, LE1 7RH, United Kingdom.

M.Pont@le.ac.uk

Keywords: Pattern, Design Pattern, Embedded System, Co-operative, Time-Triggered, Microcontroller

Received: July 16, 2002

We are concerned in this paper with the use of “design patterns” to facilitate the development of
software for embedded systems. The particular focus is on embedded software with a time-triggered
architecture, using co-operative task scheduling. Such “TTCS” software is known to have very
predictable behaviour: such a characteristic is highly desirable in many applications, including (but not
restricted to) those with safety-related or safety-critical functions. In practice, TTCS archi-tectures are
less widely employed than might be expected, not least because care must be taken during the design
and implementation of such systems if the theoretically-predicted behaviour is to be obtained. In this
paper, we seek to demonstrate that the use of appropriate patterns can greatly simplify the process of

creating effective TTCS software.

1. Introduction

As the title suggests, we are concerned in this paper with
the development of software for embedded systems.
Typical application areas for this type of software range
from passenger cars and aircraft through to common
domestic equipment, such as washing machines and
microwave ovens.

The particular focus of the work discussed here is on the
use of “patterns” to design and implement software for
embedded systems. Current work on patterns was
originally inspired by the publications of Christopher
Alexander and his colleagues (e.g. Alexander et al,
1977; Alexander, 1979). Alexander is an architect who
described what he called “a pattern language” relating
various architectural problems (in buildings) to good
design solutions. He defines patterns as “a three-part
rule, which expresses a relation between a certain
context, a problem, and a solution” (Alexander, 1979,
p.247).

Alexander’s concept of descriptive problem-solution
mappings was adopted by Ward Cunningham and Kent
Beck who used this approach as the basis for a small
pattern language intended to provide guidance to novice
Smalltalk programmers (Cunningham and Beck, 1987).
This work was in turn built upon by Erich Gamma and
colleagues who, in 1995, published an influential book
on general-purpose object-oriented software patterns
(Gamma et al., 1995). Since the mid 1990s, the
development of pattern-based design techniques has
become an important area of research in the software-
engineering community. Gradually, the focus has shifted
from the use, assessment and refinement of individual

patterns, to the creation of complete pattern languages, in
areas including telecommunications systems (Rising,
2001), and systems with hardware constraints (Noble and
Weir, 2001).

Despite the fact that pattern-based (software) design
techniques were initially developed to match the needs of
the developers of desktop systems, we argue in this paper
that pattern-based design has the potential to become an
particularly useful adjunct to existing techniques for
developing embedded systems. To support this
argument, we employ a realistic case study to illustrate
how patterns can be applied in a typical embedded
project.

We begin the main part of the paper by considering some
of the important characteristics of embedded software in
greater detail.

2. Designing “co-operative” software

Embedded software is often described in terms of
communicating tasks (e.g. Nissanke, 1997; Shaw, 2001).
The various possible system architectures may then be
characterised in terms of these tasks: for example, if the
tasks are invoked by aperiodic events (typically
implemented as hardware interrupts) the system may be
described as ‘event triggered’ (Nissanke, 1997).
Alternatively, if all the tasks are invoked periodically
(say every 10 ms), under the control of a timer, then the
system may be described as ‘time triggered’ (Kopetz,
1997). The nature of the tasks themselves is also
significant. If the tasks, once invoked, can pre-empt (or
interrupt) other tasks, then the system is said to be ‘pre-
emptive’; if tasks cannot be interrupted, the system is
said to be co-operative.

82 Informatica 27 (2003) 81-88

Various studies have demonstrated that, compared to
pre-emptive schedulers, co-operative schedulers have a
number of desirable features, particularly for use in
safety-related systems (Allworth, 1981; Ward, 1991;
Nissanke, 1997; Bate, 2000). Set against this is the fact
that the creation of TTCS architectures requires careful
design and implementation if the theoretically-predicted
improvements in system reliability are to be realised in
practice (e.g. Pont, 2001).

The main concern expressed about the use of co-
operative scheduling is that long tasks will have an
impact on the responsiveness of the system. This issue is
succinctly summarised by Allworth: “/The] main
drawback with this [co-operative] approach is that while
the current process is running, the system is not
responsive to changes in the environment. Therefore,
system processes must be extremely brief if the real-time
response [of the] system is not to be impaired.”
(Allworth, 1981).

Concerns of this nature are justified: any co-operative
system that has been designed without considering issues
of task duration is likely to prove extremely unreliable.
However, there are a number of different techniques that
may be employed in order to ameliorate such problems.
For example, there are some basic ‘brute force’
solutions:

e By using a faster processor, or a faster system
oscillator, we can reduce the duration of ‘long’ tasks.

Other alternatives include:

e Splitting up ‘long tasks’ (triggered infrequently) into
shorter ‘multi-stage’ tasks (triggered frequently), so
that the processor activity can be more evenly
distributed.

e Using ‘time out’” mechanisms to ensure that tasks
always complete within their alloted time.

e Employing a ‘hybrid’ scheduler, thereby retaining
most of the desirable features of the (pure) co-
operative scheduler, while allowing a single long
(pre-emptible) task to be executed.

e Making use of an additional processor, and a ‘shared-
clock’ scheduler, to obtain a true multi-tasking
capability.

In the right circumstances, each of these ideas can prove
effective. However, such observations do not, on their
own, make it very much easier for developers to deploy
TTCS architectures. Instead, what is needed is a means
of what we might call ‘recycling design experience’:
specifically, we would like to find a way of allowing less
experienced software engineers to incorporate successful
solutions from previous TTCS designs in their own
systems.

M.J. Pont

This is - of course - precisely the type of problem which
pattern-based design is intended to address (e.g. Gamma
etal., 1995).

3. Patterns for embedded systems

In 1996 we began to assemble a collection of patterns to
support the development of TTCS embedded systems.
We have now described more than seventy patterns (see
Pont, 1998; Pont ef al, 1999; Pont, 2001; Pont and
Banner, in press; Pont and Ong, in press), which we will
refer to here as the ‘PTTES collection’.

To illustrate what is involved in pattern-based design, we
have reproduced one of the components from the PTTES
collection in an appendix to this paper. The pattern we
have chosen is MuLTI-STATE TAsK. Please note that to
meet the size constraints of this paper, the pattern has
been edited slightly: however, the key features have been
retained.

As you examine this pattern, please note the following:

e The core of the pattern is a link between a particular
problem (in a given context), and a solution to this
problem, as originally laid out by Alexander (1979).
Note that the solution is not necessarily unique, and
many patterns (with different names) may share the
same context and problem statements.

e It is sometimes assumed that a (software) pattern is
simply a code library. It should be clear from MuLTI-
STATE TAsK that this is not the case. Of course, some
code is included: however, the pattern also includes a
broad discussion of the problem area, a presentation
of a solution, and a discussion of the consequences of
applying this solution.

e Like most of the PTTES patterns, MULTI-STATE TASK
has links to ‘related patterns and alternative
solutions’. This is one way of helping the user of the
patterns to complete a complex design, and / or to
help highlight alternative design solutions.

e While the basic pattern structure used will be familiar
to users of “desktop” patterns (e.g. see Gamma et al.,
1995), sections of particular relevance to embedded
developers are also included. For example, hardware
resource implications, and safety implications, are
explicitly addressed.

In practice, while MuLTI-STATE TAsK is useful in its own
right, it is rare to use only a single pattern to develop any
system; indeed, even where a single pattern is
implemented, various other patterns may be considered
as different design options are reviewed.

SUPPORTING THE DEVELOPMENT OF...

For example, as we noted earlier in this paper, TTCS
systems that are designed without due consideration
being given to task durations are likely to prove
extremely unreliable. The following patterns directly
address such issues:

e The processor patterns (STANDARD 8051, SMALL 8051,
ExTENDED 8051) allow selection of a processor with
performance levels appropriate for the application.

e The oscillator patterns (CRYSTAL OSCILLATOR and
CERAMIC RESONATOR) allow an appropriate choice of
oscillator type and oscillator frequency to be made,
taking into account system performance (and, hence,
task duration), power-supply requirements, and other
relevant factors.

e The wvarious Shared-Clock schedulers (SCC
SCHEDULER, SCI ScHEDULER (DATA), SCI SCHEDULER
(Tick), SCU ScHEDULER (LocAL), SCU ScCHEDULER
(RS-232), SCU ScHEDULER (RS-485)) describe how to
schedule tasks on multiple processors, which still
maintaining a time-triggered system architecture.

e Using one of the Shared-Clock schedulers as a
foundation, the pattern LONG TAsk describes how to
migrate longer tasks onto another processor without
compromising the basic time-triggered architecture.

e Loop TimeouT and HARDWARE TIMEOUT describe the
design of timeout mechanisms which may be used to
ensure that tasks complete within their alloted time.

e MuLTI-STAGE TAsK discusses how to split up a long,
infrequently-triggered task into a short task, which
will be called more frequently. PC LINK (RS232) and
LCD CHARACTER PANEL both implement this
architecture.

e HYBRID ScHEDULER describes a scheduler that has
most of the desirable features of the (pure) co-
operative scheduler, but allows a single long (pre-
emptible) task to be executed.

4. Applying the patterns

In order to illustrate why we believe that patterns are
likely to prove particularly beneficial to developers of
embedded systems, we will consider the design of an
“embedded” cruise-control system (CCS) for a passenger
car.

4.1 System requirements

A CCS is often used to illustrate the use of real-time
software design methodologies (for example, see Hatley
and Pirbhai, 1987; Awad et al., 1996). Such a system is
usually assumed to be required to take over the task of
maintaining the vehicle at a constant speed even while
negotiating a varying terrain, involving, for example,
hills or corners in the road. Subject to certain conditions
(typically that the vehicle is in top gear and exceeding a
preset minimum speed), the cruise control is further
assumed to be engaged by the driver via ‘cruise button’

Informatica 27 (2003) 81-88 83

adjacent to the steering wheel, and disengaged by
touching the brake pedal.

More specifically, we will assume that the CCS
(illustrated in Figure 1) is required to operate as follows:

e When the key is turned in the car ignition, the CCS
will be activated. When initially activated, the CCS
is in ‘Idle’ state.

o In Idle state, no changes to the throttle setting will be
made. The system remains in this state until the user
presses the ‘Cruise’ switch adjacent to the steering
wheel: the system then emits one brief ‘beep’, and
enters ‘Initialization’ state.

e In Initialization state, the CCS will determine the
current vehicle speed and gear setting. If the vehicle
is [a] exceeding MINIMUM_SPEED by at least 5
mph; [b] is no more than 5 mph less than
MAXIMUM_SPEED:; [c] is in top gear; and [d] the
brake pedal is not depressed, the system will emit two
brief ‘beeps’ and enter ‘Cruising’ state. If these
conditions are not met, the system will emit one
sustained ‘beep’ and return to ‘Idle’ state.

e On entry to Cruising state, the system will measure
the current speed: this represents the speed at which
the user wishes to travel (referred to here as
DESIRED SPEED). The CCS will attempt to adjust
the throttle setting in order to maintain the vehicle
within +/- 2 mph of DESIRED SPEED at all times.
If at any time [1] the speed of the vehicle exceeds
MAXIMUM_SPEED, or [2] the speed of the vehicle
drops below MINIMUM_SPEED, or [3] the Cruise
switch is pressed, or [4] the brake pedal is pressed,
then the CCS will emit two sustained ‘beeps’ and
then return to Idle state.

e Like many automotive systems, the application will
be used in range of vehicles using the Controller
Area Network (CAN) bus (see Lawrenz, 1997, for
details of CAN). Appropriate use of this bus should
be considered as part of the design process.

Cruise
Switch

Beeper

Speed
Sensor

Cruise-Control
System

Brake
Pedal

Throttle

Gear
Sensor

Figure 1: A Context diagram representing the CCS we
will explore in this example.

Overall, while our system is somewhat simplified, it will
be adequate for our purposes here.

84 Informatica 27 (2003) 81-88

4.2 Start with one node (or less)

As the cost of microcontroller hardware continues to fall,
the use of more than processor is becoming increasingly
common. For example, a typical automotive
environment now contains more than 40 embedded
processors (Leen et al., 1999).

In this case, as we noted in the initial specification, it is
highly likely that the CCS would be implemented as a
multi-processor design, linked over the CAN bus.
While, as we will discuss later in this example, the
PTTES collection includes support for CAN, we
generally advocate an incremental approach to the
development of multi-processor systems. Specifically,
we usually begin construction of systems using a single-
processor prototype; in some circumstances (where the
processing required is particularly complex) we may use
a desktop PC for some of the prototyping (Pont, in
preparation).

Informally, we can say that the aim of this approach is
“to get a basic system running as quickly as possible, and
then - gradually - refine it”. It should be noted that this
type of incremental development approach has an
important role in recent “extreme programming”
methodologies (Beck, 2000). As we will demonstrate,
one consequence of the use of a consistent pattern
language is that the conversion from single-processor
designs to multi-processor designs is greatly simplified.

In this case, we will begin the system development using
a single (embedded) processor.

4.3 Work in from the outside

The software ‘glue’ used to link embedded processors
with external components (ranging from switch,
keypads, LEDs and high-power AC or DC loads) is a
key part of all software designs. Identifying and applying
patterns that can match these requirements will, in most
applications, constitute a large part of the design effort.

We will consider the interface software, and hardware,
required to match the design in this section.

Switch interfaces

In the case of the CCS, we need to link the processor to
three switches: one for the Cruise request (to indicate
that the use wishes to engage or disengage the CCS), one
for the brake sensor (to disengage the CCS), and one
from the gearbox (to determine whether the vehicle is in
top gear).

From developers without experience in embedded
systems, the design of a switch interface can seem rather
trivial. However, issues such as switch bounce and the
need to consider the impact of electrostatic discharge
(ESD) can make the design of reliable switch interface
rather more involved. There are therefore four different
patterns in the PTTES collection to support the design of

M.J. Pont

switch interfaces. Inspection of the various switch
patterns will reveal that, of these, SWITCH INTERFACE
(HARDWARE) will probably prove most appropriate in
these circumstances.

Buzzer interface

We need to control a small buzzer, which - according to
the specification - will be sounded to indicate the state of
the system.

For these purposes, a small piezo-electric buzzer will be
appropriate: these generate a high-volume output at low
voltages (3V - 5V), and low currents (around 10 mA).
Reviewing the various DC load patterns in the PTTES
collection, it is clear that the port pins on a typical
microcontroller can be set at values of either OV or 5V
under software control. Each pin can typically sink (or
source) a current of around 10 mA. With care, the port
may be used to directly drive low-power DC loads, such
as the buzzer we require here: NAKED LoAD describes
how to achieve this safely.

Note that NAKED LoAD is concerned only with the
hardware aspects of the LED Interface: however, the
‘Related Patterns’ section of NAKED LOAD emphasises the
link to the pattern PoRT /O, where the relevant software
issues are considered.

Throttle interface

To design the throttle interface, we will assume that the
throttle will be controlled by a solenoid, and that the
throttle position will be varied by means of the DC drive
voltage.

To generate the variable DC voltage required, the pattern
HARDWARE PWM can be used to support the design of a
pulse-width modulated output.

In this case (unlike the ‘beeper’), the current and voltage
requirements will far exceed the very limited capability
of most microcontroller port pins: some form of driver
circuit will therefore be required. Seven different
patterns for controlling DC loads are presented in the
PTTES collection: of these, MOSFET DRIVER will
probably be the most appropriate for use here.

Measuring the speed of the vehicle

As the final part of the interface design, we need to find
a means of measuring the current speed of the vehicle.
As the basis of this, we will assume the presence of a
standard pulse transducer on one or more wheels of the
vehicle: this transducer will be assumed to generate a
sequence of square-wave pulses, with a frequency (or
pulse rate) proportional to the vehicle speed.

Two patterns are provided in the PTTES collection
which will directly support the processing of signals
from such a transducer: HARDWARE PULSE COUNT and
SOFTWARE PuLse CounT. Either pattern could form the
basis of a successful design in this case.

SUPPORTING THE DEVELOPMENT OF...

4.4 The control algorithm

When the user presses the cruise switch, the CCS much
check to see that the speed and gear conditions are met.
If they are not, then the system will remain under manual
speed control.

If the pre-conditions are met, the job of the CCS is to
record the current vehicle speed and make appropriate
adjustments to the current throttle setting, in order to
ensure that - as far as possible - this speed is maintained.

Implicit in the specification is that the driver will -
reasonably - expect the system to operate as follows:

e If the vehicle encounters a disturbance (for example,
the car drives up a steep hill) the vehicle will -
inevitably - slow down. The CCS must not take “a
long time” (more than a few seconds) to return the
vehicle to the required speed.

e The specification says that, in “steady state”
conditions (for example, on a flat, straight, road), the
CCS must maintain precisely the required speed (+/-
2 mph). In addition, we assume that the speed must
not “oscillate” (for example, change repeatedly from
1 mph too fast to 1 mph too slow, etc).

To meet these requirements, we need to consider the
control algorithm that will be used to keep the speed at
the required level while the vehicle is in the Cruise state.

Of the various possible control algorithms we could
employ, Proportional Integral Differential control is the
most widely used: an inspection of the pattern PID
CONTROLLER suggests that this algorithm will be
appropriate in this application. It also provides
implementation details for a suitable controller, and
guidance on the setting of the P, [and D parameters.

4.5 The software architecture

At this stage, having reviewed the relevant interface and
control patterns, we are in a position to identify the basic
tasks that will be performed by the CCS:

e The various switches (cruise, brake, gear) will be
polled regularly (typically every 50 ms, or so).

e The buzzer will be sounded (as required).

e The vehicle speed will be measured (every 100ms
will probably be sufficient; tests on a prototype are
the only reliable way of confirming this).

e The new throttle setting will be calculated, once
every 100 ms (see above), using the PID control
algorithm (when the vehicle is cruising).

e The throttle sending will be varied, again every
100 ms (when the vehicle is cruising).

As with most of the (single-processor) designs created
using the PTTES collection, the pattern CO-OPERATIVE

Informatica 27 (2003) 81-88 85

ScHEDULER (described in detail in Pont, 2001) will
provide the core of the system architecture for the CCS.
Briefly, this pattern describes how to schedule tasks to
run periodically, at pre-defined times. The “operating
system” that results is created entirely in the C
programming language, and is highly portable.

Please note that we assume that the CCS will be
initialised every time the car is used, and will remain
inactive until the Cruise switch is pressed. The result
will be a three-state design, which may well benefit from
the use of the architecture described in MULTI-STATE TASK
(see Appendix).

4.6 Moving to a multi-processor design

After appropriate prototyping and testing has been
conducted using the single-processor prototype, then a
multi-processor prototype will be constructed.

If we review the various multi-processor patterns in the
PTTES collection, SCC SCHEDULER seems to be the basis
of the most appropriate design. This pattern describes
how multiple processors can be linked using a Controller
Area Network (CAN) protocol, as required by the CCS
specification.

Various possible multi-processor designs could be
considered for this system. For example, the sensing of
vehicle speed could take place on one node, with the
control algorithm implemented on a second node, and
throttle control carried out by a third node. This might
prove to be a particularly flexible arrangement because -
in some vehicles in a range - it may well be that it is
possible to obtain data about the vehicle speed from an
existing sensor (over the CAN bus), and / or that the
throttle actuator is already in use as part of the (manual)
vehicle speed control. The different nodes (Speed Node,
Control Node, Throttle Node) may therefore not be all
required on all vehicles.

Whatever final design is chosen, the common (TTCS)
nature of all the patterns in the collection mean that it is
generally very easy to move tasks between nodes as
different designs are investigated.

5. Conclusion

At the start of this paper, we suggested that that pattern-
based design has the potential to become an particularly
useful adjunct to existing techniques for developing
embedded systems. Having sought to illustrate how
patterns can be used to support the development of an
embedded CCS, we return to consider this issue.

Existing design techniques for all forms of software-rich
systems include “structured” approaches (e.g. DeMarco,
1978; Hatley and Pirbhai, 1987) and the “Unified
Modelling Language” (UML; Fowler and Scott, 2000).
Such techniques provide effective, standard, notations

86 Informatica 27 (2003) 81-88

for recording design decisions: however, they do not
provide any means of substituting for the lack of
experience on the part of a particular designer. The
consequence is not difficult to predict, and is summarised
succinctly in this quotation from an experienced
developer of embedded systems: “It’s ludicrous the way
we software people reinvent the wheel with every
project” (Ganssle, 1992).

At the most basic level, patterns allow us to address such
problems by promoting the re-use of good designs
decisions.

The effect of patterns-based design is - we would argue -
likely to be particularly evident in the embedded sector,
for reasons that are illustrated in the CCS example
consider earlier in the paper. Like many embedded
applications, the successful development of the CCS
system (without any patterns) requires knowledge and /
or experience in many different areas, including
programming, electronics, the CAN bus, mathematics,
basic signal processing and control systems. The wide
range of fields required to complete this development is,
while not unknown, certainly much less common in the
“desktop” sector. Pattern-based design allows us to
present the information required to develop such multi-
disciplinary systems in a very effective way.

To conclude, we should emphasise that software patterns
should not be seen as an attempt to produce a panacea or
what Brooks (1986) calls a ‘silver bullet’ for the
problems of embedded software design or
implementation. Patterns may assist in the rapid
development and testing of appropriate designs, but it is
not feasible to provide all software engineers or their
managers, irrespective of background or training, with
sufficient knowledge of relevant fields to ensure that
they can, for example, create appropriate designs for
aircraft flight control systems or fault diagnosis systems
based on sliding-mode observers. However, what we
may be able to achieve is to make software managers,
and the teams they manage, better able to recognise
projects in which it would be advisable to appoint (say)
an artificial intelligence, signal processing or control
expert from within the company on the project team, or
to employ an outside consultant to fulfil such a rdle.

Acknowledgement

The author is grateful to the anonymous reviewers for
their constructive comments on the first draft of this

paper.

References

Alexander, C. (1979) “The Timeless Way of Building”,
Oxford University Press, NY.

Alexander, C., Ishikawa, S., Silverstein, M. with
Jacobson, M. Fisksdahl-King, 1., Angel, S. (1977) “4
pattern language”, Oxford University Press, NY.

M.J. Pont

Allworth, S.T. (1981) “An Introduction to Real-Time
Software Design”’, Macmillan, London.

Awad, M., Kuusela, J. and Ziegler, J. (1996) “Object-
oriented technology for real-time systems”, Prentice-
Hall, New Jersey, USA.

Bate, 1. (2000) “Introduction to scheduling and timing
analysis”, in “The Use of Ada in Real-Time System” (6
April, 2000). IEE Conference Publication 00/034.

Beck, K. (2000) “Extreme Programming Explained”,
Addison Wesley.

Brooks, F.P. (1986) “No silver bullet - essence and
accidents of software engineering,” in H.J. Kugler
(Ed.) Information Processing 86, Elsevier Science,
Amsterdam. Pp.1069-1076.

Cunningham, W. and Beck, K. (1987) “Using pattern
languages for object-oriented programs”, Proceedings
of OOPSLA’87, Orlando, Florida.

DeMarco, T. (1978) “Structured analysis and system
specification”, Prentice Hall, New Jersey.

Fowler, M. and Scott, K. (2000) “UML Distilled” (2nd
Edition), Addison-Wesley, Reading, MA.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J.
(1995) “Design patterns: Elements of reusable object-
oriented sofiware”, Addison-Wesley, Reading, MA.

Ganssle, J. (1992) “The art of programming embedded
systems”, Academic Press, San Diego, USA.

Hatley, D.J. and Pirbhai, I.A. (1987) “Strategies for real-
time system specification”, Dorset House.

Hatley, D.J. and Pirbhai, I.A. (1987) “Strategies for real-
time system specification”, Dorset House.

Lawrenz, W. (1997)
Springer.

Leen, G., Heffernan, D. and Dunne, A. (1999) “Digital
networks in the automotive vehicle”, Computing and

Control, 10(6): 257-266.
Nissanke, N. (1997) “Realtime Systems”, Prentice-Hall.

Noble, J. and Weir, C. “Small Memory Software”,
Addison Wesley, 2001.

Pont, M.J. (1998) “Control system design using real-time
design patterns”, Proceedings of Control 98
(Swansea, UK), September 1998, pp.1078-1083.

Pont, M.J. (2001) “Patterns for time-triggered embedded
systems. Building reliable applications with the 8051
family of microcontrollers”, ACM Press / Addison-
Wesley, UK

Pont, M.J. (in preparation) “Supporting Extreme
Embedded Programming (XEP) using patterns”, to be
submitted to EuroPLoP 2003.

Pont, M.J. and Banner, M.P. (in press) “Designing
embedded systems using patterns”, to appear in
Journal of Systems and Software.

Pont, M.J. and Ong, H.L.R. (in press) “Using watchdog
timers to improve the reliability of TTCS embedded
systems: Seven new patterns and a case study”, to

“CAN System Engineering”,

SUPPORTING THE DEVELOPMENT OF...

appear in the proceedings of VikingPLOP 2002,
Denmark, September 2002.

Pont, M.J., Li, Y., Parikh, C.R. and Wong, C.P. (1999)
“The design of embedded systems using software
patterns”, Proceedings of Condition Monitoring 1999
[Swansea, UK, April 12-15, 1999] pp.221-236.

Rising, L., [Ed.] (2001) “Design Patterns in
Communications Software”, Oxford University Press.

Shaw, A.C. (2001) “Real-Time Systems and Software”,
John Wiley & Sons, New York.

Ward, N. J. (1991) “The static analysis of a safety-
critical avionics control system”, in Corbyn, D.E. and
Bray, N. P. (Eds.) “dir Transport Safety: Proceedings
of the Safety and Reliability Society Spring
Conference, 1991 Published by SaRS, Ltd.

Appendix

We present an abbreviated version of the pattern MuLTI-
STATE TAsK (from Pont, 2001) in this appendix.

MULTI-STATE TASK

Context
e You are developing software for an embedded
application.

e The application has a time-triggered architecture,
constructed using a scheduler.
Problem

How do you replace multiple tasks in an application with a
single task that performs different activities depending on
the current state of the system (and why is it - sometimes - a
good ideas to do s0)?

Background

[Some “background” material is included in the full version
of this pattern. It is omitted here.]

Solution

MuLTI-STAGE TAsk encapsulates a system architecture that is
apparent in many well-designed embedded applications.

To understand the need for this architecture, consider a
simple washing-machine control system (Figure MST-1).

Figure MST-1: Outline design.

Informatica 27 (2003) 81-88 87

Here is a brief description of the way in which we expect the
system to operate:

1. The user selects a wash program (e.g. ‘Wool’,
‘Cotton’) on the selector dial.

2. The user presses the ‘Start’ switch.

3. The door lock is engaged.

4. The water valve is opened to allow water into the wash
drum.

5. If the wash program involves detergent, the detergent
hatch is opened. When the detergent has been released,
the detergent hatch is closed.

6. When the ‘full water level’ is sensed, the water valve is
closed.

7. If the wash program involves warm water, the water
heater is switched on. When the water reaches the
correct temperature, the water heater is switched off.

8. The washer motor is turned on to rotate the drum. The
motor then goes through a series of movements, both
forward and reverse (at various speeds) to wash the
clothes. (The precise set of movements carried out
depends on the wash program that the user has
selected.) At the end of the wash cycle, the motor is
stopped.

9. The pump is switched on to drain the drum. When the
drum is empty, the pump is switched off.

The description is simplified for the purposes of this
example, but it will be adequate for our purposes here.

Based on the above description we will try to identify some
of the functions that will be required to implement this
system. A provisional list might be as follows:

® Read Selector Dial()

® Read Start Switch{()

® Read Water Level()

® Read Water Temperature ()
® Control Detergent Hatch()
® Control Door Lock()

® Control Motor ()

e Control Pump ()

® Control Water Heater()

® Control Water Valve()

Now, suppose we wish to identify the tasks to be scheduled
(co-operatively) in order to implement this application.
Based on the above list, it may be tempting to conclude that
each of the functions listed above should become a task in
the system. However, while it would be possible to work in
this way, this would be likely to lead to a complex and
cumbersome system implementation.

To see why this is so, take one example: the function
Control Water Heater (). We want to heat the water
only at particular times during the wash cycle. Therefore, if
we want to treat this as a task and schedule it - say every
100 ms - we need to creation an implementation something
like the following:

void TASK Control Water Heater (void)
{
if (Switch on water heater G == 1)
{
Water heater = ON;

88 Informatica 27 (2003) 81-88

return;

}

// Switch off heater
Water pin = OFF;
}

What this task does when it is executed is to check a flag: if
it is necessary to heat the water, it starts to do so: otherwise,
it stops the heating process.

There are two problems with creating the program in this

way:

e We are going to end up with large numbers of tasks
(very large numbers in a more substantial application),
most of which - like this task - actually do very little. In
applications without external memory this is a particular
problem, because each task will consume some of the
limited memory (RAM) resources.

e It is not at all clear which, if any, of these tasks will
actually set the flag (Switch on water heater G),
or the other similar flags that will be required in the
other tasks in this application.

In practice, what we require in this and many similar
applications is a single ‘System Update’ task: this, as we
will see is a task that will be regularly scheduled and will,
where necessary, call functions - like
Control Water Heater () asand when required.

In the washing machine, this system update task will look
something like the code in the Listing MST-1.

void Update (void)
{
static tWord Time in state;

switch
{
case START:
{
// Lock the door
Control Door Lock (ON);

(System_state_ G)

// Start filling the drum
Control Water Valve (ON) ;

// Release the detergent (if any)
if (Detergent G[Program G] == 1)
{
Control Detergent Hatch (ON) ;
}

// Ready to go to next state
System state G = FILL DRUM;
Time_in state G = 0;

break;

}

case FILL DRUM:

{

// Remain in state until drum is full

// NOTE: Timeout facility included

if (++Time_ in state G >= MAX FILL TIME)
{
// Drum should be fully by now...
System state G = ERROR;
}

// Check the water level
if (Read Water Level() == DRUM FILLED)
{

// Does we require hot water?

M.J. Pont

if (Hot Water G[Program G] == 1)

{
Control Water Heater (ON);

// Ready to go to next state
System state G = HEAT WATER;
Time in state G = 0;

}

else
{
// Using cold water only
// Ready to go to next state
System state G = WASH 01;
Time in state G = 0;

}

break;

}

Listing MST-1: Part of a possible implementation of the single task
used to implement a washing-machine control system.
Listing MST-1 is a representative example of a MULTI-STAGE

TASK.

We can describe the simplest form of this architecture as
follows:

e The system involves the use of a number of different
functions

e The functions are always called in the same sequence.

e The functions are called from a single task, as
required.

Note that variations on this theme are also common: for
example, the functions may not always be called in the same
sequence: the precise sequence followed (and the particular
set of functions called) will frequently depend on user
preferences, or on some other system inputs.

Hardware resource implications

This architecture makes very efficient use of system
resources.

Reliability and safety implications

There are no specific reliability or safety implications.

Portability
This high-level pattern is highly portable.

Overall strengths and weaknesses

© MuLTI-STAGE TAsk encapsulates a simple architecture that
matches the needs of many embedded applications

Related patterns and alternative solutions
MuLTI-STAGE TAsk combined with ONE-TASK SCHEDULER
[Pont, 2001, p.749] - and / or with ONE-YEAR SCHEDULER
[Pont, 2001, p.755] provides a very simple and efficient
system architecture with minimal CPU, memory and power
requirements.

Example: Traffic Lights

[A detailed example is included in the full version of this
pattern. It is omitted here.]

Informatica27 (2003) 89-103 89

The GAT Approach to Specifying Mixed Systems

Jean-Claude Royer

Département d’Informatique de I'Ecole des Mines de Nantes,
4, rue Alfred Kastler. B.P. 20722 F-44307 NANTES Cedex 3
Phone:+33 2 51 85 82 05, Fax+33 2 51 85 82 49

E-mail: Jean-Claude.Royer@emn.fr

Keywords: Dynamic Behaviour, Algebraic Data Type, Symbolic Transition System, Synchronous Product, Concurrency,
Communication, Formal Specification, Mixed System.

Received:March 10, 2002

This paper outlines a practical use of algebraic specifications for the development of heterogeneous soft-
ware systems. This kind of systems mixes several viewpa@igsstatic, functional and dynamic aspects.
Writing, from scratch, an algebraic specification for such systems is quite difficult, so we developed the
concept of Graphic Abstract Data Type (GAT). In this paper we present a method to build an algebraic
specification of a sequential systaia a symbolic transition system (STS). The STS models both the dy-
namic aspects and the static aspects of the system. The STS is also the basis of an algorithm that computes
the functional aspects of the system (an algebraic specification). Computing the specification is partly
automatic, this improves the compatibility between the aspects. This approach is extended to concurrent
and communicating systems by the use of a synchronous product of STSs. We proved that the STS is an
abstract interpretation of the generated specification. We demonstrate that the set of axiom may be trans-
formed into a terminating term rewriting system. Then from the generation method of the specification the
properties of consistency and completeness are got and this ensures the existence of a partial initial algebra.
We showed that the synchronous product of GATs preserves the state predicates, the preconditions and the
definedness predicate of the components. We also give sufficient conditions to get the GAT determinism
and the GAT compactness of the product of two GATSs.

1 Introduction fications of components. This model is quite operational

and fully integrated into conventional algebraic specifica-
, . tions. As in process algebra two kinds of components are
Modelling heterogeneous, or mixed, software system

requires the integration of several paradigms. Thes@stmgwshed: sequential components and concurrent com-

paradigms relate, at least, to three of the main aspects p?nents. For each component two views are considered:

) . ; . e dynamic view and the functional view. The dynamic
systems: the static, the functional and the dynamic aspects. . . .
) . : view describes the static and dynamic aspects of the com-
Static aspects deal with the signatures, the types and the re-

. ; . onent, it uses a notion &inite and Symbolic Transition
lations between types. Functional aspects describe the /sten(STS). The functional view is an algebraic specifi-
mantics for operations or explicit some conditions and in= y X 9 P

. . i cation of a partial abstract data type [BWP84, Wir90]. We
variants. Dynamic aspects focus on the so-called dynam efine a notion of compatibility between a STS and an alge-

behaviour of systems. It is related to concurrency, syn- . e .
o - o .braic specification to express the consistency between the

chronizations and communications. The main issues wi : : : . .

. : wo views. The STS defines a partial equivalence relation
mixed systems are to ensure the consistency between the

. . : . gver the data type.
different aspects and to provide assistance for specifying
systems and proving properties. One problem with such an approach is to prove dynamic
foperties. We address this in [Roy01a], our solution is

Algebraic specifications of abstract data types [BWP8 . X
Wir90] are suited for the specification of both static an gsed on algebraic temporal operators and techniques (pos-

functional aspects of a system. Algebraic specification%bly automatic) to prove such properties with a general
are modular (a collection of data types) and abstract (tﬁ eorem prover.

properties are set by axioms). Numerous tools and tech-This paper describes a survey of the GAT approach prin-
niques can help proving the specification properties. Thaples and properties. The notions introduced in this pa-
algebraic techniques are less straight applicable to dynangper have been used for several case studies [AR98, AR99,
systems because data types evolve, communicate and AR00, Roy01a]. It also has inspired tk@RRIGAN model
concurrently [ABR99]. In this area, we suggested [AR0OOhnd methods fol.OTOS and SDL [PCR99, CPR99].
the Graphic Abstract Data Type (GAT) model: a symbolid-ast, some of these concepts have been used to improve
transition system that helps one to build algebraic speabbject-oriented methods like OMT [ABR95] and UML

90 Informatica27 (2003) 89-103 J-C. Royer

[PRRO2, Roy02]. VM e
3

Section 2 presents a middle size case study: a vending
machine. Then, in Section 3, we describe partial abstract
data types, our notion of STS and the links between these
concepts in the GAT approach. Section 4 details the e
traction of the formal specification of our vending machine
case study. In Section 5 we justify several properties about
our specifications: the STS interpretation, the termination
of the term rewriting system, the hierarchical consistency
and completeness of the specification and some properties
about the product of two GATs. The Section 6 is dedi
cated to related works, last we conclude and point out fu
ture work.

777777777

]
@
J
2
@
Q
g

AQA

10
~
x
E
e

777777777

,,,,,,,,,

2 The Vending Machine Case Study Figure 1: TheVending Machine Architecture

GAT Principles

In order to specify a system, a (formal) language is require"é

but also an adequate method. We consider that a prelimi-

nary analysis was done and produced a system architdd!iS Section introduces the concepts $ymbolic Tran-
ture. This decomposition can be obtained using some ailion System(STS) andGraphical Abstract Data Type

ready known methods. For instance, methodd.fomT OS (GAT).
[Tur93, PCR99] are relevant here. A GAT for a component is a STS with some static infor-
.) _ . mations and an algebraic specification of a data type. We

We deal with a vending machine (a French one) whichjstinguish two kinds of GAT components: sequential com-
aqcepts coins, gets out_change and dehver; adrink. Tosi Snents and concurrent components. For each GAT com-
plify, it only accepts coins of one, two or five Francs angy,nent we consider two views: the dynamic view and the
gets out only coins of one Franc. The user gives €oins, Ol tional view. The dynamic view is a STS: a finite set of
at a time, and when the sum is sufficient enough he maye5 anq a finite set of labelled transitions. Classic finite
choose a drink. If this drink is in the stock then the user getg hjtion systems, or Labelled Transition Systems (LTSs)
it, else he has to do another choice. The vending machipgye |apels which are closed terms. Unlike LTS, our STS
cannot allow choices if it does not have enough money Q0|5 are operation calls with variables and guards. This
get out change to the user. The price of the different kindg,ncept is related to machines where states and transitions
of drink are not supposed to be the same but the maximuge ot necessarily unique objects. A state may represent a
cost of one drink is assumed to be of five Francs. set of either finite or infinite objects and a transition collects

We consider the architecture depicted in the Figure Beveral state changes. This kind of state machine avoids the
The vending machine has two concurrent and commuritate and transition explosion problems and makes dynamic
cating parts: a cash changer (f8€box) and a drink dis- behaviours more readable. The functional view is an alge-
tributer (theDDbox). Each part is a component specializedpraic specification of a partial abstract data type [BWP84].
in a set of activities. Th&€CandDDcomponents are se- Inthe GAT process specification we suggest to start from
guential and the/Moverall machine is concurrent. Thethe dynamic view of the components since it is the most
meanings of the gates for communications are explainabstract view. First, the specifier declares the operations,
below. TheGIVE gate receives coins from the user (one athe conditions and the states of the component. These in-
a time). TheGETgate is for getting out coins. There areformations are represented graphically using a STS. Sec-
three different cases. It may either get out all the money aénd, the semantics of the operations are provided (in the
ter a cancellation, or get out the overflow when the usdunctional view) by an algebraic specification. Instead of
gives too much than required, or get out the change fawriting this algebraic specification from scratch, we pro-
the difference between the given sum and the price of tipose a guideline. The core of our extracting method is the
drink. CANCELis used to interrupt the transaction, and isAG-derivation algorithm [AR99], which guides the axiom
a ternary synchronizatiorOKdenotes that the sum is suf- generation using the STS. It provides an operational spec-
ficient to choose a drink CHOOSEllows one to choose ification style where axioms may be transformed into left-
a drink. GETOUTmeans that th®D component returns to-right conditional rewriting rules. In case of concurrent
the cost of the chosen drink to t@CcomponentDRINK and communicating components, the synchronous product
delivers the chosen drink to the user. of STSs is used before generating the axioms. Figure 2 de-

THE GAT APPROACH TO... Informatic27 (2003) 89-103 91

’ Algebraic Specification % ,,,,, - > partial Abstract Data Type This definition allows several layers with only one new de-
I semantics : fined sort, it may easily extend to several new sorts in the
extracting method partial equivalence relation ~ Same layer. We assume thigipecr; is always an enrich-
mertics y ment of boolean.
’ Symbolic Transition System % 777777 >] Abstract Interpretation \ Aninternal operatiorhasT’I as resulting type. Aexter-
nal operation(or observej does not havd'l as resulting
Figure 2: The GAT Semantics type. Abasisinternal operation has not any parameter of

typeT'I. We also distinguisitonstructoror generatoras

the subset of the internal operations sufficient to generate
scribes an overview of the GAT process and its semanticall the value of the data type.
An algebraic specification is extracted from a STS and its As in [Wir90], we associate t&pecr; a hierarchical
semantics is a partial abstract data type. The STS repipecification
sents a graphic view of a partial equivalence relation over
the data type. SP =<%, HY, E, Cons, D, P>

3.1 Partial Abstract Data Type with respectively signature, hidden signature, axioms, con-
' structors, definedness predicate and primitive part. The

We consider partial abstract data types, because our ST@#mitive part P is the specification associated to the
need partial operations. We consider initial semantics dygimitive presentation partSpecp. We define® =
to its close relation with proofs and deduction. Togainex:J ¥, HY = Y U J,HX,;, E = |J, Es, Cons =
pressiveness we consider hierarchical presentations of &)- I';, D = |J, Def, wherelJ, is done for every sort
gebraic specifications, with constructors, hidden symbolse So. The set of sorfo is the set of all the sorts defined
and definedness predicates. The notations below corimethe hierarchical presentation.
from [Wir90, BWP84]. Some of our hypothesis may be For every sort € So, T(, X), is the set of terms with
relaxed but this is beyond the scope of this paper. variables of sor. The set of terms without variables or
A signatureX. = (So, F') is a tuple whereSo is a set of - ground termsof sorts is T'(X),. Givens € Sp, Sp is the
sorts andr’ a So-indexed family of function symbols such set of primitive sort, the term € T(3, X), is said to be
that I is equipped with a mappingpe : F' — So* x So. of primitive sortif t € T(Xp, X),. We noteH Xcons =<
When there is no ambiguity, we identifff andtype(f). HS, Cons> the constructor signature.
As usual, arity, argument types and range type are defineda model of the specification is a partial algebtasatis-

uponf. fying the axioms, and we note' the interpretation of the
_— . .) symbolt in A. As usualA; is the carrier set of values of
Definition 3.1 A hierarchical presentation for a typ€1, sorts
called the Type of Interest, is$pecr; tuple A HY.-algebraA is reachablew.r.t Cons if for eachs €
H S and each carrier elememtc A, 3t € T(HX) A
<XYrr, HY75, Erp, Urr, Defry, Specp > - s Cons
o o ST frr, Spece a = t4 Gencons(HY) is the set of reachablél Y-
where: algebras andenc,,s(HX, E) is the set of reachabE X-

) o _) algebras which are models afHY, E>. Let® C ¥’ and
— Y77 is the visible (public) signature 4 a5xv.algebraAyy is theX-restriction ofA.
(<{T1}, Fr;>), where eachf & Fr; has at parig| algebras are algebras where the functions may
least one occurrence Gf/. be partial. Functions are assumed to be strict.pak-

_ HYy; is the set of hidden symbols (sorts and funclial algebra A is a total algebra such that the interpreta-

tions< HSr;, HFr;>), f € HFyp; has at least one tion of any termt¢, of sorts, in A is defined if and only
occurrence off'I. ’ if A satisfies a definedness formula (t). The = sym-

bol stands for strong equalityi.€. the two values are
— E7; is a set of conditional axioms, each axioms hadoth defined and equal or they are both undefined) and
at least one occurrence of an operation frdfia; or = stands for existential equality.€. the two values are
HFrpy. both defined and equal). The use of definedness predi-
, cates implies that such partial algebras sati3fyrue) A
—T'rr the.sgt of constructprs, we require that construcD(false) A true # false. All the equations occurring
tors of visible sorts are visible functionst; € Fr1). , he GAT axioms are restricted to existential onéy.(

— Defr; is the set of definedness formulas, they denofdotions of homomorphisms and valuations may be de-
when the result of an operation on a term built fromfined, note that variable quantifications range over defined

sortT'I is defined. values D,(X)). We consider totab>-homomorphism,
i.e. a So-family of partial functionsh : A — B
— Specp the primitive presentation part (a hierarchical such thatvf : si, ..., sn» — s andVa; € Ag, then

presentation or an empty one). D(fA(al, ey Q) => D(fB(hsl(al); ey hs, (an)))

92 Informatica27 (2003) 89-103 J-C. Royer

andh(f4(ay, ..., a,)) = 3.3 Deduction System
fB(hsl (al)a sy hSn(an))
Formula(%, X) is the set of formulas built ovet and We are interested in sensible signatures [HO8G}: <
a set of variable. It containsX-equations, boolean con- So, T(HXcons)s # 0, i.€. each sort contains at least one

structions and first-order quantifiers. ground constructor term. It is a sufficient condition to en-
sure the existence of a reachable algebra. In this context
QU= t=t|-0|PANV|OVY|D=>V sound and complete deduction systems exist for equational

| (Vo :5.®@) | (3z : 5.9) or conditional deduction. Conditional calculus for the par-

tial framework may be found in [BWP84, AC95, CR97].
Letv : X — A a total valuation, the satisfaction of a for- The - conditional borrows from [CMR99]. Le® a set of
mula f € Formula(Z, X) is notedA, v |= f. Dropping Positive conditional axioms}, ¢, e with possible subscript
the valuation A |= f means that the satisfaction is true forare positive conditional axioms. The rules are described in
all total valuations. We restrict to positive conditional axFigure 3. By adding infinite induction to the conditional
ioms: A\, ;«, wi =v; = C, whereC has the form
t = t' or D(t). Deduction will be noted? - ¢ = u.

Mod(SP) (the models ofSP) is the class of reachable g ifpcd®
and partial>-algebras which are restriction of a partial ¢
HX-algebra satisfying and such that the restriction to
primitive signature is a model of the primitive specification Prarsy=>y=zx
part.
D ity =ty
Mod(SP) = {A € Gen(S) ST D0 v t subtem oft; andts
| 3B € Gengons(HE, E),
Bz, = A N Ajg, € Mod(P)} o+ ¢
. o ® F (Agex, © = O(z)) => ¢[6]
The chosen semantics of such a specification is initial. for 6 : X —|Tsy)| with D(¢[6)])
I(SP)={I € Mod(SP) | Iisinitialin Mod(SP)} By F G A NG, => 1y
DOy F Y AN AY,=> €
A partial algebral is initial in a class of algebras if and LA AN
only if there ex.|sts a unique total homomorphism fréno BIUDs F (¢y Ad A) => ¢
every algebra in the class. Yivt A Aty
3.2 Consi dC I CRELLE
. onsistency an ompleteness d (/\yGYS,SES D(y)) => ¢
The two following definitions are constraints on hierarchi- o ¢
cal specifications. W
.)) .)) forHIX—>|T2(y)‘
Definition 3.2 A specification is hierarchically consistent with D(¢[0]) and D(®[6))
if and only if
— E F true # false, Figure 3: The Conditional Deduction System

—Vtp € T(Sp)s, E = D(tp) => Ep = D(tr), deduction system we get the inductive theory, the calculus
and will be notedH; [Wir90]. We rather use a presentation with
generators as in [GG883tructural inductionfor T'I is de-
- Vtp,tp € T(Ep)s, E F tp =t => Ep F finedasfollows. Assumeis a variablepy, ..., b, are basis
tp = tp. generators angh, ..., g,, are recursive generators with only
one argument of sofft I (this restriction is easily removed).
Definition 3.3 A specification is sufficiently complete if¢ : 7/ is a fresh constant not occurringan g (c) is a call
Vt € T(X),, s € Sp, E - D) => 3tp € of g, with ¢ : T'T and fresh variables for other arguments.
T(Xp)ssuchthatE - t =tp.
Pt Plbr/z] 1<k <
These two properties ensure, in case of positive conditional © U {dle/]} Fi dlgr(e)/a] 1
axioms, the initial algebra existence [BWP84]. D0

n
<k<m

THE GAT APPROACH TO... Informatic27 (2003) 89-103 93

Yv € ATIQD?], Yu; € AR“ if v e s A
[G(self, v, ..., vn)] f(self, v1, ..., vn) GA(v,ug, oy uy) then fA(v,ug, ..., up) € 8

The transitions correspond to internal operations of Tl with
° an interpretation formula based on state predicates. The
term f can be any algebraic term, the equality of terms

needs typing information since we have operator overload-
ing. Our notion is more general than the symbolic transi-
tion graph defined in [HL95]. We have more general states
(not only tuples of conditions) and we have no restriction

3.4 Symbolic Transition System on variables occurring on transitions.

The finite state machine formalism is well-known by pracDefinition 3.5 A STS has maximal transitions if and only
titioners. It is well-suited to the description of interactionsf for every term labelf it exists at most only one transition
and controls. One problem with such a formalism is thés, t) € T'r labelled byf.

great number of states and transitions. For instance, one

can combine states into super-states or aggregate state§&¥n now on we consider STS with maximal transitions.
in [Har87]. However when the system has not a finite of his does not decrease the expressiveness because any STS
bounded number of state one must use more powerful comay be transformed into a STS with maximal transitions
cepts. It often happens if one has a mixed system withy collecting guards of the transitions with the same label
both control and data types. We define the notion of fifrom s tot.

nite and symbolic transition system. This notion arises also

from the need of a full semantics for language iIK@TOS .

[STB97] and in the AltaRica formalism [APGRO0Q]. See?"5 GAT Definition

Figure 5 page 95 for an example. Our STSs also providg Graphic Abstract data Type description is an abstract

super-states (see [AR99)). specification of a data type using a STSI(S7;), a hi-
Let St = {s; 1 < i < n} a set of identifiers called erarchical presentation as in Section 3Spdcr;) and an

the set of statesA symbolic transition systems is a finite associated equivalence relation.

set of statesSt and a finite set of labelled transitiofiy-.

The Figure 4 illustrates the graphical presentation of such GATr; = (STSt1, ~r1, Specrr)

a transitionGis the guard and (sel f, vy, ..., v,) the term

label. self in this figure denotes a variable associated t@efinition 3.6 We define thezr; partial equivalence re-

T1I, andv; : R; are variables. Note also that we allow re-ation as:

ceipt variables both in guard and in term labels. Variables

occurring in the guard and in the term label are not neces- Vo,v" € Apr N Dy, v mpp v &

sarily the same, but to simplify we consider the same set (3ls; € St, v e s AV € 5y)

of variables in both terms. Symbols and terms occurring in

the STS must be interpreted in the context of the algebraké€t {Fs, }1<i<n @ finite set of boolean functions called

specification. The notatioA; N D%I denotes the subset State predicates These functions are interpreted as the

of the defined values of the carrier set. We explicitly usegharacteristic functions of the subsets(P;}(v) < v €

the definedness predicate 67 even if it is not required, s:). EachP2 is the characteristic function of an equiva-

however, to simplify notations we assurhg () for every lence class of values ofr; N D#; for any partial algebra

primitive term. model of Specr;.

Figure 4: Edge of the STS

Definition 3.4 Given a Specr; specification andA a Lemma3.7 {P,, }1<i<, verifies the following properties:
model of it; we define an associated symbolic transition
system as a couplest, T'r): exclusivity:)
Vsi, 85, 8i # 85 => (Ps; N Ps;)
1. the states ar&St = {s;, 1 < i < n}, eachs; denotes
a subset ofA;; and A D4, = Si .
B 10 D7 = @icicn s complementarityDp; = \/ P, (2)
2. the set of initial states is a subset$f; 1<i<n

and conversely, if P, }1<i<» iS @ set of state predicate
which verifies the two above properties then it defines a
4. the transitionsTr of the STS must verify the follow- Partial equivalence relation:

ing interpretation formulas: an edge, from statg . ,

to states;, is labelled by[G(self, X1, ..., it Dry(v) A Drig(v') then

xn)] f(self, X1, ..., Xn) if and only if v rpr v <=> 3s; Py, (v) A Py, (V)

3. the set of transitiol'r is a subset 06t x St.

94 Informatica27 (2003) 89-103 J-C. Royer

3.6 Notations and Hypotheses We consider them as total boolean functions inductively de-
fined on the STS.

In the sequel we use the following notations:lf : T1 The definedness predicate is inductively defined by:

denotes a variable of tygel, Dr; is the definedness pred-

icate forT'I, P,, are the state predicatgs;econd,, is the Drr(opp(x)) = precondops (*)
precondition of therp operation,G¢ will be a guard, is Dri(opr(self,*)) =
a tuple of variablesypp (respectivelyopr) denotes a ba- precondey, (self,*) A Dri(self)

tively a recursive one labelling a non initial transition). Aygjye of the partial algebra.

transition from a source state to a target state will be noted The operation preconditions have the from:

[G(self,x)]opr(self,*) recond %) = Gl
source — target p OPB() i \/ ()
[—>(*)]OPB(*) target

Note that some of the following definitions are higher-order precondoy, (sel f, %)

definitions since sometimes they are defined relatively to a \/ Psource(self) A G(self,)
state name or a function name. But they are assumed to be g(seis, o)jopp (sets,o
expanded into a finite set of first-order formulas. source—target

We consider &SAT determinisnproperty; it means that The precondition for an observer are defined with the same
if there are two transitions starting from a given state antbrmulas than in the case of a recursive generator.

with the same label then their guards are exclusive. The last family is thestate predicates

Definition 3.8 A GAT is determinism if and only if for ev- Prarget(opp(x)) = \/ G(*)

ery couple of transitions labelled by the same term either (CCNPES, rget

their source states are distinct or their guards are exclusive. Piarget(0pr(self,) =

We also need finitely generated valuése every val- \/ Poource(self) A G(self, %)
ues can be denoted by a finite sequence of generators RO A

[W|r90]._ Then an important hypotheS|§ Is abee 9ENeTa 1hese definitions cope with the need of operation strict-
tor choice here we assume that e&Eli internal operation ness

is a generatdr The reason is that a generator will denote a

temporal logic instant, which is assumed distinct from an- . . .
other one. From a practical and operational point of view i8-8 Hierarchical Presentation of a GAT

does not complicate or grow too much the specification. the hierarchical presentation associated to a GAT is de-
The notion of reachability may be adapted for GATgneqd as follows.

in the following way. A s state will be strict if it

. . Specr; =
contains at least one finitely generated valdee(f :
by HY Er;, T D
T(Seons)r1, Dri(self) A Py(self)). X <y, r1, Err, U'rr, Defrr, Specp >
where

Definition 3.9 A GAT is compact if and only¥fs € S s is

i ; — YXpr =<{T1}, Fr;>. The set of functiorF’;; con-
strict, whereS is the set of states of the STS. I {1}, Frs T1

tains: proper operations of the STS, the preconditions,

The previous property states that each state represents at the state predicates and the guards.

least one finitely generated value. One static and necessary- g, =< HSy;, HFr;>: sometimes hidden oper-

condition to ensure compactness mzery states may be ations are useful for example in the case of data type
reached from an initial state In the presence of guards, Changer to compute theoGet resullt.

the strictness property is generally undecidable. But this is
not a hard requirement because the specifier may ensure it
using a similar technique as in [Roy0O1a].

Er; is compound from the definitions of the precon-
ditions, the state predicates and the guards; in addition
it contains the axioms computed by the AG-derivation

algorithm.

3.7 GAT Auxiliary Operations .
— I'ry is the set of generator.

We present in this Section a summary of operations gener-
ated by the GAT method. The formulas are the same for
sequential or concurrent components. All these formulas
may be generated automatically from the STS description.

— Defr; contains the definition of the definedness
predicate D;-; and definition formulas for the ob-
servers. These definition formulas are computed
by D(obs(self,*)) = precondyps(self,+) A

1This hypothesis is not required by the GAT extracting method but it DTI(Self)-

comes from the aim to express temporal properties associated with transi- . —_
tions of the STS. — Specp is the context of th@'I definition.

THE GAT APPROACH TO... Informatic27 (2003) 89-103 95

4 Formal Specification of the ples to produce an algebraic specification of the other op-
Vending Machine erations. The general form of the axioms is a positive con-
ditional equation:
In this Section we describe the formal specification of condition => f(self, v L Vo) =t

the different components either sequential or concurreﬁ’f'heref is an operation name,, ... V ., isatuple of

A comprehensive specification of the case study may B/@riable_, andself a variable of type(_:hang_er : To ex
found in [Roy01b]. tract axioms we use the AG-derivation principles which

computes automatically the condition and the left-hand
side conclusion term. User interactions are required to get
4.1 The Cash Changer Component thert right-hand side term. If the user cannot give this

The graphic presentation of the STS for 18E€ compo- L?;g}th:semteﬁg z(tgh?Jtetrr:sevsalc?fertgn(;?apt?)?drzgghti?lee!;e cur-
nent is described in Figure 5. This is basically a guarded Y 1.€. d 9 9

. . ; . rent state. An AG-derivation ofelf is a substitution of
finite state machine with some notations to represent Og_elf by a generator term in the axiom df Below are

eration signature. A transition labelled by an operatiorthe steps to build the specification of tuSet observer.

name represents the effect of an event occurring on thlrshis operation is partial, hence only the st uch
component. The data type associated to @icompo- canceled , anddelivered must be analysed. For ex-

nent is namedChanger . Its algebraic specification has ample
a signature and positive conditional axioms. The STS de- P
scribes the signature following the notations explained be-

low. Solid arrows denote internal operatiomgve , ok, % tooMuch state

getOut , newChanger , cancel). A basis internal op- ~ tooMuch(self) => toGet(self) = ?

eration is depicted with a dashed arrome{wChanger).

An observer is drawn with a dotted arroGet). For each state we try to give a right-hand side conclusion

The data type must contain all the operations definegrm. For example in this case we write:
in Section 3.7 related to the definedness and the abstract
implementation of the state machine. It also contains o4 he tooMuch state
the operations described in the STS, and additionally we tooMuch(self) =>
have in the signature of th@hanger type observers re- toGet(self) = getOverflow(self)
quired for guards and communications. We also add the

% the canceled state

[sufficient(ch) A money(ch)] canceled(self) =>
toGet(self) = getAll(self)

[~sufficient(ch)]
give(ch, c)

If it is not possible to give an answer the algorithm re-

newChanger(i) getout(ch, j) ‘ places theself variable by the operation calls reaching
delivered

[sufficient(ch)]
give(ch, c) get(@

this state. The conditional part changes according to this
replacement and the specifier must provide either the right-
hand side terms or the process continue. The derivation
process stops either with a non recursive call or in a state
already visited. For example with thielivered state

we have only one total transition reaching this state.

% the delivered state

. delivered(self) => toGet(self) = ?

toGet(ch) % one level of AG-derivation

onChange(self) => toGet(getOut(self, j))
= getChange(self, j)

give(ch, c)

Figure 5: TheCCSTS

More details about the AG-derivation algorithm may be
getAll , getChange , andgetOverflow total (hid- found in [AR99]. We assume that this algorithm ensures
den) observers to define the three functionalities of thihe following properties. Iff (t,*) € T(X)p and Dz (t)
toGet observer. then it exists at least one axiom which may rewrite the term

The axioms for the definedness, preconditions, and stafét, «). A term¢ built by the GAT method is defined as

predicates are automatically computed with the formulasoon as variables occurring in it are defined, (D(r) =>
of Section 3.7. We use the extracting AG-derivation princiD (¢[r/z])).

96 Informatica27 (2003) 89-103 J-C. Royer

4.2 TheDDComponent cancel), (getOut, getOut), (give, €),

et, ¢€), (¢ drink), (€, choose)} . ¢ de-
tes no action on the corresponding component. This rule
similar to theLOTOS one, other rules may be possible,

The same process is achieved for the other sequential co
ponent. We have the STS of Figure 6 and we get an algles—

:Jra;c specification for the associatBistributer data for example the CCS rule.
ype. During a synchronization, some values may be emit-
ted or received. Communications may occur during syn-
- cancel(db) chronizations in the way depicted in Figure 7. We use
newDistributer(ld) . .
,,,,,,,,,,,,,,,, ? to denote a receipt and for an emission. The terms
top(self) and down(self) are algebraic terms de-

noting the corresponding component processes. It also
represents the stated and s2 of the STSs. actT (re-
spectivelyactD) is an operation of the top (respectively
down) component, and are synchronous actions. A value

<k(db)

cancel(db)

theDrink(db)
N choose(db, k)

price(db)

- emit(top(self))

emit : an observer @ [GH(top(sain). v1, .. v)] actT (top(seif), v, ... vr) @

[isThereDrink(db)] receipt : aparameter @ [Gd(down(slf), UL, ., um)] actD (down(self), ul,um)@
etOut(db
g (db) [~isThereDrink(db)]

2ul lemit(top(self))
choose(db, k)

cancel(db)

drink(db)

Figure 7: Implementation of Communications
Figure 6: TheDDSTS
is emitted by an observer and received by the mean of a
variable. In the Figure 7 example, the emitted value is
4.3 Concurrent and Communicating GATSs emit(top(self)_)_ and receipt i_s done with the var_i-_
able. A transition of the product is a couple of transitions
In this Section we describe the composition scheme fand the associated guard is the conjunction of the compo-
components in order to handle concurrency and commuent guards. Thus we get the following condition for the
nications. For example, th#Mmachine in Figure 1 is transition expression frons{, ss) to (s}, s5):
composed of &Cand aDDparts. We herein consider a

binary product and we also restrict our presentation to ondGt(top(self), v 1, .., Vo) A
emission and one receipt, however, our constructions exGd(down(self), emit(top(self)),
tend to nary product and to several communications. The Uz, oy U)

synchronization list denotes the actions which are required

to synchronize in each component. Here, there are syn:3.2 Synchronous Product of STSs

chronizations on thek, cancel andgetOut actions.

The semantics of synchronization is obtained from the syr table of the legal transitions is built from the synchro-
chronous product of STSs in a similar way than for the syrflization rules (Fig. 8). A transition expression belongs to
chronous product of automata [Arn94]. Firstly, we puilithe table if it is consistent with the synchronization rule.
the free product of the two STSs. Secondly we get out thEn€ resultingST's for the product is(S, So, T') where
pair of transitions which are not allowed by the list of syn-So = S x S§ andS € S* x §% S is the subset of
chronizations. Last, the synchronizations are enriched tsjates of the free product reachable fréusing only the
communications. An algebraic specification is eventuall{fgal transitions. We compute a table of the transitions of
built from the computed STS. Thus both synchronizatioff'® product using a simple algorithm. This table has four
and communication are integrated in an algebraic style.

Source

State (51, 52)
4.3.1 Synchronization and Communications (actT(top(self), v RS}

Transition actD(down(self),

Let Top = (St, Si, T*) and Down = (S¢, S¢, T?) emit(top(self)), u U m)
be two STSs. A synchronization lit gives the pairs of Target (s}, 1)
synchronous actions. The actions not in this list are asyn State [Gion(sel, v)
chronous. In our example, the synchronization list’is= Guard A Gd(down(self), u R)

[(ok, ok), (cancel, cancel), (getOut,
getOut]) . The synchronous vector is the complete list _ N
of actions of the product:{(ok, ok), (cancel, Figure 8: The Transition Table

THE GAT APPROACH TO... Informatic27 (2003) 89-103 97

lines and each column represents a source state, a posiwn component. The synchronization between two com-
ble transition, the target state and the guard to trigger thEpnents may be formalized as a bijective mapping between
transition. The couples of initial states of the componentsvo execution paths, but we do not detail this here.

are the initial states of the product. To build the table, the

couples of initial states of the product are put in the source

state line. Then, the transition expressions starting from44 TheVMComponent

source state and consistent with the synchronization rules

are added. The target state and the condition of this tran§c€ theCCand DD components are specified, we build
tion are also set in the corresponding lines. the GAT for the wholé/Mmachine (Fig. 9). First, we build

the synchronous product of the two previous STSs, this
gives us the global dynamic behaviour of MImachine.
The Machine data type associated with thé&Mcompo-

The construction of the corresponding algebraic specifica-
tion is done in two steps. The first step is automatic an
computes a reduced algebraic specification. The resulting
specification is sometimes too simple for specifying mor
complex systems, but we can extend it. It is possible to de-
fine other operations (internal or external) in a functional
style over the current specification. A second step co
pletes the specification, it requires user-interactions. The
STS associated to the product and the AG-derivation is also
useful in this case.

Contrary to the approach described in [AROQ] the prod-
uct type is built using a bit different way. This way is more
abstract and natural, it is also simpler and more suited to
dynamic checking. The most important advantage is thatl|it
is uniform and it easily extends to nary product of GATs
This seems a bit hard to write by hand but it can be au-
tomatically generated by an extension of the CLAP tool
[CPRO1].

The type associated to the product is the product of the
types associated to the componenf3roduct is the sort Figure 9: TheVMSTS
associated to the product of thH&p sort and theDown

sort. To get a GAT, we associate to each pair of actions ent is based on the product of the component data types
the synchronous product of STS an operation name. Fehanger andDistributer . The shorthand for guards
example the coupléactT, actD) will be namedact . Figure 9 are:S for sufficient(theCC(self)) '

The profile of this operation is obtained by merging the twg, for money(theCC(self)) , IS for
component operation profiles coping with emissions a“ﬂThereDrink(theDD(seIf)) . Basis constructor
receipts. Because it is a GAT we apply the extracting prirofiles of the component are defined as the merging of
ciples to get an algebraic specification for tyBeoduct. the pasis constructor profiles of the components. For
The definedness predicate, the preconditions and the stgl@ machine we have only one basis constructor with
predicates are generated in the same way than for the $Rofile newMachine : Natural, List[Drink]

quential case, see Section 3.7. The rest of the specification \pachine . Two selectors, theéheCC and theDD

is an observational specification of the selectofs and perations, are defined for thdachine to retrieve the

4.3.3 The Associated Algebraic Specification

newMachine 3

get cancel
[~S] give W‘

down. The general principle is illustrated on the exampleshanger and Distributer component data types.
of Figure 7. Their profiles aretheCC : Machine -> Changer

and theDD : Machine -> Distributer . We
top(act(self)) = actT(top(self), v 1V)

associate an operation name to each pair of action in
the product. For example th@getOut, getOut)
synchronous action is also namgetout (overloading is

Note that these axioms express synchronization betwe%Ir\{,svivsetdh)ea;faga?ep(;?{'rl]eﬂ;%t'?e];bg/llzczlgr?ron.izgt?c;n
actT andactD and communication from th®p part to P 9 9 Y

thedown part. The above axioms mean that observing th\évIth Its communication.

top component of a system afteraat action is aractT

action on theop component. During thiact action the theCC(getout(self)) =

DDcomponent executes @ctD action. During this syn- getOut(theCC(self), price(theDD(self)))
chronization the valuemit(top(self)) is sent to the theDD(getout(self)) = getOut(theDD(self))

down(act(self)) = actD(down(self),
emit(top(self)), u 2...U)

98 Informatica27 (2003) 89-103 J-C. Royer

5 GAT Pro perties transitions labelled by the same operation, starting from the
same state and with non exclusive guards alfid:’ are the

This Section presents and justifies some properties of tigrget states of these transitions thea ¢’ since transitions

specifications generated by the GAT principles. The conare maximal. Thus it exists a temrsuch that?; (v)A Py (v)

putation of the algebraic specification is partly automaticand this is not possible.

which is an advantage for non expert specifiers. The result- Our experiences with GAT specification show that writ-

ing specification has also interesting properties. ing errors or erroneous definitions of guards arise very of-
ten. The exclusivity and complementarity properties are
5.1 The STS Interpretation always ensured by means of our axiom generation but as-

suming some hypothesis. To prove these properties with a

In this section we prove some general properties linking 04po| is a first means to check some problems in the alge-
generated algebraic specification and the symbolic systegtajc specification (for example the GAT determinism of

We must prove that our extracting method builds an algghe STS). Our experimentations reveal that these proofs are

braic specification which satisfies the interpretation formurea|ly relevant to detect bad algebraic definitions.
las associated with the transitions (clause C of Definition

3.4). o .
) 5.2 Termination of the Term Rewriting
Fact 5.1 The extracting GAT method ensures that the in- System
terpretation formulas associated with the transitions of the) o) .
STS are true in the algebraic specification. We may implement the specification, transforming axioms

into left-to-right rewriting rules. Results on modularity

In the two cases (sequential or concurrent) the definitiopf termination are pertinent here [Der95, FJ95, Ra095,
of the state predicate associated to a transition like in FigxG00]. There are many works around termination of
ure 4is: Py (f(self,v1,...,vn)) = (G(self,v1,...,vn) A rewriting systems, but only few of them are relevant to
Py, (self)) V ... Then the formulaG(self,v1,...,v,) A our context, because we have a conditional and hierarchical
Py, (self) => Py, (f(self, v, ...,vn)) is true. system. One successful approach is [FJ95]. The principle

Lemma 3.7 defines properties (1 and 2) linking defineds to define a hierarchy (or definition ordering) for the set
ness predicates with state predicates. The following theef operation and to use a notion of alien-decreasing sys-
rem proves that our extracting method also ensures that tiggm. The alien-decreasing property being a bit technical,
STS defines a partial equivalence relation. we avoid the details here (see [FJ95] and [AR99]). How-

. N ver several difficulties have to be solved before an appli-
Theorem 5.1 The state predicates of a deterministic GA-Iglation in our context:

are exclusive and complementary, they define a parti
equivalence relation over the values of the data type. — To handle mutually recursive definitions and condi-
tional rules is not natural because one has to modify
the original specification. This may greatly disturb a
non specialist.

The two proofs may be done by structural induction
on the GAT. Letv = opg(vy,...,v,) thenVs; #
55, ~(Ps,(opB(v1,...,vn)) A Py (opp(v1,...,v,))) be-
cause of the GAT determinism which implies that guards _ The alien-decreasing property is rather strict and it is

are exclusive. The same analysis is also true if= easy lost if we add a non alien-decreasing rule.
opr(self,v1,...,vp).

The second property is trivial for theps case. For — Status computation needs an algorithm that is not yet
the opg case we haveDr;(opgr(self,vi,...,v,)) = existing.

recondy,, (self,v1,...,vn) A Dryr(self) = . . .
I\)/ pr]Ji ! (Sef}) /\Tlé*(sgl?f Uiy tn) A We investigate other approaches related to modular termi-
[Glopgr source)) n

source—target . nation. One theorem of [Der95] applies when we have a
Dri(self). The other part is equal to non conditional system. Unfortunately there is no theorem
V1gign Py, (opr(self,vi,...,vn)) = related to the conditional case. A general theorem of Gram-

Vicicn Viciorn Psi(self) N G(self,vi,...,vn) A lich [Gra95] is also important in our context. A rewrite
- = S—S;

Dr(self). The two expressions are equal. NoteSystem isoverlay if every (condition_al) critical pairs are
that the complementarity property implies thatobtained by overlapping left-hand sides of rules at top po-
Vs; € S, P, => Dp;. Note also that the below Sition. AG-derivation prohibits a proper subterm to match
lemma is a mean to check the GAT determinism property@ t€rm, thus there is a superposition only if left-hand side
conclusion terms are equal. In case of such conditional
Lemma 5.2 If a GAT is compact and its state predicatespairs, the GAT determinism property of the STS ensures
are exclusive then itis GAT determinism. that the conditions are exclusive, hence, our system is over-
If there is only one state there is not two distinct transi:-ﬁ%/é;;‘slsée i(r:ln':lr?:Ispear:rsZac;? Fg:ag;?peg?afgﬁfﬁls’ ttr?eegr::r?
tions with the same label then the GAT is deterministic. '

Lets; # s; ifthe STS is not GAT determinism it exists two 2An infeasible conditional critical pair is obviously joinable.

THE GAT APPROACH TO... Informatic27 (2003) 89-103 99

states:Any conditional term rewriting system which is anfor Boolean. Since we have an enrichment of Boolean,
innermost terminating overlay system such that all condia predefined term is either defined or undefined within
tional critical pairs are joinable is terminating and con- (this is also true withinEp). To proveE F tp =t} we
fluent This theorem shows that, to get termination, it isconsider two cases: either the two terms are defindd,in
sufficient to prove innermost termination. K. Rao [Rao95from previous point they are both definedAi» and equal
defines an approach based on this theorem. He provesnaF'p because of unique normal forms. If the two terms
useful result, which unfortunately does not cope with conare not defined itk the same is also true il and strong
ditional rules. Arts and Giesl, in [AGO00], also propose aquality holds between them.
criterion to prove innermost termination. There are two ways to prove the sufficient completeness
As one may see, our systems have many propertipsoperty for a specification: using algorithms (for example
(left-linearity, constructor system, conditional and hier{Kou85]) or using an axiom writing method that guaran-
archical, amongst others). We investigate for a propeees sufficient completeness. This later approach is used
approach. We suggest to usej.,:, which is a de- in Bidoit's work ([Bid82]) and reused here. Lep be a
creasing order [Klo92] based on the depth of the corterm of a predefined sort, if - D(tp) then we have
structor in the term. Each symbol has a weight, fo&p - Dp(tp) from the hierarchical consistency. It is
a constructor it is its depth in the term. A term likethen sufficient to show the existence of a rule to rewrite this
sum(give(ch, c)) has2xweight(sum) andadd(c, term. We consider terms with general forf(t,) where
ch) has weight 1. With this order we can orient an axiony € Xp andt € T(X) 7. If t € T(X)rr A Dry(t), from
like: toomuch(ch) => toGet(give(ch, ¢)) = properties 1 and 2, then there exists a (single) statech
overflow(give(ch, c)) . Whenever this fails an- thatP,(t). A property of the AG-derivation algorithm is to
other level of AG-derivation increases the left conclusioproduce a rule which rewrites the terfit, «) (see Section
part but may decrease the right-hand side and the condi-1).
tion terms. A last problem to solve is about functional ex-
tensions which have no constructor in the left-hand sid
conclusion term. For instaneeoney(ch) = inf(ch,

stock(ch)) . The solution is to replace, in other rules,ywe prove several results showing that the auxiliary opera-

the money call and to consider such operation with thejons for the product are naturally split on the components.

highest priority than the rest of the rules. To simplify, we only consider two cases one with syn-
Several experiments, using Larch Prover [GH93], conchronization and a communication and another one with-

firm that the termination property is true with our specifi-out synchronization. We prove the first theorem about the
cations. We experiment with nearly ten systems from 5@efinition of the state predicates.

to 300 rules with thedlsmposordering (a registered sim-

plification ordering). However, this may require some miTheorem 5.4 Let the synchronous product of two GAT
nor modifications of the specifications. The most often taomponents: ift (respectivelyd) is the state of the
change the definition order of rules and to replace calt®p component (respectively the down component) then
of the functional extensions is sufficient. Sometimes a; q)(self) = Pi(top(self)) A Py(down(self)).

additional level of AG-derivation is needed or an explicit

change of the operator status for the dsmpos ordering. The proof of this theorem is done by in-
duction on the generators of the product.

) If self is a opp(vi,.,Up,Ut,...;tly,) term
5.3 Consistency and Completeness then Py (0pB (01, ooy Ut o) _

Because of our generating method, once termination is \/ Gi(opp, (v1, ..., Un)) A
ensured we get consistency and sufficient completeness.cicrp, ors,)
The two main reasons are: we get an overlay-conflue
rewriting system since the STS is GAT determinism an
generated axioms respect the principle of sufficient co
pleteness. These properties and the use of positive condi*®
tional axioms ensure the existence of a partial initial alge- \/ Gi(opp, (v1, ..., vn))) /\
bra [BWP84]. [Gelorp,

TEOPB,

£.4 Properties of the Product

(t,d)
gﬁd(ode(ul,...,um)), and separating top and down
expressions we get:

(0pB (V1 ey Uy Uy ey U)) =

Theorem 5.3 The specification associated with a GAT is(\/ Gaops,(u1, -, um))) =
hierarchically consistent and sufficiently complete, then ariGdJDPde
initial partial algebra exists. Pi(opp, (v1, -y vn)) A Piy(opp, (U1, ..., Um)).

: : L ... For the case of anpr with a synchronization and a com-
As seen in the previous Section, if we prove our conditiong] Pr y

Fnunication: P, Uf, vl .. =
system terminating then it is convergent and normal for ' P(t ,d Zg:?ﬁ(i%:{;zl} v’lun’ UUQ’ u’ um))u)
are unique. Consistency is ensurddlit true # false) Y i PU e T T2 e T
since normal forms are unique and this inequation is trugy induction hypothesis we get:

100 Informatica27 (2003) 89-103

V (ceetnony, Pr(top(self)) A
(t,d)—(t',d")

Py(down(self))) A Ge(top(self),vl,...,v,) A

Gq(down(self), emit(top(self)), ua, ..., um).

The following expression

P/ (top(opr(self,vl, ..., vn, Usy coytim))) A

Pl (down(opr(self,vl, ..., vn, U2, ..., Um))) re-

duces to P/(opg,(top(self),vl,...;v,)) A

P (opr,(down(self), emit(top(self)),us, ..., um)) =

(Vicitetronn, Pr(top(self)) A
t—t/

Ge(top(self),vl, ..., vy)) A

(Vicatetnionn, Paldown(sel f)) A
d—d'

Ga(down(self),emit(top(self)), ua, ..., um)) and

the two unions are equal. A simpler decomposition is tru®r,,, (top(self))

in the case of an asynchronous recursive call.

Theorem 5.5 With the same conditions as in
the previous theorem: ifopg is a synchro-
nization with a communication as in Figure 7

then precondep,, (self,vi, ..., vn, Uz, ..., Um,)
precond,y, (top(self),vl, ..., vn)

precondop,, (down(sel f), emit(top(self)), uz, ..., um);

if OPR is an asynchronous call
then precondop, (self,v1, ..., vy) =
precondopy,, (top(self),vl, ..., vp) A
Dpown(down(self)).

J-C. Royer

Dpown(down(sel f)).

If self is a opp(vi,...,Vn,u1, ...
DProduct(OpB(Ulv ey Uny U1y eeny um))
precondep , (U1, .oy Uny Uty ooy Uy) =
precond,p,, (V1 .., vp)A
precondop, (U1 eeey U
Drop(opp, (v1,...,v5))A
DDown(Ode (ulv ceey um))
opr With synchronization and communication;
DProduct(OpR(Selfvvlv~-~7vn7u27~-~7um)) -
precondopy, (S€lf, v1, ..., Un, Uz, .., U A
Dproduct(self) = precondopy, (top(self),vi,...,vn) A
precondop, (down(sel f), emit(top(self)), uz, ..., um)A
A Dpown(down(self)) =
DTOP(OpRt(top(Self)>vl7"'7Un)) A
Dpown(opr, (down(sel f), emit(top(self)), ua, ..., um)).
The case of an asynchronous call is similar but simpler.
The three previous results provide a simpler way to gen-
erate the auxiliary operations and it has also some interest
for automated proofs.

,Uy) term then:

For the case of an

Theorem 5.7 The synchronous product of two determinis-
tic GATs is a deterministic GAT.

This result simply comes from the fact that a state of the
product is a product of the component states and a guard of

The proof of this theorem is similar to the previous onelN€ Productis the conjunction of two component guards. If

um,) term then we have

7um) -

If selfisaopp(vi,...,Vn,u1, ...,
precondop,, (V1, ..oy Up, U1, ..
precondop,, (V1 ..., vp)A

precond(,de (U1 eeey U)

DProduct(OpB(vly ceey Uny ULy -eey um)) =
precondop, (V1, ..oy Un, Uty ooy Upn)
precondop,, (v1, ..., vp)A
precondop, (U1, ..s Up)
Drop(opp, (v1, ..., v,))A
DDown(Ode (Ula (XS um))-

For the case of arpr

we consider two transitions with the same label then each
of them is the aggregation of two component transitions
which are exclusive. The reverse property is not true.

The compactness for a concurrent component does not
follow from the compactness of its parts. One sufficient
condition to ensure compactness is the notiotrarisition
compactnessA STS is transition compact if and only if
every transition may be triggered at least once.

Lemma 5.8 Let's consider two transition compact GATs
with no receipt in guards then their product is a transition

constructor_ with synchronlzguor_w and commumcquon t,h%ompact GAT.
same way is successful taking into account the induction

hypothesisprecond,, , (sel f, v1, ..., vp, Ug, ..., Up) =
V' clorn Py (self)NG(self,vl, ..., v, Uz, ..., Um)
(t,d)—(t',d")

and a similar decomposition as
theorem gives the result. Ifopr

in the previou
is an asyn-

chronous call precondp,(self,vl, ..., v,) =
V' ern Puay(self) N G(self,vl,...,v,) =
(t,d")—(t,d")
crop, Pi(top(self)) A
(t,d")— (¢t ,d")
Gi(self,vl,...;vn)) A P’ (down(self)).
We have precondop, (self,vl,...,v,) =
Viciors, Pelleft(self)) A Gi(self,vl,...,v,))
t—t’

and Dpouwn (down(sel f)) =\, Py(down(self)) from
property 2. We may verify the equality of the two
expressions.

Theorem 5.6 With the
5-4; DProduct (Self)

conditions of theorem
Drop(top(self)) A

S

In the general case we have
G(self,v1,.cc;Vn, Ug, ooy Upy,) =
Gt(top(self)vvlv "'7’Un) A

Ga(down(self), emit(top(self)), ua, ..., uy). If there is

no receipt in guards then &; andG, can be triggered it

is also true forG. This is an important case which often
arises in practice, for instance with our vending machine.
The reverse way of this lemma is false.

6 Related Works

We give some links to works related to mixed formal spec-
ifications. Our approach is mainly relatedit®TOS, LTL
and AD-DT. Complementary informations may be found
in [ABR99].

An important concern, in our approach, is to provide
help to the specifier to write the algebraic specification.

THE GAT APPROACH TO... Informatic27 (2003) 89-103 101

We defined guidelines and tools to the specifiers. Our aghown that a subset of CTL [Eme90] reduced to our frame-
proach includes several automatic steps in the specificatisrork. It seems that the two restricted approaches have the
process, which makes it usable by a non expert specifiame expressiveness.

The user gets several properties (like consistency and com-

pleteness) without many difficulties. Our approach also im- .

proves the consistency/compatibility between the differgllz Future Work and Conclusion

descriptions. These concerns are neither addresde@-in) . .)
TOSnor in AD-DT. We provide an algebraic approach for mixed system with

an homogeneous semantics based on partial algebra. This

As in LOTOS, we focus on system with dynamic and
functional parts. The main difference is about the Semaﬁ_pproach may be partly automated and tools have been ex-
tics which is uniform with partial abstract data types. How_penmented [CPRO1]. [t handles any kinds of data type,

ever, standard semanticslo®DTOS does not take into ac- elthgr finite or unboynd. It provides abstr.acuon and re‘?‘d‘
. ability of state-transition systems and a kind of separation
count full data types but only ground expressions. Standar: concerns

LOTOS semantics is restricted to finite state machines, d th hod i .

Symbolic semantics for FULOTOSis a way to overcome We proved that our method ensure more caslly consis-

th)i/s limitation [KT97]. Dynamic properties are proved Ontency and completeness of the generated specification. The
- DY prop P {Eain difficulty is to prove the rewriting system terminating

the STS with the help of an oracle on data types. Proo L

. . .~ ~and in this case we proposed some successful ways. Our

in our context use only one formalism and one environ-_~ .. . ! : X i
. . ._specifications define automatically operation preconditions

ment. A successful approach is the FULL modal logic fo\r/vhich is a well-known concenbt in the areas of program

LOTOSdescribed in [MCO1]. Itis based on STS and it de- P prog

) - . . . ming and specification. We proved several natural proper-
fines a bisimulation. It is related to our logic but there ar g b P brop

) -~ Sies linking the auxiliary operations of the component prod-
several differences. We have no restriction on data types : . "

. . uct to the related operations of components. This addition-
and recursion but FULL has. Our temporal logic may b%ll rovides a simpler way to generate these operations
reduced to first-order one this is not yet the case for FULL, yp P ytog P

We think that a complete approach of the semantids@f an\c,lezd;/da;Gt}zg:i f()c:ri;z;?n;;‘ﬁg;gﬁog'wrmng and proving
TOSis possible with GATSs.

ST _temporal logic properties. It is uniform because data and
Our work on specification is related to LTL and dynamiGemporal formulas are first-order formulas. It is related to

data type. Labelled Transition Logic (LTL) [RL97] is @ ¢jassic temporal logic like CTL*, and it allows also past
formalism for specifying concurrent reactive systems. Wgperator. We have done some experimentations with dead-
agree with the authors on the real application of formahcks and strategy to automate some proofs already exist.
methods. We also aim at providing guidelines, friendly pre- geyeral theoretical questions remain. One area of inter-
sentation and tools for non-academic people. We use SE3t js to study bisimulation over STS and means to prove
and partial algebras, whereas they use labelled transitigham in our context. We think that our approach is right
systems and first-order structures. Both concurrent SeMaG-provide a full semantics fdrOTOS, this is one of our

tics are based on an extension of the synchronous prodygtre goal. For a more practical point of view we plan to

of automata. A LTL transition is a conditional axiom link- se pV/S rather than Larch Prover. The main reasons are: it
ing two constructor terms denoting states. Thus the SOUrg@nports model checking and a higher-order logic.
state and the target state of a transition in LTL are terms. A

GAT state has generally not a simple term representation.

An important difference, from a methodological point ofReferences

view, is that we use a graphic dynamic descript@priori

to help the computation of the algebraic specification. WBABR95] Pascal André, Franck Barbier, and Jean-Claude

also get important properties about our STSs and algebraic Royer. Introducing Formalism in Object-
specifications. In the LTL approach the graphic description Oriented Analysis and Design: an Experi-
is built a posteriorifrom the algebraic specification. mentation. Computer Science and Technigue

Both our approach and abstract dynamic data types (AD- 14(8):973-1005, 1995. in French, ISSN 0752-
DT) [CR97]) use partial abstract data type. In AD-DT the 4072.

specification is twofold: algebraic axioms with a ternamABRgg]
predicate for the transition system. Our approach is sim-

pler because we have only one layer in the algebraic spec- Systemgpages 467-520. IFIP State-of-the-Art
ification. In [CR97], there is a general algebraic approach Reports. Springer Verlacj 1999 ISBN 3-540-
of temporal logic. This is a more ambitious and powerful 63772-9 ’ '

approach, this is also has the drawback of a non complete

logic. But a restricted approach to positive conditional dyfAC95] Egidio Astesiano and Maura Cerioli. Free ob-
namic formulas is proposed and the deduction system is jects and equational deduction for partial con-
proved to be sound and complete. Our approach is based on ditional specifications.Theoretical Computer
first-order logic and temporal algebraic operators. We have Science152(1):91-138, 11 December 1995.

Egidio Astesiano, Manfred Broy, and Gianna
Reggio.Algebraic Specification of Concurrent

102 Informatica27 (2003) 89-103

[AGO0] Thomas Arts and Jurgen Giesl. Termination of
term rewriting using dependency pairsheo-
retical Computer Scien¢ce236(1-2):133-178,
April 2000. [CPRO1]

[APGROO] Arnold, Point, Griffault, and Rauzy. The al-
tarica formalism for describing concurrent sys-
tems. FUNDINF: Fundamenta Informatiga
34:109-124, 2000.

[AR98] Pascal André and Jean-Claude Royer. Thgorg7)
Invoicing System: Using GAT. In Michel
Allemand, Christian Attioghé, and Henri
Habrias, editors,Comparing Systems Spec-
ification Techniques: "What questions are
prompted by ones particular method of spec{Der95]
ification?”, ISBN 2-906082-29-5, pages 381—

395, Nantes, France, 1998.

[AR99] Pascal André and Jean-Claude Royer. Build-
ing Executable Data Types from Dynamic De-
scriptions. Rapport de recherche, IRIN, 1999.[Eme90]

[ARO0O] Pascal André and Jean-Claude Royer.
An Algebraic Approach to the Spec-
ification of Heterogeneous Software
Systems. Rapport de recherche{FJ%]
IRIN, 2000. http://www.sciences.univ-
nantes.fr/irin/Vie/RR/RR-IRIN-007.ps, pre-
sented at WADT'99.

[Arn94] André Arnold. Finite Transition Systems
International Series in Computer Science.
Prentice-Hall, 1994. ISBN 0-13-092990-5. [GG88]

[Bid82] Michel Bidoit. Types abstraits algébriques :
spécifications structurées et présentations gra-
cieuses.Colloque de I'AFCET : les mathéma-
tiques de I'informatique Paripages 347-357,
1982.

[BWP84] Manfred Broy, Martin Wirsing, and Claude
Pair. A Systematic Study of Models of Ab- [GH93]
stract Data TypesTheoretical Computer Sci-
ence 33:139-174, 1984.

[CMR99] M. Cerioli, T. Mossakowski, and H. Reichel.
From Total Equational to Partial Conditional.
In H.J. Kreowski, B. Krieg-Brueckner, and
E. Astesiano, editorslgebraic Foundation of [Gra95]
Information Systems Specificatjothapter 3,
pages 31-104. Springer Verlag, 1999.

[CPR99] Christine Choppy, Pascal Poizat, and Jean-
Claude Royer. From Informal Requirements to
COOP: a Concurrent Automata Approach. In
J.M. Wing and J. Woodcock and J. Davies, edi-
tor, FM’'99 - Formal Methods, World Congress [Har87]
on Formal Methods in the Development of
Computing Systemsolume 1709 oflLecture

J-C. Royer

Notes in Computer Sciencpages 939-962.
Springer-Verlag, 1999.

Christine Choppy, Pascal Poizat, and Jean-
Claude Royer. The Korrigan Environ-

ment. Journal of Universal Computer Science

7(1):19-36, 2001. Special issue: Tools for
System Design and Verification, ISSN: 0948-
6968.

Gerardo Costa and Gianna Reggio. Specifica-
tion of abstract dynamic-data types: A tempo-
ral logic approachTheoretical Computer Sci-
ence 173(2):513-554, 1997.

Nachum Dershowitz. Hierarchical Termina-
tion. In Fourth International Workshop on
Conditional (and Typed) Rewriting Systems
volume 968 ofLNCS pages 89-105, Amster-
dam, 1995. Springer Verlag.

E. Allen EmersonTemporal and Model Logjc
volume B of Handbook of Theoretical Com-
puter Sciencechapter 16, pages 997-1072. El-
sevier, 1990. J. Van Leeuwen, Editor.

Maribel Fernandez and Jean-Pierre Jouannaud.
Modular Termination of Term Rewriting Sys-
tem Revisited. IrRecent Trends in Data Type
Specificationsvolume 906 ol ecture Notes In
Computer Sciencepages 252-272. Springer-
Verlag, 1995.

S. J. Garland and J. V. Guttag. Inductive meth-
ods for reasoning about abstract data types. In
ACM, editor, POPL '88. 15h Proceedings of
the conference on Principles of programming
languages, January 13-15, 1988, San Diego,
CA, pages 219-228, New York, NY, USA,
1988. ACM Press.

John V. Guttag and James J. Horning, editors.
Larch: Languages and Tools for Formal Spec-

ification. Texts and Monographs in Computer

Science. Springer Verlag, 1993. With Stephen
J. Garland, Kevin D. Jones, Andrés Modet, and
Jeannette M. Wing.

Bernhard Gramlich. On Termination and Con-
fluence of Rewriting Systems. In N. Der-
showitz and N. Lindenstrauss, editoiRtoc.
4th Int Workshop on Conditional and Typed
Rewriting Systemsvolume 968 of Lecture
Notes In Computer Sciencpages 166-185.
Springer-Verlag, 1995.

David Harel. Statecharts: A visual formula-
tion for complex systemscience of Computer
Programming 8(3):231-274, June 1987.

THE GAT APPROACH TO...

[HL95]

[HO80]

[Kl092]

[Kou85]

[KT97]

IMCO01]

[PCR99]

[PRRO2]

[Ra095]

[RL97]

M. Hennessy and H. Lin. Symbolic Bisim- [Roy01la]
ulations. Theoretical Computer Science
138(2):353-389, 1995.

Gérard Huet and Derek C. OppeRqguations

and Rewrite Rules: a Surveyages 349 —

405. Formal Language Theory: perspectivefRoy01b]
and open problems. Academic Press, R. Book,

1980.

J.W. Klop. Term Rewriting Systemeshapter 1,

pages 1-117. Handbook of Logic in Com-[Roy02]
puter Science. Oxford University Press, Ox-

ford, 1992.

Emmanuel Kounalis. Completeness in data

type specifications. IRroceedings of Eurocal [STB97]
Conference volume 204 ofLecture Notes in
Computer Sciengepages 348-362. Springer-

Verlag, 1985.

Carron Kirkwood and Muffy Thomas. To-

wards a Symbolic Modal Logic for LOTOS. In
Northern Formal Methods Workshop NFM'96 [Tyr93]
eWIC, 1997.

C. Shankland M. Calder, S. Maharaj. An Ad-
equate Logic for Full LOTOS. Iroceedings

of the FME’2001 Conferen¢é&ecture Notes in [Wir90]
Computer Science. Springer-Verlag, 2001.

Pascal Poizat, Christine Choppy, and Jean-
Claude Royer. Concurrency and Data Types:
a Specification Method. An Example with LO-
TOS. In J. Fiadero, editoRecent Trends in Al-
gebraic Development Techniques, Selected Pa-
pers of the 13th Workshop on Algebraic Devel-
opment Technigues, WADT’98olume 1589

of Lecture Notes in Computer Sciengages
276-291. Springer-Verlag, 1999.

Liang Peng, Annya Romanczuk, and Jean-
Claude Royer. A Translation of UML Com-
ponents into Formal Specifications. TOOLS
East Europe 2002Theo D’hondt Ed., pages
60-75, Kluwer Academic Publishers, 2003.

M. R. K. Krishna Rao. Modular proofs
for completeness of hierarchical term rewrit-
ing systems. Theoretical Computer Science
151:487-512, 1995.

Gianna Reggio and Mauro Larosa. A graphic
notation for formal specifications of dynamic
systems. In John Fitzgerald, Cliff B. Jones,
and Peter Lucas, editor&ssME'97: Indus-
trial Applications and Strengthened Founda-
tions of Formal Methodsvolume 1313 ot ec-
ture Notes in Computer Sciencpages 40—
61, Graz, Austria, September 1997. Springer-
Verlag. ISBN 3-540-63533-5.

Informatic27 (2003) 89-103 103

Jean-Claude Royer. Formal Specification and
Temporal Proof Techniques for Mixed Sys-
tems. InProceedings of the 15th IPDPS 2001
Symposium, FMPPTASan Francisco, USA,
2001. IEEE Computer Society.

Jean-Claude Royer. The Vending Machine:
Mixed Formal Specifications and Proofs. Rap-
port de recherche IRIN-01.1, IRIN, 2001.
http://www.sciences.univ-nantes.fr/irin.

Jean-Claude Royer. Temporal Logic Verifica-
tions for UML: the Vending Machine Example.
In Proceedings of the fourth Rigorous Object-
Oriented Methods Workshpp002.

Carron Shankland, Muffy Thomas, and
Ed Brinksma. Symbolic Bisimulation for
Full LOTOS. InAlgebraic Methodology and
Software Technology AMAST ' 9#lume 1349
of Lecture Notes in Computer Sciengages
479-493. Springer-Verlag, 1997.

Kenneth J. Turner, editorUsing Formal De-
scription Techniques, An introduction to Es-
telle, Lotos and SDL Wiley, 1993. ISBN 0-
471-93455-0.

Martin Wirsing. Algebraic Specificatianvol-
ume B ofHandbook of Theoretical Computer
Sciencechapter 13, pages 675-788. Elsevier,
1990. J. Van Leeuwen, Editor.

Informatica27 (2003) 115

JOZEF STEFAN INSTITUTE

Jozef Stefan (1835-1893) was one of the most prominenainean Europe, offering excellent productive capabilities
physicists of the 19th century. Born to Slovene parentand solid business opportunities, with strong international
he obtained his Ph.D. at Vienna University, where he wasonnections. Ljubljana is connected to important centers
later Director of the Physics Institute, Vice-President of thesuch as Prague, Budapest, Vienna, Zagreb, Milan, Rome,
Vienna Academy of Sciences and a member of several seienaco, Nice, Bern and Munich, all within a radius of 600
entific institutions in Europe. Stefan explored many areakm.
in hydrodynamics, optics, acoustics, electricity, magnetism
and the kinetic theory of gases. Among other things, he In the last year on the site of the JoZef Stefan Institute,
originated the law that the total radiation from a black the Technology park “Ljubljana” has been proposed as part
body is proportional to the 4th power of its absolute temef the national strategy for technological development to
perature, known as the Stefan—Boltzmann law. foster synergies between research and industry, to promote

joint ventures between university bodies, research institutes

The Jozef Stefan Institute (JSI) is the leading indeperand innovative industry, to act as an incubator for high-tech
dent scientific research institution in Slovenia, covering @itiatives and to accelerate the development cycle of inno-
broad spectrum of fundamental and applied research in thative products.
fields of physics, chemistry and biochemistry, electronics
and information science, nuclear science technology, en-At the present time, part of the Institute is being reor-
ergy research and environmental science. ganized into several high-tech units supported by and con-

nected within the Technology park at the Jozef Stefan In-

The Jozef Stefan Institute (JSI) is a research organisatistitute, established as the beginning of a regional Technol-
for pure and applied research in the natural sciences andy park “Ljubljana”. The project is being developed at
technology. Both are closely interconnected in research da-particularly historical moment, characterized by the pro-
partments composed of different task teams. Emphasis dess of state reorganisation, privatisation and private ini-
basic research is given to the development and educationt@tive. The national Technology Park will take the form
young scientists, while applied research and developmeot a shareholding company and will host an independent
serve for the transfer of advanced knowledge, contributingenture-capital institution.
to the development of the national economy and society in
general. The promoters and operational entities of the project are

the Republic of Slovenia, Ministry of Science and Tech-

At present the Institute, with a total of about 700 staffnology and the JoZef Stefan Institute. The framework of
has 500 researchers, about 250 of whom are postgraduatés, operation also includes the University of Ljubljana, the
over 200 of whom have doctorates (Ph.D.), and aroundational Institute of Chemistry, the Institute for Electron-
150 of whom have permanent professorships or temporaigs and Vacuum Technology and the Institute for Materials
teaching assignments at the Universities. and Construction Research among others. In addition, the

project is supported by the Ministry of Economic Relations

In view of its activities and status, the JSI plays the roland Development, the National Chamber of Economy and
of a national institute, complementing the role of the unithe City of Ljubljana.
versities and bridging the gap between basic science and
applications. JozZef Stefan Institute

Jamova 39, 1000 Ljubljana, Slovenia

Research at the JSI includes the following major fieldsTel.:+386 1 4773 900, Fax.:+386 1 219 385
physics; chemistry; electronics, informatics and computéFlx.:31 296 JOSTIN SI
sciences; biochemistry; ecology; reactor technology; apvWW: http://www.ijs.si
plied mathematics. Most of the activities are more oE-mail: matjaz.gams@ijs.si
less closely connected to information sciences, in particiGontact person for the Park: 1ztok Lesjak, M.Sc.
lar computer sciences, artificial intelligence, language ar@ublic relations: Natalija Polenec
speech technologies, computer-aided design, computer ar-
chitectures, biocybernetics and robotics, computer automa-
tion and control, professional electronics, digital communi-
cations and networks, and applied mathematics.

The Institute is located in Ljubljana, the capital of the in-
dependent state ofi@&enia (or SVnia). The capital today
is considered a crossroad between East, West and Mediter-

Informatica27 (2003)

INFORMATICA
AN INTERNATIONAL JOURNAL OF COMPUTING AND INFORMATICS

INVITATION, COOPERATION

Submissions and Refereeing Since 1977, Informatica has been a major Slovenian scientific
journal of computing and informatics, including telecommunica-
Please submit three copies of the manuscript with good copies fiéns, automation and other related areas. In its 16th year (more
the figures and photographs to one of the editors from the Editeéhan ten years ago) it became truly international, although it still
rial Board or to the Contact Person. At least two referees outsidemains connected to Central Europe. The basic aim of Infor-
the author’s country will examine it, and they are invited to makenatica is to impose intellectual values (science, engineering) in a
as many remarks as possible directly on the manuscript, from tygistributed organisation.
@ng errors to global philosophical Qisagreements. The chogen eI(fifformatica is a journal primarily covering the European com-
itor will send the author copies with remarks. If the paper is ac-

ted. the editor will al nd ies 10 the Contact Person _I_Buter science and informatics community - scientific and educa-
cepted, the edito aiso send copies lo the Lontact Ferson. |8nal as well as technical, commercial and industrial. Its basic

Egsgutt;vj Iioarlzjlcvkxllll(lzér;fgr.rtn t.r;lebzuth%rlltsr;]aet dthe.tﬁ.arl] pg;:ase:reggim is to enhance communications between different European
pted, in whi It wi publl withi y tructures on the basis of equal rights and international referee-

;_e ceipt 0 f e-ma:cls W't? t_pﬁ texF n ITffgrmatlcaTEX Iorn;)at anci ing. It publishes scientific papers accepted by at least two ref-
'gures in.eps format. 1he onginal igures can aiso be Senton, oo 1 iside the author's country. In addition, it contains in-

separate sheets. Style and examples of papers can be Obta'negok%ation about conferences, opinions, critical examinations of

e-mail from the Contact Person or from FTP or WWW (see th%xisting publications and news. Finally, major practical achieve-

last page of Informatica). ments and innovations in the computer and information industry
Opinions, news, calls for conferences, calls for papers, etc. shoulde presented through commercial publications as well as through

be sent directly to the Contact Person. independent evaluations.
Editing and refereeing are distributed. Each editor can conduct
QU ESTIONNAIRE the refereeing process by appointing two new referees or referees
from the Board of Referees or Editorial Board. Referees should
I:] Send Informatica free of charge not be from the author’s country. If new referees are appointed,

their names will appear in the Refereeing Board.

I:] Yes, we subscribe Informatica is free of charge for major scientific, educational and
governmental institutions. Others should subscribe (see the last

Please, complete the order form and send it to Dr. Drago Torkgsage of Informatica).

Informatica, Institut JoZef Stefan, Jamova 39, 1111 Ljubljana,

Slovenia.

ORDER FORM — INFORMATICA

NI .ttt e e Office Address and Telephone (optional):
Title and Profession (OptioNal): e e
... E-mail Address (optional): ...
Home Address and Telephone (optional):

... Signature and Date: i

Informatica WWW:

http://ai.ijs.si/informatica/
http://orca.st.usm.edu/informatica/

Referees:

Witold Abramowicz, David Abramson, Adel Adi, Kenneth Aizawa, Suad Ataglohamad Alam, Dia Ali, Alan

Aliu, Richard Amoroso, John Anderson, Hans-Jurgen Appelrath, Ivan Araujo, Vladimit,Baichel Barbeau,
Grzegorz Bartoszewicz, Catriel Beeri, Daniel Beech, Fevzi Belli, Simon Beloglavec, Sondes Bennasri, Francesco
Bergadano, Istvan Berkeley, Azer Bestavros, Andraz Bezek, Balaji Bharadwaj, Ralph Bisland, Jacek Blazewicz,
Laszlo Boeszoermenyi, Damjan BojadZijev, Jeff Bone, Ivan Bratko, Pavel Brazdil, Bostjan Brumen, Jerzy
Brzezinski, Marian Bubak, Davide Bugali, Troy Bull, Leslie Burkholder, Frada Burstein, Wojciech Buszkowski,
Rajkumar Bvyya, Netiva Caftori, Particia Carando, Robert Cattral, Jason Ceddia, Ryszard Choras, Wojciech
Cellary, Wojciech Chybowski, Andrzej Ciepielewski, Vic Ciesielski, Mel O Cinnéide, David Cliff, Maria Cobb,
Jean-Pierre Corriveau, Travis Craig, Noel Craske, Matthew Crocker, Tadeusz Czachorskﬁ?&/ﬁl@m Honghua

Dai, Bart de Decker, Deborah Dent, Andrej Dobnikar, Sait Dogru, Peter Dolog, Georg Dorfner, Ludoslaw
Drelichowski, Matija Drobn, Maciej Drozdowski, Marek Druzdzel, Marjan DruZovec, Jozo DujrapRavol

Duri, Amnon Eden, Johann Eder, Hesham EI-Rewini, Darrell Ferguson, Warren Fergusson, David Flater, Pierre
Flener, Wojciech Fliegner, Vladimir A. Fomichov, Terrence Forgarty, Hans Fraaije, Hugo de Garis, Eugeniusz
Gatnar, Grant Gayed, James Geller, Michael Georgiopolus, Michael Gertz, Jaskgalanusz Gorski, Georg

Gottlob, David Green, Herbert Groiss, Jozsef Gyorkos, Marten Haglind, Abdelwahab Hamou-Lhadj, Inman
Harvey, Jaak Henno, Marjan Hericko, Elke Hochmueller, Jack Hodges, Doug Howe, Rod Howell, Tomas Hruska,
Don Huch, Simone Fischer-Huebner, Alexey Ippa, Hannu Jaakkola, Sushil Jajodia, Ryszard Jakubowski, Piotr
Jedrzejowicz, A. Milton Jenkins, Eric Johnson, Polina Jordanova, Djariduklarko Juvancic, Sabhash Kak,
Li-Shan Kang, lvan Kapustgk, Orlando Karam, Roland Kaschek, Jacek Kierzenka, Jan Kniat, Stavros Kokkotos,
Fabio Kon, Kevin Korb, Gilad Koren, Andrej Krajnc, Henryk Krawczyk, Ben Kroese, Zbyszko Krolikowski,
Benjamin Kuipers, Matjaz Kukar, Aarre Laakso, Les Labuschagne, Ivan Lah, Phil Laplante, Bud Lawson, Herbert
Leitold, Ulrike Leopold-Wildburger, Timothy C. Lethbridge, Joseph Y-T. Leung, Barry Levine, Xuefeng Li,
Alexander Linkevich, Raymond Lister, Doug Locke, Peter Lockeman, Matija Lokar, Jason Lowder, Kim Teng
Lua, Ann Macintosh, Bernardo Magnini, Andrzej Matachowski, Peter Marcer, Andrzej Marciniak, Witold
Marciszewski, Vladimir Marik, Jacek Martinek, Tomasz Maruszewski, Florian Matthes, Daniel Memmi, Timothy
Menzies, Dieter Merkl, Zbigniew Michalewicz, Gautam Mitra, Roland Mittermeir, Madhav Moganti, Reinhard
Moller, Tadeusz Morzy, Daniel Mossé, John Mueller, Jari Multisilta, Hari Narayanan, Jerzy Nawrocki, Rance
Necaise, Elzbieta Niedzielska, Marian Niedq'zwiddi, Jaroslav Nieplocha, Oscar Nierstrasz, Roumen

Nikolov, Mark Nissen, Jerzy Nog@e Stefano Nolfi, Franc Novak, Antoni Nowakowski, Adam Nowicki, Tadeusz
Nowicki, Daniel Olejar, Hubert Osterle, Wojciech Olejniczak, Jerzy Olszewski, Cherry Owen, Mieczyslaw Owoc,
Tadeusz Pankowski, Jens Penberg, William C. Perkins, Warren Persons, Mitja Peru§, Stephen Pike, Niki Pissinou,
Aleksander Pivk, Ullin Place, Gabika Bidova, Gustav Pomberger, James Pomykalski, Dimithu Prasanna, Gary
Preckshot, Dejan Rakayi Cveta Razdevsek Eko, Ke Qiu, Michael Quinn, Gerald Quirchmayer, Vojislav D.
Radonijic, Luc de Raedt, Ewaryst Rafajlowicz, Sita Ramakrishnan, Kai Rannenberg, Wolf Rauch, Peter
Rechenberg, Felix Redmill, James Edward Ries, David Robertson, Marko Robnik, Colette Rolland, Wilhelm
Rossak, Ingrid Russel, A.S.M. Sajeev, Kimmo Salmenjoki, Pierangela Samarati, Bo Sanden, P. G. Sarang, Vivek
Sarin, Iztok Savnik, Ichiro Satoh, Walter Schempp, Wolfgang Schreiner, Guenter Schmidt, Heinz Schmidt, Dennis
Sewer, Zhongzhi Shi, Maria Smolérova, Carine Souveyet, William Spears, Hartmut Stadtler, Olivero Stock, Janusz
Stoktosa, Przemystaw Stpidagki, Andrej Stritar, Maciej Stroinski, Leon Strous, Tomasz Szmuc, Zdzislaw
Szyjewski, Jure Silc, Metod SkarjafuSlechta, Chew Lim Tan, Zahir Tari, Jurij TésiGheorge Tecuci, Piotr
Teczynski, Stephanie Teufel, Ken Tindell, A Min Tjoa, Vladimir Tosic, Wieslaw Traczyk, Roman Trobec, Marek
Tudruj, Andrej Ule, Amjad Umar, Andrzej Urbanski, Marko USiTadeusz Usowicz, Romana Vajde Horvat,
Elisabeth Valentine, Kanonkluk Vanapipat, Alexander P. Vazhenin, Jan Verschuren, Zygmunt Vetulani, Olivier de
Vel, Valentino Vrang, Jozef Vyskoc, Eugene Wallingford, Matthew Warren, John Weckert, Michael Weiss,

Tatjana Welzer, Lee White, Gerhard Widmer, Stefan Wrobel, Stanislaw Wrycza, Janusz Zalewski, Damir Zazula,
Yanchun Zhang, Ales Zivkovic, Zonling Zhou, Robert Zorc, Anton P. Zeleznikar

Informatica

An International Journal of Computing and Informatics

Archive of abstracts may be accessed at USA: http://, Europe: http://ai.ijs.si/informatica, Asia:
http://www.comp.nus.edu.sg/ liuh/Informatica/index.html.

Subscription Information Informatica (ISSN 0350-5596) is published four times a year in Spring, Summer,
Autumn, and Winter (4 issues per year) by the Slovene Society Informatika, VozZarski pot 12, 1000 Ljubljana,
Slovenia.

The subscription rate for 2003 (Volume 27) is

— USD 80 for institutions,

— USD 40 for individuals, and

— USD 20 for students

Claims for missing issues will be honored free of charge within six months after the publication date of the issue.

IATEX Tech. Support: Borut Znidar, Kranj, Slovenia.
Lectorship: Fergus F. Smith, AMIDAS d.o.0., Cankarjevo nabrezje 11, Ljubljana, Slovenia.
Printed by Biro M, d.0.0., Zibertova 1, 1000 Ljubljana, Slovenia.

Orders for subscription may be placed by telephone or fax using any major credit card. Please call Mr. R. Murn,
Jozef Stefan Institute: Tel (+386) 1 4773 900, Fax (+386) 1 219 385, or send checks or VISA card number or use
the bank account number 900-27620-5159/4 Nova Ljubljanska Banka d.d. Slovenia (LB 50101-678-51841 for
domestic subscribers only).

Informatica is published in cooperation with the following societies (and contact persons):

Robotics Society of Slovenia (Jadran Legiay

Slovene Society for Pattern Recognition (Franjo Pernus)

Slovenian Artificial Intelligence Society; Cognitive Science Society (Matjaz Gams)

Slovenian Society of Mathematicians, Physicists and Astronomers (Bojan Mohar)

Automatic Control Society of Slovenia (Borut Zugae)

Slovenian Association of Technical and Natural Sciences / Engineering Academy of Slovenia (Igor Grabec)
ACM Slovenia (Dunja Mladert)

Informatica is surveyed by: Al and Robotic Abstracts, Al References, ACM Computing Surveys, ACM Digital
Library, Applied Science & Techn. Index, COMPENDEX*PLUS, Computer ASAP, Computer Literature Index,

Cur. Cont. & Comp. & Math. Sear., Current Mathematical Publications, Cybernetica Newsletter, DBLP Computer
Science Bibliography, Engineering Index, INSPEC, Linguistics and Language Behaviour Abstracts, Mathematical
Reviews, MathSci, Sociological Abstracts, Uncover, Zentralblatt fir Mathematik

The issuing of the Informatica journal is financially supported by the Ministry of Education, Science and Sport, Trg
OF 13, 1000 Ljubljana, Slovenia.

Volume 27 Number 1 April 2003 ISSN 0350-5596

Informatica

An International Journal of Computing and Informatics

Introduction 1
A Decentralized Approach to the Integration of Life Z.B. Miled, N. Li, M. 3
Science Web Databases Baumgartner, Y. Liu
doMosaic - Analysis of the mosaic-like domain D.T. Gerrard, 15
arrangements in proteins E. Bornberg-Bauer

Mining and Validating Gene Expression Patterns: ars.-M. Tseng, C.-P. Kao 21
Integrated Approach and Applications

Fault detection and isolation using hybrid parameteB. Athamena, 29
estimation and fuzzy logic residual evaluation H.A. Abbassi
Practical Construction for Multicast Re-keying C.-Y. Bai, 39
Schemes using R-S Code and A-G Code R. Houston,

G.-L. Feng
Building and managing software reuse libraries Z. Houhamdi 49
Deriving self-stabilizing protocols for services M. Kapus-Kolar 57
specified in LOTOS
Embedding Complete Binary Trees into Faulty J.-C. Lin 75
Flexible Hypercubes with Unbounded Expansion S.K.C. Lo
Supporting the development of time-triggered M.J. Pont 81

co-operatively scheduled (TTCS) embedded

software using design patterns

The GAT Approach to Specifying Mixed Systems J.-C. Royer 89
An Algorithm for Computing the Optimal Cycle D.M. Kodek 105
Time of a Printed Circuit Board Assembly Line M. Krisper

	27-1--000-Title.pdf
	27-1--003-14.pdf
	27-1--105-114.pdf
	27-1--15-20.pdf
	27-1--1-Introduction.pdf
	27-1--21-27.pdf
	27-1--29-37.pdf
	27-1--39-47.pdf
	27-1--49-55.pdf
	27-1--57-73.pdf
	27-1--75-80.pdf
	27-1--81-88.pdf
	27-1--89-103.pdf
	27-1--999-Back.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

