
Volume 27 Number 1 April 2003

Special Issue:
Bioinformatics Tools and Applications

Guest Editors:
Johann Eder, Omran Bukhres

EDITORIAL BOARDS, PUBLISHING COUNCIL

Informatica is a journal primarily covering the European com-
puter science and informatics community; scientific and educa-
tional as well as technical, commercial and industrial. Its basic
aim is to enhance communications between different European
structures on the basis of equal rights and international referee-
ing. It publishes scientific papers accepted by at least two ref-
erees outside the author’s country. In addition, it contains in-
formation about conferences, opinions, critical examinations of
existing publications and news. Finally, major practical achieve-
ments and innovations in the computer and information industry
are presented through commercial publications as well as through
independent evaluations.

Editing and refereeing are distributed. Each editor from the
Editorial Board can conduct the refereeing process by appointing
two new referees or referees from the Board of Referees or Edi-
torial Board. Referees should not be from the author’s country. If
new referees are appointed, their names will appear in the list of
referees. Each paper bears the name of the editor who appointed
the referees. Each editor can propose new members for the Edi-
torial Board or referees. Editors and referees inactive for a longer
period can be automatically replaced. Changes in the Editorial
Board are confirmed by the Executive Editors.

The coordination necessary is made through the Executive Edi-
tors who examine the reviews, sort the accepted articles and main-
tain appropriate international distribution. The Executive Board
is appointed by the Society Informatika. Informatica is partially
supported by the Slovenian Ministry of Science and Technology.

Each author is guaranteed to receive the reviews of his article.
When accepted, publication in Informatica is guaranteed in less
than one year after the Executive Editors receive the corrected
version of the article.

Executive Editor – Editor in Chief
Anton P. Železnikar
Volaričeva 8, Ljubljana, Slovenia
s51em@lea.hamradio.si
http://lea.hamradio.si/˜s51em/

Executive Associate Editor (Contact Person)
Matjaž Gams, Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Phone: �386 1 4773 900, Fax: �386 1 219 385
matjaz.gams@ijs.si
http://ai.ijs.si/mezi/matjaz.html

Executive Associate Editor (Technical Editor)
Drago Torkar, Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Phone: �386 1 4773 900, Fax: �386 1 219 385
drago.torkar@ijs.si

Rudi Murn, Jožef Stefan Institute

Publishing Council:
Tomaž Banovec, Ciril Baškovič,
Andrej Jerman-Blažič, Jožko Čuk,
Vladislav Rajkovič

Board of Advisors:
Ivan Bratko, Marko Jagodič,
Tomaž Pisanski, Stanko Strmčnik

Editorial Board
Suad Alagić (Bosnia and Herzegovina)
Vladimir Bajić (Republic of South Africa)
Vladimir Batagelj (Slovenia)
Francesco Bergadano (Italy)
Leon Birnbaum (Romania)
Marco Botta (Italy)
Pavel Brazdil (Portugal)
Andrej Brodnik (Slovenia)
Ivan Bruha (Canada)
Se Woo Cheon (Korea)
Hubert L. Dreyfus (USA)
Jozo Dujmović (USA)
Johann Eder (Austria)
Vladimir Fomichov (Russia)
Georg Gottlob (Austria)
Janez Grad (Slovenia)
Francis Heylighen (Belgium)
Hiroaki Kitano (Japan)
Igor Kononenko (Slovenia)
Miroslav Kubat (USA)
Ante Lauc (Croatia)
Jadran Lenarčič (Slovenia)
Huan Liu (Singapore)
Ramon L. de Mantaras (Spain)
Magoroh Maruyama (Japan)
Nikos Mastorakis (Greece)
Angelo Montanari (Italy)
Igor Mozetič (Austria)
Stephen Muggleton (UK)
Pavol Návrat (Slovakia)
Jerzy R. Nawrocki (Poland)
Roumen Nikolov (Bulgaria)
Franc Novak (Slovenia)
Marcin Paprzycki (USA)
Oliver Popov (Macedonia)
Karl H. Pribram (USA)
Luc De Raedt (Belgium)
Dejan Raković (Yugoslavia)
Jean Ramaekers (Belgium)
Wilhelm Rossak (USA)
Ivan Rozman (Slovenia)
Claude Sammut (Australia)
Sugata Sanyal (India)
Walter Schempp (Germany)
Johannes Schwinn (Germany)
Zhongzhi Shi (China)
Branko Souček (Italy)
Oliviero Stock (Italy)
Petra Stoerig (Germany)
Jiří Šlechta (UK)
Gheorghe Tecuci (USA)
Robert Trappl (Austria)
Terry Winograd (USA)
Stefan Wrobel (Germany)
Xindong Wu (Australia)

 Informatica 27 (2003) 3–14 3

A Decentralized Approach to the Integration of Life Science Web
Databases
Zina Ben Miled,
ECE Department, Indiana University Purdue University Indianapolis,
723 W. Michigan St, SL 160C, Indianapolis, IN, 46202
zmiled@iupui.edu

Nianhua Li, Mark Baumgartner
CSCI Department, Indiana University Purdue University Indianapolis,
723 W. Michigan St, SL 280, Indianapolis, IN, 46202
niali@iupui.edu, maabaumg@iupui.edu

Yang Liu,
ECE Department, Indiana University Purdue University Indianapolis,
723 W. Michigan St, SL 160C, Indianapolis, IN, 46202
liuy_yang@yahoo.com

Keywords: integration, biological databases, distributed architecture

Received: June 8th,2002

In the recent decades technological breakthroughs in science and engineering have led to an explosion in the
amount of data available in several fields such as environmental, biological and chemical fields. One of the
obstacles preventing this data from empowering new discoveries is the lack of adequate methods that can
manage this data and turn it into knowledge. This paper presents a scalable solution to the management of life
science databases. Life science web databases are often heterogeneous, geographically distributed and
contain semi-structured data. The proposed system (BACIIS: Biological and Chemical Information
Integration System) integrates these web databases on-demand. The architecture of BACIIS is decentralized.
This design choice was made in order to overcome some of the limitations of remote web-based querying and
to create a system that can adapt to an increasing number of users. This paper discusses the architecture of
BACIIS and presents an analysis of its performance in response to queries submitted by multiple users.

1 Introduction
The highlight of the last decade in the life sciences was
the production of massive amount of data. The objective
of the next decade is to analyse this data and turn it into
knowledge that can enable discoveries. In order for
scientists to turn the available data into knowledge, they
have to be able to formulate hypothesis and validate
them. This process involves accessing multiple databases
that are often only accessible through a web interface.
Furthermore, while these databases contain large amount
of valuable data, they do not easily interoperate. There
are hundreds of life science databases that provide access
to scientific data and literature. These databases use
different nomenclatures, file formats, and data access
interfaces. Furthermore, they may include redundant and
conflicting data.

BACIIS (Biological and Chemical Information
Integration System) [1] is an on-demand information
integration system for life science web-databases. Figure
1 shows BACIIS integrating four widely used life science
web databases. These databases are GenBank [2],
SwissProt[3], OMIM[4] and PDB[5].

Web-Database
GenBank

Web-Database
SwissProt

Web-Database
OMIM

Wrapper Wrapper Wrapper

Information Integration Layer

Unified User Interface

USER USER

Web-Database
PDB

Wrapper

USER

...

...

Figure 1: Information integration of life Science web
database.

For example, PDB (Protein Data Bank) contains
information on 3-D biological macromolecular structure
and GenBank is a genetic sequence database, which
consists of an annotated collection of all publicly
available DNA sequences. These databases represent only
a subset of the available life science databases that are in
excess of 100[6]. The objective of BACIIS is to integrate
a large number of these databases in order to provide

4 Informatica 27 (2003) 3–14 Z.B. Miled et al.

wide coverage. This goal can only be achieved through a
robust and scalable architecture.

BACIIS supports the seamless integration of various life
science web databases in order to facilitate knowledge
discovery. It allows a user to issue a multi-database query
without any knowledge of the actual content or data
representation of the individual web databases being
integrated by BACIIS. The querying process is
completely transparent to the user. Thus, allowing him or
her to concentrate on the biological aspects of the project
being conducted rather than on the implementation details
of the web databases that house the needed information.

The integration method used in BACIIS is based on the
semantic understanding and representation of the life
science domain knowledge. BACIIS provides users with
the ability to submit queries across multiple
geographically distributed heterogeneous life science
web-databases. The integration is performed on-demand
as opposed to in advance. That is, when a user issues a
multidatabase query, the corresponding data is retrieved
directly and on-line from the websites of the target life
science web databases. An integration in advance
approach relies on first downloading the various
databases to a local server ahead of time and responding
to the user query using the data from these local
databases. Given that BACIIS performs integration on-
demand, its decentralized architecture enhances its ability
to perform multidatabase queries with reduced response
times even when multiple users are accessing the system.

In this paper, the decentralized architecture of BACIIS is
presented and its query response time is analysed.
Although, BACIIS integrates life science databases, the
proposed architecture can also be used as a model for
systems that process transactions over the Internet.
Section 2 of this paper describes the functionality and
implementation of the decentralized architecture of
BACIIS. Experiments that illustrate the scalability of
BACIIS and its performance are presented in Section 3.
Related work is summarized in Section 4. Conclusions
are included in Section 5.

2 Decentralized Architecture
BACIIS was designed with several goals in mind
including correctness, reduced query response time, and
maximum coverage. In order to fulfil the first goal, an
on-demand integration approach was selected because it
provides the user with up-to-date query results.
Furthermore, correctness dictates a semantic based
integration. The biological databases use disparate
scientific terms and representations. For example, the
term citation is used by PDB and the term references is
used by GenBank to refer to literature references. When
constructing the data source schema for these two
databases, the two terms are tagged by the same ontology
term: REFERENCE. Thus, establishing their equivalency.
In addition, once the result corresponding to these two
terms is returned from each database, the records in each

result have to be combined in order to keep only the
unique records. This example illustrates one of the many
cases where only a semantic integration approach can
resolve the variability among the databases and provide a
correct response to a multidatabase query.

Preserving the local autonomy of the individual life
science web databases was dictated by the culture of the
biological field. Most of the databases are organized
around disciplinary interest or institutional convenience.
This gave rise to data silos that integrate data vertically
(within a domain) but not horizontally (across domains).
The goal of BACIIS is to support this horizontal
integration using a semantic-based approach.

The above mentioned constraints (i.e. correctness,
reduced query response time, maximum coverage and
preservation of the local autonomy of the databases) often
lead to design trade-offs. For example, returning the most
complete result data set for a query (i.e. maximum
coverage through the integration of a large number of
databases) will most likely require a longer response time
than returning a selected reduced data set result. This
paper focuses on the decentralized architecture of
BACIIS and its ability to integrate on-demand, multiple
web databases with fast query response time.

Data Source
Schema

Domain
Ontology

BACIIS
Knowledge

Base

User Web Browser

Ontology
Knowledge

Server
RMI

Web
Interface

Server

Web Server
with Servlet

support

Query
Planning
Server

RMI

Wrapper
Service
Server

RMI

Result
Presentation

Server

RMI

 Figure 2: BACIIS decentralized architecture

BACIIS is composed of five servers (Figure 2): Web
interface server, Query Planner Server, Ontology
Knowledge Server, Wrapper Service Server, and Result
Presentation Server. These servers collaborate in order to
generate query plans, match queries with target data
sources, perform data source interrogation, and integrate
the results returned from data sources. The functionality
and implementation of these servers are discussed in the
following subsections.

The architecture of BACIIS (Figure 3) is based on a
mediator-wrapper approach [7, 8, 9] augmented with a
knowledge base. The mediator transforms data from its

A Decentralized Approach to the Integration of... Informatica 27 (2003) 3–14 5

format in the source database to the internal format used
by the integration system. Some of the functions of the
mediator are included in the Query Planning Server and
the remaining functions are included in the Result
Presentation Server.

 Figure 3: BACIIS system architecture

Each database participating in the integration is
associated with a wrapper. The wrapper acts as an
intelligent proxy user and extracts information from the
corresponding remote data source. All the wrappers are
part of the Wrapper Service Server.

The life science web databases include semi-structured
data with an unknown or dynamically changing schema.
This characteristic makes it impractical to collect the
schema from each remote database and attempt to
maintain a unified static global data schema using the
traditional relational model. BACIIS uses a different
strategy. Instead of building a global data schema, each
remote database schema is mapped onto the domain
ontology [10]. Both the ontology and the data source
schema for the various databases are included in the
BACIIS knowledge base (Figure 2). The ontology is
independent from the data schema of the remote
databases. It will only change when the biological
domain evolves to include new discoveries and findings.

The decentralized architecture of BACIIS was
implemented using Java Remote Method Invocation
(RMI) [11]. Queries in BACIIS often result in a large
volume of retrieved data. The complexity of the queries
and the high volume of retrieved data, make a centralized
architecture inadequate. Furthermore, a centralized
architecture quickly becomes a bottleneck if multiple
users are trying to submit queries. The decentralized
architecture of BACIIS yields other benefits beyond a
performance enhancement and a better quality of service,
including increased modularity and better maintainability.

2.1 Web Interface Server
The web interface server is developed using JavaBeans
and JSP. It accepts user queries and presents the query
results. Queries in BACIIS are formulated by using the
query by example approach. This is a very popular
approach in the biological domain. The user composes a
query by combining terms from the domain ontology.
These domain ontology terms are retrieved from the
ontology service server.

The user formulates a query in BACIIS through the
interface shown in Figure 4. The first box in this
interface shows the ontology classes and subclasses.
When one of the classes is highlighted the corresponding
properties are displayed in the properties window. This
allows the user to select the desired output property from
the available properties list. The user can select several
classes and several properties. This process in the query
composition allows the user to retrieve only the data that
he or she may need. Filtering the output according to the
preferences of the user will reduce the amount of data
retrieved, which will in turn improve query response
time.

Figure 4: BACIIS Advanced Search Interface.

The next step of the query composition is to define the
input part of the query. The input is defined as a Boolean
expression over a set of input keywords. The user can
have unlimited number of predicates in the input query.
However, for each predicate, the user must also specify
an input type that is selected from a drop down menu. For
example, in Figure 4, the keyword mouse is associated
with the type ORGANISM-NAME. The type specification
is necessary when integrating heterogeneous life science
databases because it promotes a more accurate query
result. Most of the life science web databases identify
specific terms, such as organism name, in each record of
the database. Specifying the type organism name for the
input keyword “mouse” will use the metadata knowledge
available in the underlying life science database to
prevent BACIIS from returning irrelevant results. For

Web Interface
Input user queries and

present the query results

Data Source
Schema

Domain Ontology

BACIIS
Knowledge

Base

Query Generator Module
Generate semantic

based user queries into
domain recoganized

terms through Ontology

Query Planning and Execution Module
Query Planner

Decompose the user
query into subqueries,
define the subqueries
dependancy, and find

the query paths

Mapping Engine
Map each subquery into
specific data source(s)

Execution Engine
Receive data source
specific subqueries

and envoke
corresponding

wrappers to fetch
the data from

remote data source

Result Presentation Module
Receive and integrate
the individual result

set from wrappers into
HTML format and
send result pages to

web interface

Mediator
Wrapper

Fetch HTML pages
from remote data
source, extract

result data

Web
Database

Web
Database

Web
Database

Wrapper

Fetch XML pages
from remote data
source, extract

result data

Wrapper

Fetch TEXT pages
from remote data
source, extract

result data

I nformation I ntegration L ayer

6 Informatica 27 (2003) 3–14 Z.B. Miled et al.

example the keyword “mouse” may be used in a different
context such as in “by a click of a mouse”. Records
containing reference to the keyword mouse in this context
are irrelevant to the input query and should not be
returned by BACIIS. A subset of the type list available in
BACIIS is shown in Figure 5.

Figure 5: User Interface Type Selection

Once the query entry process is completed, the web
interface server will package the query including
information about the output properties, the input and the
output types selected by the user, and forwarded it to the
query planner server.

2.2 Query Planner Server
The role of the query planner server is to decompose a
given query into sub-queries, define the dependencies
between these sub-queries, find proper query execution
paths, map the sub-queries to the appropriate data
sources, and call the wrapper service server to invoke the
corresponding data source wrappers.

Finding a proper query execution plan entails determining
the shortest execution path for the query. The plan is
composed of database specific sub-queries, where each
sub-query can be answered using a single database. This
task involves building a graph of possible paths, where
the sub-queries are the nodes of the graph, and
determining the shortest path.

Consider the following query: For all the enzymes of the
EC family 1.1.1.1 and the human ADH2 protein, retrieve
their 3D structure information, their coding gene
sequence and their related literature references.

The above query is entered in the BACIIS interface as
follows, where the Boolean operators that combine the
clauses are underlined:

 [Protein Name = ADH2] AND [Organism Name =
Human] OR [EC Family Number = 1.1.1.1].

The BACIIS interface uses the query-by-example
approach which simplifies the entry of complex queries
such as the above query. Also, as previously mentioned,
the interface uses the ontology to guide the user in
formulating the query.

Query decomposition transforms a complex query into
sub-queries. This is accomplished by breaking the query
string into sub-strings along the partitions of logical
operators. Internally in BACIIS the query is interpreted
using the left anchored operator precedence. The result of
the query decomposition tree for the example query
introduced in Section 1 is shown in Figure 6.

Node 1
[Protein Name = ADH2] AND [Organism Name = Human]
OR [EC Family Number = 1.1.1.1].

Node 2
[Protein Name = ADH2] AND
[Organism Name = Human].

Node 4
 [EC Family Number = 1.1.1.1].

Node 3
[Protein Name = ADH2].
[Organism Name = Human].

Figure 6: Query Decomposition Tree

In this figure node 1 is processed and all the paths

originating with the databases that can accept the query in
node 1 (i.e. [Protein Name = ADH2] AND [Organism
Name = Human] OR [EC Family Number = 1.1.1.1]) and
terminating with the databases that can provide Protein-
3D-Structure, Coding gene sequence, or Related
literature references are determined. For most complex
queries, it is very unlikely that a single life science
database can accept all the query clauses. Therefore, this
query needs to be decomposed further. Without an
information integration system for life science databases,
the user would need to decompose the query manually,
process the various sub-queries and combine the results
of these sub-queries. This fact is one of the motivations
underlying the need for the integration of life science
databases. The query of node 1 is decomposed along the
OR operator into two nodes: node 2 (i.e. [Protein Name =
ADH2] AND [Organism Name = Human]) and node 4
(i.e. [EC Family Number = 1.1.1.1]) . For these nodes
also, the paths that start with databases that can accept the
two sub-queries and terminate in a database that can
generate Protein-3D-Structure, Coding gene sequence, or
Related literature references are identified. The goal of
query decomposition is to explore all the possible
execution paths for the original query submitted by the
user. Each of the nodes 2 and 4 will result in a set of
paths. If the final execution plan includes these nodes, a
given path from the first set will be combined with a path
from the second set. Since the union (OR) of node 2 and

A Decentralized Approach to the Integration of... Informatica 27 (2003) 3–14 7

node 4 forms the original query, the union of the data set
resulting from the first path and the data set of the second
path is computed in order to collect the result data set for
the original query. The union is performed by the
information integration layer in BACIIS because of the
limited query capabilities of the individual life science
databases. Similarly, if two sub-queries are joined using
the AND operator, then the information integration layer
in BACIIS will compute the intersection of the result data
sets.

The decomposition process continues until nodes with
simple sub-queries (i.e. one input constraint with no
operators) are obtained. For example, the query
decomposition terminates in Figure 6 with nodes 3 and 4.
Each of these nodes contains a set of simple sub-queries.
The first step in the query processing is the
decomposition (Figure 6). Once the query decomposition
tree is obtained, the second step consists of identifying all
the databases that can accept the original query (node 1)
or any of its sub-queries (nodes 2 through 4). For
example, in order to process node 3, the databases that
can accept either one of the following sub-queries must
be determined as input databases:

• Protein Name = ADH2
• Organism Name = Human

Moreover, all databases that can provide the desired
query output (i.e. Protein-3D-structure, Coding gene
sequences, or Related literature references for the
example query) will be identified as output databases.
Among the four databases that are currently integrated by
BACIIS, SwissProt and PDB can provide Protein-3D-
structure, SwissProt and GenBank can provide Related
literature references, and GenBank can provide Coding
gene sequences.

The third step consists of combining the result of the
previous step into paths that originate from the databases
that can service any of the above queries and terminate in
an output database that contains the query result (i.e.
Protein-3D-Structure, Coding gene sequence, or Related
literature references information for the example query).
Figure 7 shows the complete plan for the above sample
query. The plan contains five paths: A1, A2, B1, C1, and
C2.

The forth step is to translate the plan in Figure 7 into an
executable plan. The plan in Figure 7 contains 5 plan
paths. Each of them contains several steps. In the
mapping process, each of the plan steps is mapped to a
specific data source that contains the requested data using
the information contained in the knowledge base.
Specifically, the metadata associated with each web
database being integrated by BACIIS is represented using
an XML schema file that is stored in the knowledge base.
This information is used to map a given plan step to the
specific URLs and extraction rules of the corresponding
web database. This mapping process will be explained in

more details in section 2.5. In the final executable plan,
each plan step includes the URL address of the associated
web database, the input and output properties, and the
extraction rules. An extraction rule consists of the set of
operations to be performed on the web database in order
to retrieve a given output based on a given input.

 [P
ro

te
in

 N
am

e
=

A
D

H
2]

 A
N

D
[O

rg
an

ism
 N

am
e

=
H

um
an

] O
R

[E
C

F
am

ily
 N

um
be

r =
 1

.1
.1

.1
]

GenBank
accession
number GenBank

literature
references

PDB
ID

A1
literature
references

Coding gene
sequences

PDB

A2

literature
references

B1

Coding gene
sequences

Protein 3D
structureProtein 3D

structure
C2

Protein 3D
structure C1

Swiss
Prot

Figure 7: Query plan

2.3 Wrapper Service Server
The wrapper service server receives the executable plan
from the query planner server. The wrapper service server
will fork a thread for plan paths that it receives. Five
threads will be generated for the above sample query
plan. Each thread will access the web databases
associated with a given path in a sequential order. For
example, the thread for plan path C1 in Figure 7 will use
the original query to retrieve corresponding SwissProt
entries and extract the cross-references to PDB from
these SwissProt entry pages, then it will fetch the cross-
referenced PDB entries and extract the protein 3D
structure information from the PDB database. In this
process, URLs are used to fetch source database data
entry pages, whereas the extraction rules are used to
obtain the desired information from that page. Once the
data is returned for all the plan paths, the wrapper service
server makes a remote method invocation to the result
presentation server.

Query keywords
Remote database address
Extraction rules

Structructed query results

Remote
data

source

Mediator Query
Planning and

execution module

Mediator: Result
presentation module

Interrogation Module
Submit query to remote database
Retrieve returning HTML pages

Extraction Module
Parse returning pages
Extract result data using proper
extraction rules

Identification Module
Label the query properties using
ontology terms
Construct the data container for
the query result

Figure 8: Wrapper Architecture

Figure 8 shows the architecture of the wrapper. Each
wrapper consists of three modules: the identification
module, the interrogation module and the extraction
module. The identification module interfaces with the
query planner server. The role of this module is to label
the terms in the query using the ontology properties. It
also constructs the container that will hold the returned

8 Informatica 27 (2003) 3–14 Z.B. Miled et al.

result. The interrogation module communicates with the
identification module, the extraction module and the
associated web database. The role of this module is to
submit the query to the remote database and to retrieve
the result pages. These pages are passed to the extraction
module. In the extraction module the result pages are
parsed in order to extract the information requested by the
user. The structured query results also contain tags that
identify the various fields using terms from the ontology.
These structured results are passed to the result
presentation server.

The complexity of retrieving the correct data for a given
query may involve multiple accesses to more than one
web database. The data returned from a given web
database may consist of a page that includes the desired
data or just a link to another data source page. In the
second case, another access to a web database is required.
Furthermore, often, the data can only be retrieved from
one web database if a preliminary step of retrieving data
from another database is performed. For example, given
the GI number (GenBank ID) of a gene, in order to get
the 3D structure information of the protein encoded by
this gene, three databases have to be queried sequentially:
GI number −> GenBank database −> Accession Number
−> SwissProt database −> PDB ID −> PDB database −>
3D structure information.

2.4 Result Presentation Server
In the wrapper service server, once the data is returned by
the wrappers, the client will make a remote method
invocation to the result presentation server. The result
presentation server will fork a thread for each remote
method invocation. Once the results from all the sub-
queries of a given query are integrated, the information is
passed to the web interface server.

In order for the results retrieved by the wrappers to be
usable, the data retrieved must be semantically integrated
into a correct and cohesive format. Integrating data
source results in the biological domain is particularly
challenging because data from different data sources must
be checked for equivalency. Furthermore, the data
schema and the data format are different in the databases.
For example, a reference information is expressed as a
single record in SwissProt, while it is divided into
different fields (i.e. AUTHORS, TITLE, JOURNAL,
etc…) in GenBank.

Figure 9: Example query result entry from SwissProt.

In the result presentation server, an information unit is
called a result entry and it is extracted from one record in
one of the web databases. A result entry starts with a title
that contains the source database. Figure 9 shows the
result entry associated with the reference information
extracted from SwissProt for “14-3-3-like protein S94. -
Oryza sativa (Rice)”. In this figure the sub-properties of
the selected property REFERENCE are shown under the
field header.

Figures 9 and 10 are both result entries returned for a
single query issued against BACIIS. The difference in
these result entries illustrates another challenge that the
result presentation server faces when integrating the
result returned from different sub-queries. Figure 9 is a
result entry returned from SwissProt. Figure 10 is a result
entry retuned from GenBank. The SwissProt database
stores the sub-property PUBMED-NO. The PUBMED-
NO is an identification number given to a record in the
PubMed database. GenBank does not store the PubMed
identification number. Therefore, this number is included
in the result entry of Figure 9 but not in the result entry of
Figure 10. The result presentation server needs to be able
to handle the differences in both representation and
database information content. These differences are very
common in life science web databases.

Figure 10: Example query result entry from GenBank.

2.5 Ontology Knowledge Server
The BACIIS knowledge base contains the domain
ontology and the data source schema. Figure 11 shows
the high level structure of the ontology used in BACIIS.
The ontology is organized along three dimensions:
Object, Property and Relation. In this figure, nucleic acid
and protein are object classes, polymorphism and protein-
mut-info are property classes, and encode and regulate
are relations. An instance of a property class can only
exist if there is at least one instance of the associated
object class. The classes in the object dimension are
arranged in a tree using the ordering “is-a-subset-of”.
The relations in the relation dimension provide an
association between the classes in the object dimension
and between the classes in the property dimension as well
as between classes across the two dimensions.

The domain ontology in BACIIS is represented using
PowerLoom [12]. The ontology knowledge server is used
to manage this domain ontology and service ontology
terms and relations inquiries from the BACIIS web
interface server. When a user starts building a query, the
web interface server will first retrieve all the ontology
classes through the ontology knowledge server. These

A Decentralized Approach to the Integration of... Informatica 27 (2003) 3–14 9

classes populate the left window in the BACIIS interface
shown in Figure 4. As the user selects certain classes, the
web interface server will further query the ontology
knowledge server to retrieve the sub-classes or the
properties for the selected ontology classes. These
properties will populate the right window in the BACIIS
interface shown in Figure 4.

The data source schema is the other component of the
knowledge base in BACIIS. It maps the schema of
individual databases to the domain ontology. The
mapping information contained in the data source schema
is stored in a file using the XML format. This convenient
and structured data format is well suited for storing data
source information because of the hierarchical nature of
the data. The concepts of sub-sets of information
residing at multiple levels are well represented by XML.
For better system performance, XML files are read into
Java Document Object Model (DOM) structures only on
system start up or after a knowledge base update.

Object
class

N
U

C
LE

IC
A

C
ID

polymorphisms

name

submitter-record

variation-summary

variation-type

markers-and-
biological-tools

others

clones

amplimers

probes

ge
ne

cl
on

e
ac

ce
s s

io
n

SO
U

R
C

E

or
ga

ni
sm

ge
no

m
e

tis
su

e
tis

su
e-

sy
st

em

PR
O

T
EI

N

m
em

be
r

cl
as

si
fic

a t
io

n
pr

ot
ei

n-
cl

as
s i

fic
at

io
n

SC
O

P-
st

ru
ct

ur
e-

cl
as

si
fic

at
io

n

no
rm

al
- p

ro
te

in

pr
ot

ei
n-

m
ut

at
io

n

nucleic-acid-
sequence-info

locus-no

version-no

base-count

origin

protein-mut-info

expression-system

express-tissue

changechange-point

function

regulate

encode

s
o
u
r
c
e
-
o
f

ST
S

mark-on

s
o
u
r
c
e
-
o
f

Property
class

N-terminal-seq

Relations

Figure 11: Structure of the Domain Ontology

A partial data source schema for GenBank is shown in
Figure 12. This XML file contains three sections: the
metadata, the query input types and the query output
types. The metadata section includes information about
the associated database. For example, one of the tags is
DBNAME which represents the database name. This tag
has the value GenBank in Figure 12. The query input type
section includes all the types of input keywords that are
accepted by the database. For example, GENE-NAME
which is a tag in the query input type section of the
GenBank data source schema, can be accepted by
GenBank. The value of this tag is a URL (i.e.
http://www.ncbi.nlm.nih.gov/query?db=2&form=1&term
=XXXX[TITLE]). If the user types in an input keyword
(e.g. ras) in the BACIIS user interface and specifies its
type as a Gene-Name, then the keyword ras will be
inserted into the URL as follows:
http://www3.ncbi.nlm.nih.gov/htbin-
post/Entrez/query?db=2&form=1&term=ras[TITL]

This final URL will be used to fetch data entries related
to gene ras from GenBank.

The last section of the data source schema contains the
types of output that can be produced by the database. In
the case of GenBank, NUCLEIC-ACID-SEQUENCE-
INFO can be retrieved. All of the tags in the query input
type section and the query output section of the data
source schema are terms defined in the ontology. In
addition to being used by the query planner to identify if
a given web database can answer a given query, these
tags are also used to mark the object, property and
relation terms in the result pages returned from the
wrappers. For example, the REFERENCE is an ontology
term that is used to tag the records returned from
SwissProt for citation and the records returned from
GenBank for reference for the BACIIS result entries
shown in figures 9 and 10.

-<ROOT>
-<META-DATA>
 <DBNAME>GenBank</DBNAME>
-<PATH-PAGE>
<PAGE-CHARACTER>
{title}entrez-nucleotide

</PAGE-CHARACTER>
<EXTRACT-LINK>
uh='value="clip add"'t='{/p}'la='{a href="'

</EXTRACT-LINK>
</PATH-PAGE>

</META-DATA>
-<INPUT-SCHEMA>
-<NUCLEIC-ACID-ID-INFO>
<GENE-NAME>
http://www3.ncbi.nih.gov/htbin-post/Entrez/

query?db=2!form=1!term=XXXX[TITL]
</GENE-NAME>

</NUCLEIC-ACID-ID-INFO>
-<NUCLEIC-ACID-SEQU-INFO>
<GI-NO>
http://www3.ncbi.nih.gov/htbin-post/Entrez/

query?db=2!form=1!term=XXXX[UID]
</GI-NO>

</NUCLEIC-ACID-SEQU-INFO>
</INPUT-SCHEMA>
-<OUTPUT-SCHEMA>
-<NUCLEIC-ACID-SEQU-INFO>
<NULEIC-ACID-LENGTH>
sh='{pre}'t='bp'l='locus"'r='bp'

</NUCLEIC-ACID-LENGTH>
<GI-NO>
sh='{pre}'t='keywords'l='version"GI:'r=''

</GI-NO>
</NUCLEIC-ACID-SEQU-INFO>

</OUTPUT-SCHEMA>

Define
Web-Database

Metadata

Define
Query Input

Types

Define
Query Outpt

Properties

Tag Name

Tag Value

Figure 12: Example Data Source Schema

3 Performance Analysis
Initially, BACIIS was implemented using a centralized
architecture. All system components were integrated into
a single application built to run on a single machine. The
complexity of the system components made it clear that a
decentralized approach is necessary. In this section the
performance gain of the decentralized architecture of
BACIIS is compared to the centralized architecture. This
performance is measured in terms of query response time.

3.1 Experiment Set-up
In order to evaluate the performance of the centralized
and decentralized BACIIS architectures, three
representative queries where identified. Because the
response time of BACIIS varies with the complexity of

10 Informatica 27 (2003) 3–14 Z.B. Miled et al.

the query, the selected queries have three different
complexity levels as shown in Table 1.

The first query is rated as simple because only one
database (SwissProt) will be used to generate the query
result. SwissProt is the only database among the four
databases currently integrated in BACIIS that can provide
general information for a protein. Furthermore, the query
is stated in terms of an access number that is recognized
by SwissProt. Finally, only one SwissProt record matches
this query. Thus, the wrapper will only access SwissProt
once and the returned result is small in size.

The second query is classified as average. The execution
plan generated by BACIIS for this query consists of the
following two steps:

1. Retrieve the entry list of all ADH2 proteins from
SwissProt.
2. Use the cross-references in each SwissProt entry
to retrieve related GenBank entries and extract the
desired information.

Complexity Query
simple Retrieve general information about

the protein whose ACCESS
NUMBER in the database
SwissProt is P00326.

average Retrieve general information of all
genes encoding the ADH2 (alcohol
dehydrogenase 2) proteins.

complex For all the enzyme of the EC family
1.1.1.1 and the human ADH2
protein, retrieve their 3D structure
information, their gene sequence and
their related literature references.

Table 1: Queries with different level of
complexities used to evaluate the response time
of BACIIS.

The second step is complicated by the biological
terminology, which uses the same name for close
homologous proteins in all species. For example,
SwissProt contains 74 records for the ADH2 proteins
from different species (yeast, tomato, human, etc …).
Furthermore, each entry is linked to multiple other
records in GenBank that are also retrieved. This query
mainly stresses the wrapper service server and provides
moderate complexity for the other servers.

The third query is the one previously mentioned in
Section 2.2. It is repeated here for convenience. This
query is complex. It seeks information about the Enzyme
family EC1.1.1.1 also known as “alcohol
dehydrogenase”. The execution plan for this query
consists of the following steps

1. Obtain all SwissProt entries of the EC family
1.1.1.1 proteins and human ADH2 protein and
extract reference information and cross-references to
GenBank and PDB.
2. Retrieve the gene sequences from GenBank and
the protein 3D structure information from PDB.

This query plan is more complex than the previous two
because it includes a join operation over data sets from
multiple databases. Thus, it takes the wrapper service
server and the result presentation server more time to
process this query. By selecting three queries with
varying complexity it possible to assess the performance
of the BACIIS system under different scenarios.

The web interface server and ontology knowledge server
are involved in the query building process, but not in the
query processing. Both of them are not included in the
experiment for three reasons. First, they have limited
effect on the overall system performance. Second, the
variability in the interactivity of a user with the interface
may make the results of the experiment unreliable. Third,
the experiment includes a test that submits multiple
queries in order to mimic the performance of the system
when multiple users are using it. It is impractical to use
the web interface and the ontology knowledge server for
such a test in a controlled environment. Instead of using
the web interface server, a simple query generator module
is used to send test queries, receive results and measure
the query response time.

For the centralized BACIIS architecture, the queries were
executed on a Sun Ultra 5 workstation. In the case of the
decentralized BACIIS architecture, the query planner
server, the wrapper service server and the result
presentation servers were each executed on a different
Sun Ultra 5 workstation. All the Sun Ultra5 workstations
used in the experiment have 384Mbyte of memory and
are equipped with one 400Mhz UltraSPARC-IIi
processor. During execution, these servers communicate
and exchange data through Java RMI procedure calls.

In an information integration system, the workload is
affected by the query arrival rate and the query
complexity. The first factor was tested by simultaneously
initiating multiple instances of the query generator
module where each instance submits one test query.
Thus, multiple copies of the same test query will be sent
to BACIIS concurrently. In order to test the second
factor, three queries (Table 1) with varying complexities
were selected.

3.1 Results

Figures 3, 4 and 5 show the execution times of the
queries under both the centralized and decentralized
architectures. Each figure includes four graphs. They
correspond to the execution time spent in the query
planner server, the wrapper service server, the result
presentation server and the overall execution time,

A Decentralized Approach to the Integration of... Informatica 27 (2003) 3–14 11

respectively. Figures 3, 4, and 5 show the execution times
for the simple, average and complex queries,
respectively. In each graph the x-axis represents an
increasing number of queries. The first data point refers
to the case when only one query is issued. The last data
point shown on the graphs corresponds to the case when
eight copies of the same query are submitted to BACIIS.
The y-axis represents the execution time per query.

As expected, the query response time for both the
centralized and decentralizes architectures degrades as
more queries are issued (figures 3d, 4d and 5d).

The query planner server is CPU and memory intensive,
so its performance heavily depends on the resources
available on the host machine. In the decentralized
architecture, since each server executes on a different
machine, there are less contention for resources. The
difference in contention in resources between the
centralized and decentralized architectures for the query
planner server can be observed in figures 3a, 4a and 5a.
In each of these graphs, the execution time for the query
planner in the decentralized architecture nearly remains
constant as the number of queries increases while that of
the centralized architecture increases rapidly.

0

1000

2000

3000

4000

5000

6000

0 5 10
Number of Concurrent Queries

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Centralized Decentralized

C

(a) Query planner server execution time

0

1000

2000

3000

4000

5000

6000

0 5 10
Number of Concurrent Query

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Centralized Decentralized

(b) wrapper service server execution time

0

50

100

150

200

250

0 5 10
Number of Concurrent Queries

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Centralized Decentralized

(c) Result presentation server execution time

0

2000

4000

6000

8000

10000

12000

0 5 10
Number of Concurrent Queries

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Centralized Decentralized

(d) Overall query response time

Figure 3: Execution times for simple query.

The result presentation server is also memory intensive.
For the same reason mentioned above, its performance
exhibits a similar pattern to that of the query planner
server.

The performance of the wrapper server is mainly dictated
by network traffic and response times from remote
database queries such as PDB and SwissProt. Because
multiple copies of the same query are issued
concurrently, these queries will connect to the same URL
and access the same records in the remote databases
integrated by BACIIS at almost the same time. Thus,
these requests will experience longer delays as the
number of query increases.

12 Informatica 27 (2003) 3–14 Z.B. Miled et al.

0

2500

5000

7500

10000

12500

15000

0 5 10
Number of Concurrent Queries

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Centralized Decentralized

(a) Query planner server execution time

0

50000

100000

150000

200000

250000

300000

0 5 10
Number of Concurrent Queries

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Centralized Decentralized

(b) Wrapper service server execution time

0

1000

2000

3000

4000

5000

6000

0 5 10
Number of Concurrent Queries

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Centralized Decentralized

(c) Result presentation server execution time

0

50000

100000

150000

200000

250000

300000

0 5 10
Number of Concurrent Queries

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Centralized Decentralized

(d) Overall query response time

Figure 4: Execution times for average query.

The overall execution time in the case of the simple query
(Figure 3) is nearly constant for the decentralized
architecture and it increases rapidly in the centralized
architecture. However, in the case of the average and
complex query the overall execution time increases for
both architectures. This can be explained by investigating
the percentage of the execution time spent in the wrapper
service server. For the average and complex query, the
wrapper service execution time dominates the overall
execution, whereas for the simple query this is not the
case. Moreover, as stated earlier, the execution time of
the wrapper service server is mostly dominated by the
access to the remote databases which incurs the same
overhead in both the centralized and decentralized
architectures.

As the usage of the biological databases increases, mirror
web databases may be created. Furthermore, we are
currently redesigning the wrapper service server so that it
itself can have a distributed architecture. These two
factors will improve the performance of the wrapper
service server in the cases of average and complex
queries.

4 Related Work
There are other projects that aim at integrating
heterogeneous databases such as TAMBIS [13] and
TSIMMIS [14]. BACIIS also shares many of its design
features with other distributed systems that perform the
same functions of query entry and data retrieval. These
systems include the Distributed Information Systems
Control World (DISCWorld) [15]. In this section,
BACIIS is compared to these systems.

TAMBIS integrates a specific set of life science
databases that consists of protein and nucleic acid data
sources. BACIIS differs from TAMBIS in that it aims at
integrating all possible life science data sources. In
addition the architecture of TAMBIS is not distributed.

A Decentralized Approach to the Integration of... Informatica 27 (2003) 3–14 13

The goal of the TSIMMIS Project is to develop tools that
facilitate the rapid integration of heterogeneous
information sources that may include both structured and
semi-structured data. TSIMMIS has components that
translate queries and information (source wrappers),
extract data from web sites, combine information from
several sources (mediator), and allow browsing of data
sources over the Web. TSIMMIS itself is not an
information integration system, but a tool for building
integration systems. TSIMMIS utilizes a distributed
CORBA-based protocol for submitting queries to data
sources and obtaining results [16]. This distributed
protocol is asynchronous in nature and will return partial
results to the client during data retrieval. The protocol
requires server side support, which is impractical for most
of the web databases that BACIIS integrates.

DISCWorld is a Java-based middleware for integrating
distributed computing component applications across
wide-area networks[17]. Like TISMMIS, DISCWorld
also requires the integrated services to be well defined
and described, thus it is not suitable for the integration of
web databases. DISCWorld focuses on issues such as
scalability, platform heterogeneity and the ability to
operate over wide-area networks[18].

0

5000

10000

15000

20000

0 5 10
Number of Concurrent Queries

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Centralized Decentralized

(a) Query planner server execution time

0

100000

200000

300000

400000

0 5 10

Number of Concurrent Queries

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Centralized Decentralized

(b) Wrapper service server execution time

0

100000

200000

300000

400000

500000

600000

0 5 10

Number of Concurrent Queries

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Centralized Decentralized

(c) Result presentation server execution time

0

200000

400000

600000

800000

1000000

0 5 10

Number of Concurrent Queries

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Centralized Decentralized

(d) Overall query response time

Figure 5: Execution times for complex query.

6 Conclusion
This paper describes the decentralized architecture of
BACIIS. This architecture consists of five servers that
cooperate to answer multi-database queries over a set of
geographically distributed life science databases. These
servers can be executed on the same host machine or on
different machines. This decentralized implementation is
scalable and maximizes resource utilization. In addition,
the decentralized implementation reduces the effort
needed to add new services to BACIIS.

The decentralized architecture of BACIIS shows a
performance gain in query response time for simple
queries when compared to the performance of the
centralized architecture. The difference in performance is
less apparent when more complex queries are submitted
to BACIIS. In this case, the query execution time is
dominated by the time it takes to retrieve data from
remote web databases (i.e. the wrapper service server).
This time is controlled by the access time to the remote
databases. This effect was exacerbated with the fact that
in the experiment multiple copies of the same query were
used. All of these copies access the same records in the

14 Informatica 27 (2003) 3–14 Z.B. Miled et al.

same web databases. The impact of the access time to
remote web databases on the performance of BACIIS will
be reduced further if mirror web sites for the web
databases can also be used. In addition, this impact can be
reduced if BACIIS can support the replication of services.
That is, initiating multiple copies of each of the servers
on different hosts when BACIIS receives multiple
queries.

BACIIS is available at http://baciis.engr.iupui.edu.

Acknowledgment
This research is supported by the National Science
Foundation under grants CAREER DBI-0133946 and
DBI-0110854, by the Indiana 21st Century Research and
Technology Fund, and by Eli Lilly and Company.

References

[1] Z. Ben Miled, O. Bukhres, Y. Wang, N. Li, M.
Baumgartner, B. Sipes, Biological and Chemical
Information Integration System, Network Tools and
Applications in Biology, Genoa, Italy, May 2001.

[2] http://www.ncbi.nlm.nih.gov/Genbank/index.html

[3] http://www.expasy.ch/sprot/

[4] http://www.ncbi.nlm.nih.gov/entrez/

[5] http://www.rcsb.org/pdb/

[6] http://www.expasy.ch/alinks.html#Proteins

[7] Wiederhold, G., Mediators in the Architecture of
Future Information Systems, IEEE Computer, pages 38-
49, 1992.

[8] Knoblock, C.A., Minton, S. The ariadne approach to
web-based information integration. IEEE Intelligent
Systems, 13(5), September/October 1998.

[9] Levy, A.Y., The Information Manifold Approach to
Data Integration, IEEE Intelligent System, 1998.

[10] Ben Miled, Z., Wang, Y., Li, N., Bukhres, O.,
Martin, J., Nayar, A. and Oppelt, R., BAO, A Biological
and Chemical Ontology For Information Integration,
Online Journal Bioinformatics, Vol. 1, pages 60-73,
2002.

[11] George Coulouris, Jean Dollimore, and Tim
Kindberg., “Distributed Systems Concepts and Design”,
P194-200, Addison-Wesley Publishers Limited, Third
Edition, 2001

[12] MacGregor, R.M., Chalupsky H., and Melz, E.R.
Powerful knowledge representation and reasoning with
deliver in Common-Lisp, C++, (and, eventually, Java).
PowerLoom Manual, Nov.1997.

[13] Paton, N.W., Stevens, R., Baker, P.G., Goble, C.A.,
Bechhofer, S., and Brass, A. Query Processing in the
TAMBIS Bioinformatics Source Integration System,
Proc. 11th Int. Conf. on Scientific and Statistical
Databases (SSDBM), IEEE Press, pages 138-147, 1999

[14] J. Hammer, M. Breunig, H. Garcia-Molina, S.
Nestorov, V. Vassalos, R. Yerneni. Template-based
Wrappers in the TSIMMIS System. In Proceedings of the
Twenty-Sixth SIGMOD International Conference on
Management of Data, Tucson, Arizona, May 12-15,
1997.

[15] K. A. Hawick, H. A. James, and J. A. Mathew.,
Remove Data Access in Distributed Object-Oriented
Middleware, Parallel and Distributed Computing
Practices, 2000

[16] Garcia-Molina, H. and Paepcke, A., Proposal for
I**3 Client Server Protocol, Technical Report, September
1996

[17] Hawick, K.A., James, H.A., and Coddington, P.D. A
Reconfigurable Component-based Problem Solving
Environment. Proc. Of Hawiaii International Conference
on System Sciences (HICSS-34), 2000.

[18] Hawick, K.A., James, H.A., Silis, A.J., Grove, D.A.,
Patten, C.J., Mathew, J.A., Coddington, P.D., Kerry,
K.E., Hercus, J.F., and Vaughan, F.A. DISCWorkd: An
Environment for Service-Based Metacomputing. Future
Generation Computer Systems (15), pages 623-640, 1999.

Informatica27 (2003) 105–114 105

An Algorithm for Computing the Optimal Cycle Time of a Printed Circuit
Board Assembly Line

Dušan M. Kodek and Marjan Krisper
University of Ljubljana, Faculty of Computer and Information Science
Tržaška 25, 1000 Ljubljana, Slovenia
E-mail: duke@fri.uni-lj.si

Keywords: combinatorial optimization, integer programming, minimax approximation

Received:December 24, 2002

We consider the problem of optimal allocation of components to a printed circuit board (PCB) assembly
line which has several nonidentical placement machines in series. The objective is to achieve the highest
production throughput by minimizing the cycle time of the assembly line. This problem can be formulated
as a minimax approximation integer programming model that belongs to the family of scheduling prob-
lems. The difficulty lies in the fact that this model is proven to beNP-complete. All known algorithms that
solve theNP-complete problems are exponential and work only if the number of variables is reasonably
small. This particular problem, however, has properties that allow the development of a very efficient type
of branch-and-bound based optimal algorithm that works for problems with a practically useful number of
variables.

1 Introduction

The problem of optimal allocation of components to place-
ment machines in a printed circuit board (PCB) assembly
line is NP-complete and is often considered too difficult
to solve in practice. This opinion is supported by the ex-
perience with the general integer programming programs
that are typically very slow and do not produce solutions
in a reasonable time. It is therefore not surprising to see
many attempts of replacing the optimal solution with a
near-optimal one. The reasoning goes as follows: A near-
optimal solution is often good enough and is usually ob-
tained in a significantly shorter time than the optimal solu-
tion. Although this is true in many cases, it does not hold
always. The difficulty with the near-optimal methods is
that they, as a rule, do not give an estimate of closeness to
the optimal solution. This means that a significantly bet-
ter optimal solution, about which the user knows nothing,
may exist. Given a choice, the user would probably always
choose the optimal solution provided that it can be obtained
in a reasonable time.

This paper challenges the opinion that the optimal so-
lution is too difficult to compute. An algorithm that takes
advantage of the special properties of the minimax approx-
imation optimal allocation problem is developed. This op-
timal algorithm is much faster than the general integer pro-
gramming approach mentioned above. The algorithm pro-
duces, in most practical cases, the optimal solution in a
time that is similar to the time needed for near-optimal
methods. Because of its exponential nature, it will of
course fail in the cases when the number of variables is
large. But it should be noted that the algorithm practically
always produces one or more suboptimal solutions which

can be used in such cases. These suboptimal solutions are
comparable to those obtained by the near-optimal methods
like local search, genetic algorithms, or knowledge based
systems. Or in other words, the user can only gain if the
optimal algorithm is used.

Let us start with an investigation of the PCB assembly
line problem. The cycle timeT of a PCB assembly line is
defined as the maximum time allowed for each machine (or
station) in the assembly line to complete its assembly tasks
on the board. This time becomes important when the quan-
tity of PCBs is large: A minor reduction in the cycle time
can result in a significant cost and time savings. Moreover,
a PCB line in the problem has several non-identical place-
ment machines. As a board contains hundreds of surface
mounted components in different shapes, sizes, and pat-
terns, different placement machines in the line are installed
to cope with different components. The line efficiency de-
pends on the combination of the machine types. Due to the
costly placement machines, the optimization of the assem-
bly process can significantly increase the competitiveness
of the production.

Many factors affect the efficiency of the PCB assem-
bly, namely customer orders [1], component allocation [2],
PCB grouping [3], component sequence [4], and feeder ar-
rangement [5]. Different algorithms have been developed
to optimize different factors in PCB assembly [6], [7]). The
genetic algorithm technique is one of the heuristic methods
that has been used recently to find a near-optimal solution
[8].

106 Informatica27 (2003) 105–114 D.M. Kodek et al.

Placement timestij for component typej SetupMachineMi 1 2 3 4 5 6 7 timesi

1 0.3 0.7 0.7 0.5 ∞ ∞ ∞ 11.0
2 0.7 1.2 1.5 1.6 1.5 1.5 2.1 14.7
3 2.3 3.8 3.5 3.5 2.7 3.3 4.3 14.7

Number of typej
components per board 324 37 12 5 7 5 4

Table 1: An example of a PCB assembly line with 3 different placement machines and 7 different component types per
board. The placemet timestij for different components and machines and the setup timessi are in seconds.

2 Formulation of the problem

When a board is assembled on a production line the
board’s components are grouped and allocated to appropri-
ate placement machines in order to achieve a high output
of the line. The next machine can begin its tasks only af-
ter the previous machine has completed the placement of
all components that were allocated to it. After the board
passes through all the machines, the component placement
process is completed. It is clear that the slowest task dic-
tates the performance of the assembly line.

There are two important differences between the tradi-
tional assembly line problem and this PCB assembly line
problem. First, unlike the traditional assembly line, the
precedence of operations in the PCB assembly is not im-
portant and can be ignored. The second difference con-
cerns the assembly times for the same component on dif-
ferent machines. Due to various types and configurations
of the placement machines, different machines have differ-
ent times for placement of the same kind of component.
The components are usually of a surface mounted type, al-
though this is not important here. An example from Table 1
is used to make the problem easier to understand. This ex-
ample is the same as the one used in [8] and will allow the
comparison of our optimal algorithm to the near-optimal
one.

A PCB assembly line with three different placement ma-
chinesM1, M2, M3 and a board with seven types of com-
ponents is used in the example. The placemet timestij for
different components and machines are given in the Table
1. If a machine cannot handle a particular type of compo-
nent, its placement time is assigned to be infinite (∞). The
infinity is used here for simplicity of notation only — it is
replaced by a large positive number for computation. In ad-
dition to the time that is needed to place a component there
is also a setup timesi for each of the machinesMi. The
machine needs this time every time a new board arrives for
its positioning and placement preparation. Finally, a total
number of each type of a component per boardcj is also
given.

Obviously, there are many possible ways of allocating
the componentsj to the placement machinesMi. Each of
them leads to its own cycle timeT . The question is how
to allocate the components in such a way that the assembly

line has the best performance. The PCB assembly line cy-
cle timeT is formally defined as the maximum time needed
by one of the machinesMi, i = 1, 2, · · · ,m, to complete
the placement of the components allocated to it. Clearly,
the time interval between two finished boards coming out
of the assembly line is equal toT which means that the
number of boards produced in a given time span is propor-
tional to1/T . This number can be increased by allocating
the components to the machines in such way thatT is re-
duced. A mathematical model that describes this situation
can now be given.

Suppose that there arem non-identical placement ma-
chinesMi in a PCB assembly line and that a board withn
types of components is to be assembled on this line. It takes
tij units of time to place the component of typej on a ma-
chineMi. In addition, each machineMi has a setup time
si. There are exactlycj components of typej per board.
The component allocation problem can be formulated as

Topt = min
xij

max
i=1,2,...,m


si +

n∑

j=1

tijxij


 , (1)

subject to

m∑

i=1

xij = cj , j = 1, 2, . . . , n , (2)

xij ≥ 0 and integer. (3)

The solution of this problem is the optimal cycle timeTopt

and the optimal allocation variablesx(opt)
ij . The variable

xij gives the number of components of typej that are allo-
cated to machineMi. Constraints (2) ensure that all of the
components will be allocated. The components are indivis-
ible and (3) ensures thatxij are positive integers. Note that
tij andsi are by definition positive2.

3 Complexity of the problem

The problem (1)–(3) is a combination of assignment and
flowshop scheduling problems [9]. It isNP-complete for

2The timestij andsi can be arbitrary positive real numbers. It is easy
to reformulate the problem and changetij andsi into arbitrary positive
integers. This does not change the complexity of the problem.

AN ALGORITHM FOR COMPUTING THE OPTIMAL . . . Informatica27 (2003) 105–114 107

n ≥ 2. Proving theNP-completness is no too difficult.
First, it is trivial to show that the problem is inP. Sec-
ond, it is possible to show that the well known PARTITION
problem can be polynomially transformed into (1)–(3) [10].
Since PARTITION isNP-complete, so is our problem.

A typical approach to solving this problem is to treat it as
a general mixed integer linear programming problem. The
minimax problem (1)–(3) is reformulated as

min
xij

Topt ,

Topt − si −
n∑

j=1

tijxij ≥ 0, i = 1, 2, . . . , m,

m∑

i=1

xij = cj , j = 1, 2, . . . , n,

xij ≥ 0 and integer.

(4)

All algorithms that are capable of solving this problem op-
timally work by starting with the noninteger problem where
the variablesxij can be any positive real number. Ad-
ditional constraints are then gradually introduced into the
problem and these constraints eventually force the vari-
ablesxij to integer values. Many instances of suitably re-
formulated subproblems of the form (4) must be solved be-
fore the optimal solution is found.

An advantage of the formulation (4) is that general
mixed integer programming programs can be used to solve
it. Unfortunately, this advantage occurs at the expense of
the computation time. The general programs use the sim-
plex algorithm to solve the subproblems. The simplex al-
gorithm is very general and slow since it does not use any
of the special properties of the minimax problem. All these
properties are lost if the original problem (1)–(3) is con-
verted into the general problem.

The fact that the general problem (4) is so slow has led
to the development of suboptimal heuristic algorithms that
search for a near-optimal solution. These algorithms are
faster and often good enough. The difficulty is that a signif-
icantly better optimal solution may exist which these algo-
rithms do not find. It is the purpose of this paper to develop
an optimal algorithm that does not use the generalized for-
mulation (4). The algorithm takes advantage of the special
properties of the minimax problem (1)–(3). It avoids using
the simplex algorithm completely which leads to a much
faster solution.

4 The lower bound theorem

The basic idea of our algorithm is to use a lower bound for
Topt as a tool that leads to the solution. This lower bound
must be computed for each of the subproblems that appear
within the branch-and-bound process. It must take into ac-
count the fact that some of the subproblem’s variablesxij

are known integers. To derive it, let us assume that the sub-
problems’s variablesxij , j = 1, 2, . . . , k − 1, are known
integers for alli. In addition, some, but not all, of the vari-
ablesxik may also be known integers. LetIk be the set of

indicesi that correspond to the known integersxik. The
subproblem’s variables can be formally described as

xij =





xI
ij , j = 1, . . . , k − 1, i = 1, . . . ,m

xI
ij , j = k, i ∈ Ik

xij , j = k, i 6∈ Ik

xij , j = k + 1, . . . , n, i = 1, . . . ,m,

(5)

wherek can be any of the indices1, 2, . . . , n. NotationxI
ij

is used to describe the variables that are already known in-
tegers. The remaining variablesxij are not yet known. The
number of indices in the setIk lies in the range0 to m− 2.
If there werem − 1 known integersxI

ik the constraint (2)
gives the remaining variable which contradicts the assump-
tion that not all of the variablesxik are known. The index
k changes tok + 1 when allxik are known integers.

Definition (5) assumes that a certain rule is used to in-
troduce the constraints which force the variablesxij to in-
teger values. This rule is simple: For every indexk it is
necessary to constrainxik to known integersxI

ik for all
i, i = 1, 2, . . . , m, beforek can change. The rule follows
from the structure of constraints given by (2) and is needed
to derive the lower bound theorem. There is no problem
with this rule because the branch-and-bound method, on
which our algorithm is based, allows complete freedom of
choosing the variablexij that is to be constrained next. The
indicesk can be selected in any order. A simple ascending
orderk = 1, 2, . . . , n, is used in (5). This also applies to
the case when the problem is first reordered along the in-
dicesj in a way that gives the fastest rate of lower bound
increase. Such a reordering is used in our algorithm.

To simplify the notation, let us first use the known inte-
gersxI

ij and redefinesi into s′i as

s′i =





si +
k∑

j=1

tijx
I
ij , i ∈ Ik

si +
k−1∑

j=1

tijx
I
ij , i 6∈ Ik .

(6)

Similarly, the known integersxI
ik (if any) are used to rede-

fine ck into c′k as

c′k = ck −
∑

i∈Ik

xI
ik . (7)

The lower bound onTopt over all possible not yet known
variablesxij is the most important part of our algorithm.
It is developed along the lines used in a related integer
polynomial minimax approximation problem that appears
in a digital filter design [11], [12] and is given in the
following theorem.

Theorem 1 Let Topt be the minimum cycle time corre-
sponding to the optimal solution of the problem (1)–(3) in
which some of the variables are known integers defined by

108 Informatica27 (2003) 105–114 D.M. Kodek et al.

(5). ThenTopt is bounded by

Topt ≥ max
j=k+1,...,n




cj +
m∑

i=1

s′i
tij

+ pj + qj

m∑

i=1

1
tij




(8)

where

pj =
n∑

r=k+1
r 6=j

cr min
i=1,2,...,m

(
tir
tij

)
,

qj = c′k min
i 6∈Ik

(
tik
tij

)
, j = k + 1, . . . , n .

(9)

Proof: Let h be a number that satisfies

h ≥





si +
k∑

j=1

tijx
I
ij +

n∑

j=k+1

tijxij , i ∈ Ik

si +
k−1∑

j=1

tijx
I
ij +

n∑

j=k

tijxij , i 6∈ Ik .

(10)

Note thath is a lower bound forTopt if we can prove that
(10) holds over all possible not yet known valuesxij . Us-
ing (6) eq. (10) is simplified

h ≥





s′i +
n∑

j=k+1

tijxij , i ∈ Ik

s′i +
n∑

j=k

tijxij , i 6∈ Ik .

(11)

It follows from (11) that variablesxij can be expressed as

xij ≤ h

tij
− s′i

tij
−

n∑

r=k+1
r 6=j

tir
tij

xir, i ∈ Ik, j = k+1,..., n,

xij ≤ h

tij
− s′i

tij
−

n∑

r=k
r 6=j

tir
tij

xir, i 6∈ Ik, j = k,..., n.

(12)
Adding allxij by indexi and using (2) and (7) gives

cj ≤
m∑

i=1

h

tij
−

m∑

i=1

s′i
tij

−
n∑

r=k+1
r 6=j

m∑

i=1

tir
tij

xir −
∑

i 6∈Ik

tik
tij

xik,

j = k + 1, . . . , n ,
(13)

and the lower bound forh can now be written as

h ≥

cj +
m∑

i=1

s′i
tij

+
n∑

r=k+1
r 6=j

m∑

i=1

tir
tij

xir +
∑

i6∈Ik

tik
tij

xik

m∑

i=1

1
tij

,

j = k + 1, . . . , n .
(14)

All the terms in (14) are positive. This means thath is a
lower bound over all variables if the lowest possible values
of the terms containing variablesxir andxik are used. The
variablesxir are subject to

m∑

i=1

xir = cr , r = k + 1, . . . , n . (15)

It is quite easy to see that the sum containingxir is bounded
by

n∑

r=k+1
r 6=j

m∑

i=1

tir
tij

xir ≥
n∑

r=k+1
r 6=j

cr min
i=1,2,...,m

(
tir
tij

)
=pj ,

j = k + 1, . . . , n,

(16)

since it is obvious that a minimum is obtained ifxir is given
the valuecr for indexi that corresponds to the lowest of the
factorstir/tij while all otherxir are set to zero. Similarly,
the variablesxik are subject to

∑

i 6∈Ik

xik = c′k , (17)

and the sum containingxik is bounded by

∑

i 6∈Ik

tik
tij

xik ≥ c′k min
i 6∈Ik

(
tik
tij

)
= qj ,

j = k + 1, . . . , n .

(18)

Equations (16) and (18) are used in the definitions (9) and
this completes the proof. 2

Note that the Theorem 2 does not include the lower
bound for the casek = n. The following trivial lower
bound, which holds for allk, can be used in this case

Topt ≥ max
i/∈Ik

(s′i + tikxik) , k = 1, . . . , n. (19)

Note also that indexj = k was not used in the derivation
of the Theorem 1. The equivalent of (13) forj = k is

c′k ≤
∑

i 6∈Ik

h

tik
−

∑

i 6∈Ik

s′i
tik

−
n∑

r=k+1

∑

i 6∈Ik

tir
tik

xir . (20)

WhenIk is not empty allxir in the sum overi 6∈ Ik can
be zero and still satisfy (15). The lowest possible sum con-
taining xir is obviously zero in this case. This gives an
additional lower bound

Topt ≥
c′k +

∑

i 6∈Ik

s′i
tik

∑

i 6∈Ik

1
tik

. (21)

This lower bound is almost always much lower than the
one given by (8). It can included in the algorithm to bring a
small decrease in computing time which is on the order of
1%.

AN ALGORITHM FOR COMPUTING THE OPTIMAL . . . Informatica27 (2003) 105–114 109

By choosingk = 0 one can use (8)–(9) to compute the
lower bound over all possible values of variablesxij . Ap-
plying this to the example from the Table 1 givesTopt ≥
96.084. But there is more — the theorem plays a central
role in our algorithm because it eliminates the need to use
the simplex algorithm for solving the subproblems within
the branch-and-bound process.

5 Application of the lower bound
theorem

The usefulness of the Theorem 1 is based on the following
observation: The problem of finding the all-integer solution
that gives the lowest cycle timeTopt can be replaced by
the problem of finding the all-integer solution that has the
lowest lower bound forTopt . Both approaches obviously
lead to the same solution sinceTopt equals its lower bound
when all variablesxij are integers.

This observation, however, is not enough. A new con-
straint must be introduced on one of the variablesxik, i 6∈
Ik, at each branch-and-bound iteration. This constraint
cannot be made on the basis of the Theorem 1 alone and
requires additional elaboration.

To see how the lower bound depends onxik let us define
the parametersTL(j, k) as

TL(j, k) =

cj +
m∑

i=1

s′i
tij

+ pj +
∑

i 6∈Ik

tik
tij

xik

m∑

i=1

1
tij

, (22)

wherej = k+1, . . . , n, andk = 1, . . . , n−1. TheTL(j, k)
are simply (14) rewritten in a slightly different way. The
Theorem 1 lower bound (8) in which the variablesxik are
left is now equal to

Topt ≥ max
j=k+1,...,n

TL(j, k) . (23)

This lower bound does not include the casek = n. This
is easily corrected if (19) is included. To simplify notation
we first define parametersTI(i, k) as

TI(i, k) = s′i + tikxik, k = 1, . . . , n, (24)

and define the new lower boundTopt ≥ TLB (k)

TLB (k) = max
(

max
i/∈Ik

TI(i, k), max
j=k+1,...,n

TL(j, k)
)

.

(25)
The TLB (k) are defined fork = 1, . . . , n (where
TL(j, n) = 0). They includeTI(i, k) for all k even if it
is strictly needed only fork = n. There is a good reason
for that because theTI lower bound sometimes exceeds
theTL lower bound. This can occur when the values oftij
differ by several orders of magnitude as is the case in the
example from Table 1 where a large positivetij is used in-
stead of∞. Although the algorithm works ifTI is used for

k = n only, experiments show that it is usually faster if it
is used for allk.

The lower boundTLB (k) (25) is the basis of our algo-
rithm. It is a linear function of the variablesxik, i 6∈ Ik,
and, as mentioned before, a new constraint must be intro-
duced on one of them at each branch-and- bound iteration.

Let ic, ic 6∈ Ik, be the index of the variablexick that
is selected for constraining. Selection of the indexic is
simple — any of the indicesi, i 6∈ Ik, can be used asic.
It is more difficult to find the valuex∗ick that will be used
in the branch-and-bound iteration to constrain the selected
variable to integersxI

ick which are the nearest lower and
upper neighbours ofx∗ick. Thex∗ick must be a number that
gives the lowest possible lower boundTLB (k) over all pos-
sible values of the not yet known variablesxik, i /∈ Ik, and
xij , i = 1, . . . ,m, j = k +1, . . . , n. Or in other words, the
x∗ick must be at the global minimum ofTLB (k).

It is important to understand whyx∗ick must be at the
global minimum ofTLB (k). It is because our algorithm
uses the property thatTLB (k) is a linear function of the
variablesxik and is therefore also convex. The convex
property is crucial for the success of our algorithm since
it ensures that every local optimum is also global. The al-
gorithm uses this property by stopping the search along a
variable in the branch-and-bound process whenTLB (k) ex-
ceeds the current best solutionTu. This, however, can be
used only ifx∗ick is such thatTLB (k) does not decrease
when an arbitrary integer is added tox∗ick. Thex∗ick at the
global minimum certainly satisfies this condition.

A great advantage of using the lower bound comes from
the fact that the lower boundTLB (k) in (25) depends only
on the variablesxik, i 6∈ Ik, and is independent of the re-
maining variablesxij , i = 1, . . . ,m, j = k+1, . . . , n. This
means that the number of variables is significantly reduced
in comparison with the general approach (4). Solution of
the minimax problem

min
xik
i 6∈Ik

max
(
max
i/∈Ik

TI(i, k), max
j=k+1,...,n

TL(j, k)
)

, (26)

∑

i 6∈Ik

xik = c′k , xik ≥ 0 , (27)

gives the nonnegative numbersx∗ik that give the global min-
imum ofTLB (k) for a givenk.

A complication arises whenk changes tok + 1 because
the solution of (26)–(27) fork + 1 depends not only on
x∗ik+1 but also onx∗ik (throughs′i). The problem is thatx∗ik
are not at the global minimum ofTLB (k+1). It is possible
that the minimum of (26) fork+1 decreases if differentx∗ik
are used. An error can occur if this is ignored because the
algorithm stops the search along a variable if the minimum
is > Tu when in fact a lower value forTLB (k + 1) exists.
It is obvious that this error cannot occur if the minimum
TLB (k + 1) ≤ TLB (k).

The following corrective procedure is used in the algo-
rithm when the minimumTLB (k+1) > minimumTLB (k).
It consists of adding +1 and/or -1 to thex∗ick that was used

110 Informatica27 (2003) 105–114 D.M. Kodek et al.

as the last constraint. Using the newx∗ick we simply re-
computeTLB (k) and solve again (26)–(27) fork + 1. If
max(TLB (k), TLB (k + 1)) decreases we continue in that
direction until it stops decreasing or until (27) is violated
(TLB (k) increases when the originalx∗ick changes). The
correctedx∗ick is a solution of

min
xick, xik+1

max (TLB (k), TLB (k + 1)) . (28)

It is used to replace the original and this eliminates the pos-
sibility of error. Note that it is not necessary to correct
the remaining variablesxI

ik even if they were not derived
from the global minimum ofTLB (k + 1). This is because
the branch-and-bound process ensures that all values ofxI

ik

will be tried as long as theirTLB (k) is lower thanTu. Ad-
ditional details about the implementation of (28) are given
in step 6 of the algorithm in section 7.

The minimax problem (26)–(27) must be solved many
times within the branch-and-bound process and it is ex-
tremely important to have an efficient method that gives
its solution. Most of the computing time in our algorithm
is spent on solving this problem. The method that is used
to solve it is worth a detailed description.

6 Solving the discrete linear
minimax problem

The number of variablesxik in (26)–(27) is equal to the
number of indicesi, i /∈ Ik. Let m′, 1 ≤ m′ ≤ m, be this
number and letR(i), i = 1, . . . ,m′, be the indices not in
Ik. Equation (26) containsm′ termsTI andn − k terms
TL. The total number of termsn′ is equal to

n′ = n + m′ − k , m′ ≤ n′ ≤ n + m′ . (29)

It helps to rewrite (26) using a new indexv

min
xR(i)k

max
(

max
v=1,...,m′

TI(R(v), k),

max
v=m′+1,...,n′

TL(v′, k)
)

,
(30)

wherev′ = v + k −m′. Because of the sum constraint in
(27) there are onlym′−1 independent variables; them′-th
variable can be expressed as

xR(m′)k = c′k −
m′−1∑

i=1

xR(i)k. (31)

The minimax problem (26)–(27) can now be reformulated
into a more general form

min
xR(i)k

max
v=1,...,n′


fv +

m′−1∑

i=1

ΦvixR(i)k


 , (32)

m′−1∑

i=1

xR(i)k ≤ c′k , xR(i)k ≥ 0 . (33)

Definitions of termsfv and Φvi are somewhat tedious
though they follow directly from (22) and (24)

fv=





s′R(v) , v = 1, . . . ,m′ − 1
s′R(v) + tR(v)kc′k , v = m′

cv′ +
m∑

r=1

s′r
trv′

+ pv′ +
tR(m′)k

tR(m′)v′
c′k

m∑
r=1

1
trv′

, v > m′

(34)

Φvi=





tR(i)k if i = v, 0 if i 6= v, v = 1,..., m′− 1
−tR(m′)k , i = 1,..., m′− 1, v = m′
tR(i)k

tR(i)v′
− tR(m′)k

tR(m′)v′
m∑

r=1

1
trv′

, i = 1,...,m′−1, v > m′

(35)
for v = 1, . . . , n′ andi = 1, . . . , m′ − 1.

The process of solving (32)–(33) is simplified greatly
by the theorem that gives the necessary and sufficient
conditions for the variablesx∗R(i)k, i = 1, . . . , m′ − 1, that
minimize (32). The general version of the theorem is given
in [15]. It is repeated here in the form that applies to our
problem.

Theorem 2 The variablesx∗R(i)k, i = 1, . . . , m′ − 1, are
the optimal solution of the minimax problem (32)–(33) if
and only if the following holds

min
zi

max
v∈Vmax (x∗)

m′−1∑

i=1

Φvi(zi − x∗R(i)k) = 0 , (36)

over all numberszi, i = 1, . . . ,m′ − 1, that satisfy

m′−1∑

i=1

zi ≤ c′k , zi ≥ 0 . (37)

The setVmax (x∗) contains those of the indicesv, v =
1, . . . , n′, at which the maximum is obtained. That is

max
v=1,...,n′

(fv +
m′−1∑

i=1

Φvix
∗
R(i)k) =

fv +
m′−1∑

i=1

Φvix
∗
R(i)k , v ∈ Vmax (x∗) .

(38)

Only the indicesv, v ∈ Vmax (x∗), that give the extremal
values of the function (38) are used in the Theorem 2. The
theorem says thatx∗R(i)k is the optimal solution if there are
no numberszi for which (36) is lower than zero. To show
how this can be used to solve (32)–(33) let us assume that
we have a set of numbersx∗R(i)k and would like to check
if they are optimal. Depending onVmax (x∗) andΦvi there
are two mutually exclusive cases:

AN ALGORITHM FOR COMPUTING THE OPTIMAL . . . Informatica27 (2003) 105–114 111

1. The setVmax (x∗) contains at least two indicesv1 and
v2 for which the following holds

Φv1iΦv2i ≤ 0 , i = 1, . . . , m′ − 1 . (39)

It is easy to see that the numberszi that give (36) lower
than zero cannot exist. This is because of the opposite
signs ofΦv1i andΦv2i for all i. Any set of numberszi

that is different fromx∗R(i)k makes (36) greater than
zero for at leastv = v1 or v = v2. Thus, according to
the Theorem 2,x∗R(i)k are optimal.

2. The setVmax (x∗) does not contain two indicesv1

and v2 for which (39) holds (this is always true if
Vmax (x∗) contains only one indexv). This means that
there exists a set of indicesIp, containing at least one
indexi, for which

Φv1iΦv2i > 0, i∈ Ip, v1, v2 ∈ Vmax (x∗), (40)

holds for any pair of indicesv from Vmax (x∗). Or
in other words, for eachi ∈ Ip the Φvi are nonzero
and have the same signs for allv ∈ Vmax (x∗). Let us
assume that there are numberszi, i ∈ Ip, that satisfy
(37) and give
∑

i∈Ip

Φvizi <
∑

i∈Ip

Φvix
∗
R(i)k, v ∈ Vmax (x∗). (41)

These numbers, together withzi = xR(i)k for i /∈ Ip,
obviously make (36) lower than zero. The numbers
x∗R(i)k are therefore not optimal if suchzi exist. They
exist almost always — the only exception occurs if the
following holds

∑

i∈Ip

Φvix
∗
R(i)k = min

zi

∑

i∈Ip

Φvizi , (42)

for somev, v ∈ Vmax (x∗). It is clear that (41) cannot
be satisfied in this case because thex∗R(i)k sum is al-
ready the lowest possible. The lowest possible sum in
(42) is easy to compute by usingzi = 0 for Φvi > 0
andzi = c′k for the most negative ofΦvi < 0. This
means that it is also easy to check ifx∗R(i)k are opti-
mal.

Using (39)–(42) it becomes straightforward to solve (32)–
(33). A starting solution forx∗R(i)k is selected and checked
as described above. If it is found optimal, we have a solu-
tion. If not, one of the variablesx∗R(i1)k

, i1 ∈ Ip, is tried; if
it can change towards zero (ifΦvi1 > 0) or towardsc′k (if
Φvi1 < 0) without violating (33), it leads to an improved
solution. It is ignored otherwise and a new variable is tried.
The setIp always contains at least one indexi that leads to
an improved solution.

The new value ofx∗R(i1)k
is computed by trying all

v1, v1 /∈ Vmax (x∗), and solving

f ′v1
+ Φv1i1x

∗
R(i1)k

=f ′v + Φvi1x
∗
R(i1)k

, v∈Vmax (x∗),
(43)

wheref ′v are defined as

f ′v = fv +
m′−1∑

i=1
i 6=i1

Φvix
∗
R(i)k, v = 1, . . . , n′. (44)

Each of the equations (43) gives a possible new value for
x∗R(i1)k

. The one that is the least different from the current
value must be used because the setVmax (x∗) changes at
that value. The newx∗R(i1)k

must of course also satisfy
(33). Replacingx∗R(i1)k

with the new value gives a new
solutionx∗R(i)k, i = 1, . . . , m′ − 1, for which the whole
process is repeated until the optimal solution is found.

Selecting a good starting solution is important because
it reduces the number of iterations. Our algorithm uses a
solution that is found by choosingx∗R(i)k = c′k (the re-
mainingx∗R(i)k are zero) fori = 1, . . . , m′, and comput-
ing the lower boundTLB (k) for each of them. The choice
that gives the lowestTLB (k) is the starting solution. This
starting solution is often optimal; when it is not, it usually
takes only one or two iterations to find the optimum. Note
that the search for the optimalx∗R(i)k is not necessary if the
startingTLB (k) is lower than the lower bound (21). In such
cases the algorithm simply uses the starting solution.

Having the optimal variablesx∗R(i)k, i = 1, . . . ,m′ − 1,
it remains to select the one that will be used as the new
constraint. This is done by computing the products

tR(i)kx∗R(i)k, i = 1, . . . , m′ , (45)

where (31) is used to compute the remaining variable
x∗R(m′)k. The indexR(i) that gives the highest product is
selected asic. The reasons for this choice is obvious: The
highest of products (45) is most likely to give the largest
increase of the lower boundTLB (k).

7 The algorithm

The algorithm is based on the well known branch-and-
bound method which is described in detail in many text-
books (see, for example, [13] or [14]). We assume that the
reader is familiar with this method and continue with the
description of the algorithm.

An important part of the branch-and-bound method is the
branch-and-bound tree. Each node in the tree represents a
subproblem that has some of the variables constrained to
integers. Information that is stored at each node must con-
tain the following: The node’s lower boundTLB (k), index
k, the size of setIk (it is equal tom − m′), the indicesi
in Ik, integer variablesxI

ij , j = 1, . . . , k, and the nonin-
teger variablex∗ick that will be used as the next constraint
(together with the indexic). The efficient organization of
the tree is important. It does not, however, influence the
results of the algorithm and will not be discussed here. The
algorithm is described in the following steps:

112 Informatica27 (2003) 105–114 D.M. Kodek et al.

1. Setk = 0 and use (8)–(9) to compute

TL(j, 0) =

cj +
m∑

i=1

s′i
tij

+ pj + qj

m∑

i=1

1
tij

, (46)

for j = 1, 2, . . . , m. Sort the lower boundsTL(j, 0) in
the ascending order. The problem parameterstij and
cj are reordered accordingly. It is assumed from here
on thatj = 1 corresponds to the lowestTL(j, 0), j =
2 to the next higherTL(j, 0), and so on. The reasons
for this reformulation of the problem are simple: We
wish to eliminate the indicesj that give the lowest
contribution to the total lower boundTLB (k) and at
the same time keep the indices that give the highest
contribution to the total lower bound. Several other
strategies for selecting the indicesj were tested; none
performed better over a large class of problems.

2. Set the current best solutionTu to ∞ (a large posi-
tive number). The corresponding variablesx

(u)
ij can

be set to anything — they will be replaced by one
of the solutions quickly. The indexu indicates that
Tu is an upper bound onTopt . The alternative is to
use some heuristic construction and compute a near-
optimal starting solutionTu. We found that this is not
really necessary because the algorithm quickly pro-
duces good near-optimal solutions.

3. Create the root node. This is done by makingk =
1, m′ = m (this makes the setIk empty), and solv-
ing the problem (32)–(33) as described by (36)–(45).
The resulting information is stored in the branch-and-
bound tree. Initialize the branching counterN to zero.

4. Choose the branching node by searching through the
nodes of the branch-and-bound tree. Go to step 8 if
no nodes withTLB (k) < Tu are found or if the tree is
empty. Add 1 to the branching counterN and choose
the branching node according to the following rule: If
N is odd, choose the node with the lowestTLB (k),
otherwise choose only among the nodes that contain
the largest number of integer variablesxI

ij and select
the one that has the lowestTLB (k). This branching
strategy is a combination of thelowest lower bound
anddepth firststrategies and is used to get many of
the near-optimal solutions as fast as possible. This is
especially important for large problems with several
hundred variablesxij .

5. Two subproblems are created from the branching node
by fixing the node’s variablex∗ick to integers

xI
ick = bx∗ickc , (47)

xI
ick = bx∗ickc+ 1 , (48)

wherebx∗ickc denotes the nearest lower integer tox∗ick.
The integersxI

ick must of course conform to (27). If

xI
ick in (48) does not, discard this subproblem (sub-

problem (47) is never discarded becausex∗ick satisfies
(33)). The number of noninteger variablesxik is re-
duced by 1

m′ ← m′ − 1 . (49)

If m′ ≥ 2 go to step 6. Otherwise there is only one
noninteger variablexik left. Its integer value is al-
ready determined because (27) gives

xI
ick + xI

ik = c′k, (50)

and xI
ik is easily computed. All variablesxik are

known integersxI
ik, i = 1, 2, . . . , m. Because of this

the indexk is incremented as described by the defini-
tion (5)

k ← k + 1 , (51)

The new setIk is made empty (m′ = m). If k ≤
n, go to step 6. Otherwise we have a case where all
of the subproblem’s variablesxij are integer. This is
a complete integer solutionand the cycle timeT is
simply computed as

T = max
i=1,2,...,m


si +

n∑

j=1

tijx
I
ij


 . (52)

If T < Tu, we have a new best solution; the current
Tu is set toT and the current best solutionx(u)

ij is re-
placed byxI

ij . The branch-and-bound tree is searched
and all nodes withTLB (k) ≥ Tu are removed from
the tree. Go to step 7.

6. Each of the non-discarded subproblems from step 5 is
solved. The already known integers are taken into ac-
count by computings′i andc′k using (6) and (7). Equa-
tions (34) and (35) are used next to computefv and
Φvi and the problem (32)–(33) is solved as described
by (36)–(45). The results areTLB (k) and x∗ick. If
TLB (k) ≥ Tu ignore this subproblem since it obvi-
ously cannot lead to a solution that is better than the
current bestTu. Otherwise ifm′ = 2 and k < n
do the corrective procedure (28) and replacex∗ick and
TLB (k) with the new values. The newly computed
TLB (k) will in most cases be greater than that of the
branching node. This growth is not monotone and it
is possible that the newTLB (k) is lower. Since the
lower bound cannot decrease we use the branching
node’sTLB (k) as the subproblem’sTLB (k) in such
cases. The subproblem information containingx∗ick

and TLB (k) is stored as a new node in the branch-
and-bound tree.

7. The subproblem in the branching node from step 4 is
modified (the root node is an exception — it is simply
removed from the branch-and-bound tree and we go
to step 4). The branching subproblem is modified by

AN ALGORITHM FOR COMPUTING THE OPTIMAL . . . Informatica27 (2003) 105–114 113

Allocationxij of components Assembly timeMachineMi 1 2 3 4 5 6 7 on machineMi

1 274 0 2 5 0 0 0 97.1
2 50 37 2 0 0 0 0 97.1
3 0 0 8 0 7 5 4 95.3

Number of typej
components per board 324 37 12 5 7 5 4

Table 2: One of the 10 equivalent optimal solutions of the cycle time problem given in example Table 1. The solution was
obtained with the algorithm described in this paper.

changing the integer variablexI
lk that was created last.

The modification is equal to

xI
lk ←

{
xI

lk − 1 if xI
lk was created by (47)

xI
lk + 1 if xI

lk was created by (48).
(53)

This of course means that each node in the branch-
and-bound tree must also contain information about
the integer variable that was created last and about
the way it was created (either by (47) or (48)). The
branching node is removed from the tree if the new
xI

lk < 0 or if xI
lk > c′k and we go to step 4. Oth-

erwise the modified subproblem is solved exactly as
in step 6. Note thatk andm′ remain unchanged and
that this subproblem can never be acomplete integer
solution. If TLB (k) < Tu the modified subproblem is
stored back into the tree, otherwise it is removed from
the tree. Go to step 4.

8. The current best solution is the optimal solution. The
optimal cycle timeTopt is equal toTu and the optimal

variablesx(opt)
ij are equal tox(u)

ij . Stop.

8 Experimental results and
conclusions

The algorithm was implemented in a program and tested
on many different cases. It is typical for the problem (1)–
(3) that there are often many equivalent optimal solutions.
One of the 10 optimal solutions of the example given in the
Table 1 is presented in the Table 2. It took less than 0.01
seconds of computer time (on a 2.4 GHz Pentium 4) to find
all 10 optimal solutions.

The computing time depends not only on the number of
variablesxij but also on the problem parameterstij and
especiallysi. The lower values ofsi obviously make the
search space smaller and reduce the computation time. Ex-
periments have shown that for the problem parameters sim-
ilar to those in the Table 1 all optimal solutions are typically
found within a minute of computing time if the number of
variablesxij is 60 or fewer. For example, the 3-machine
case from the Table 1 in which the number of different
component types per board is increased to 20, takes less

than a second to find all optimal solutions. This time in-
creases to almost 2 hours if an additional machine is added
(giving a problem with4×20 = 80 variablesxij). It should
be noted, however, that for this example a suboptimal solu-
tion that is within 0.1% of the optimum was found after less
than 0.1 second. This behaviour is typical for the branch-
and-bound based algorithms where a great amount of time
is often needed to prove the optimality of a solution that
was found early in the process.

The algorithm was also tested on problems with a much
larger number of variablesxij . Cases with up to 10 ma-
chines and up to 100 different component types per board
(giving up to 1000 variablesxij) were tried. Because of the
exponential nature of the algorithm the optimal solution is
not found and/or proved optimal in a reasonable computing
time for problems this large. But the algorithm is useful
even in such cases — the branching strategy ensures that
many good near-optimal solution are obtained. In addition,
the algorithm gives a global lower bound on the optimal
solution which allows the user to determine how close to
the best possible solution a near-optimal solution is. The
global lower bound on the optimal solution is the lowest of
the TLB (k) in the branch-and-bound tree and is obtained
in step 4 of the algorithm. It can be used to decide if a
near-optimal solution is sufficiently close to the optimum
and also if it is worth trying the longer computing time.

Acknowledgment

The authors would like to thank Prof. B. Vilfan for provid-
ing the formal proof ofNP-completeness for the problem
(1)–(3).

References

[1] P. Ji, Y.S. Wong, H.T. Loh, L.C. Lee, “SMT production
scheduling: A generalized transportation approach,”
International Journal of Production Research, vol.32
(10), pp.2323–2333, 1994.

[2] J.C Ammons, M. Carlyle, L. Cranmer, G. Depuy, K.
Ellis, L.F. Mcginnis, C.A. Tovey, H. Xu, “Compo-
nent allocation to balance workload in printed circuit

114 Informatica27 (2003) 105–114 D.M. Kodek et al.

card assembly system,”IIE Transactions, vol.29 (4),
pp.265–275, 1997.

[3] A. Schtub, O.Z. Maimon, “Role of similarity measures
in PCB grouping procedure,”International Journal of
Production Research, vol.30 (5), pp.973–983, 1992.

[4] J. Sohn, S. Park, “Efficient operation of a surface
mounting machine with a multihead turret,”Interna-
tional Journal of Production Research, vol.34 (4),
pp.1131–1143, 1996.

[5] Z. Ji, M.C. Leu, H. Wong, “Application of linear as-
signment model for planning of robotic printed cir-
cuit board assembly,”ASME Manufacturing Processes
and Material Challenges in Microelectronics Packag-
ing, vol.ADM-v131/EEP-v1, pp.35–41, 1991.

[6] M. Sadiq, T.L. Landers, G. Taylor, “A heuristic al-
gorithm for minimizing total production time for a
sequence of jobs on a surface mount placement ma-
chine,” International Journal of Production Research,
vol.31 (6), pp.1327–1341, 1993.

[7] Y.D. Kim, H.G. Lim, M.W. Park, “Search heuristics
for a flowshop scheduling problem in a printed circuit
board assembly process,”European Journal of Opera-
tional Research, vol.91 (1), pp.124–143, 1996.

[8] P. Ji, M.T. Sze, W.B. Lee, “A genetic algorithm of de-
termining cycle time for printed circuit board assem-
bly lines,” European Journal of Operational Research,
vol.128 (3), pp.175–184, 2001.

[9] P. Brucker, “Scheduling algorithms,” Second Ed.,
Springer, pp.274–307, 1998.

[10] B. Vilfan, “NP-completeness of a certain scheduling
problem,” (in Slovenian)Internal report,University of
Ljubljana, Faculty of Computer and Information Sci-
ence, June 2002.

[11] D.M. Kodek, “A theoretical limit for finite wordlength
FIR digital filters,”Proc. of the 1998 CISS Conference,
vol. II, pp.836–841, Princeton, March 20-22, 1998.

[12] D.M. Kodek, “An approximation error lower bound
for integer polynomial minimax approximation,”Elec-
trotechnical Review, vol.69 (5), pp.266–272, 2002.

[13] C.H. Papadimitrou and K. Steiglitz,“Combinatorial
optimization,”Prentice-Hall, pp.433–453, 1982.

[14] E. Horowitz, S. Sahni,“Fundamentals of computer
algorithms,” Computer Science Press, pp.370–421,
1978.

[15] V.F. Demyanov, V.N Malozemov,“Introduction to
minimax,” Dover, pp.113–115, 1990.

Informatica27 (2003) 15–20 15

DoMosaic - Analysis of the Mosaic-like Domain Arrangements in Proteins

David T. Gerrard1 and Erich Bornberg-Bauer2

School of Biological Sciences, University of Manchester, UK
2.205 Stopford Building, Oxford Road, M13 9PT, Manchester, UK; ebb@bioinf.man.ac.uk

Keywords: sequence analysis, domain evolution, data visualisation

Received:June 15, 2002

Sequence analysis is widely used to infer function from one protein sequence to another. One of the
remaining hurdles in pushing further the limits of efficient usage is the modular and mobile architecture of
proteins. Although many resources provide precompiled signatures, they are not yet used in conjunction
with pairwise comparisons to investigate the modular architecture and phylogeny.
We present a program, doMosaic, which combines existing domain definitions with an adapted sequence
alignment algorithm. It is based on the Smith-Waterman scheme, can be combined with trees derived
from the domains and provides a user-friendly graphical interface. The method enables fast and efficient
analysis of domain duplication events within one or in-between two sequences. Therefore, it enables
refined functional annotation.

1 Introduction

Sequence data are a major resource for inferring molec-
ular function by comparative analysis. Scoring schemes
quantify the similarity between two genes or proteins, and
algorithms compute the best alignment. This well estab-
lished procedure is based on a reasonable model of molec-
ular evolution. The first algorithms were introduced to
molecular biology roughly 25 years ago and followed the
recursive programming scheme which worked basically in
O(n×m) in time plus some overhead for the backtracking,
typically of complexitym. More sophisticated and popular
algorithms use statistics of tuple-frequencies in combina-
tion with a recursive principle or alone and trade off speed
against selectivity [10]. An interesting visualisation tool is
Dotter [23]. It was designed to display high scoring local
alignments of proteins based on the dot plot idea [17].

To ease searching and browsing through the huge
datasets many tools were developed to group proteins into
functionally related “families” by clustering based on se-
quence similarity. This has been accomplished using full
length or local comparison of regions, with or without de-
manding transitivity, splitting etc. [6, 11, 12, 15, 16, 19]
The main hurdle in this context appears to be the irregu-
lar, domain-wise architecture of proteins. While proteins
evolve, certain regions within a protein are functionally
more important than others and thus remain better con-
served while interspersed with regions that evolve more
rapidly and have many gaps and insertions. These con-
served substrings are generally known as domains if de-
fined by structural units or motifs when characterised by

1Present address: School of Biosciences, University of Birmingham,
B15 2TT, UK; email: dtg124@bham.ac.uk.

2Correspondence: Phone/Fax: +44-161-275-7396/5082
Preprint version as of September 26, 2005. Final version to appear in
Informatica, special issue on Bioinformatics(17),2002.

sequence patterns which re-occur across different proteins.
Often, the same feature of a sequence will be recognised
as both a domain and a motif, but this is not always the
case. However, since the methodology presented in the fol-
lowing works at the sequence level for both (structural) do-
mains and (sequence) motifs, we use the word domain to
denote both entity types. Searching for domains alone re-
duces the complexity of functional inference but depends
on the reliability and availability of precompiled resources.
Such searchable resources are provided for motifs using
weighted matrices [5, 8, 14] or signatures of patterns [3, 4].

Domains may evolve at different speeds in different
organisms and proteins, they can excise and incise into
other proteins and sometimes other organisms (lateral
gene/domain transfer). Because of various reordering pro-
cesses domains are also highly mobile within their host-
ing protein: they can duplicate (ABC → ABBC),
swap (ABCD → ACBD), undergo circular permutations
(ABC → ABCABC → BCA) and so on. Consequently,
the functional definition and inference by sequence simi-
larity can become a very involved task when hierarchical
clustering and canonical classifications are rendered use-
less.

Several groups have begun to take pragmatic approaches
by using an existing tree, e.g. a species tree, as a “scaf-
fold”. By annotating the nodes and leaves of this scaffold
with domain information it becomes possible to illustrate
the most likely domain evolution. Thus, functional rela-
tionships which may remain hidden by simple sequence
comparison or domain detection may be revealed.
TreeWiz uses a (species) tree as the underlying scaffold,
displays sequences next to the leaves and allows the user
to browse trees of several tens of thousands leaves interac-
tively on a standard PC [22]. NIFAS, a tool building on
Pfam, helps to analyse the trees and mobility of certain do-

16 Informatica27 (2003) 15–20 D.T. Gerrard et al.

mains [25]. It generates a tree based on the phylogeny of
one chosen domain and displays the resulting tree. The
domain arrangement for every protein is displayed at the
corresponding leaf. Thus, proteins hosting the domain un-
der scrutiny in multiple copies will appear at all respective
leaves.

We are currently developing algorithms with user-
friendly graphical front ends to investigate the nature of
domain architecture. Here we present a tool, based on vari-
ations of existing algorithms, which allows a quick and
easy representation of major domain rearrangements be-
tween homo- and heteromeric paralogous and orthologous
proteins.1

2 Methods and Application

In an ideal world, one would want to produce the most par-
simonious tree in terms of duplications, insertions, losses,
fusions, fissions etc. However, as there are far too many
variables associated to these move sets (contrary to nor-
mal sequence alignments), these events can not be properly
quantified. Therefore, one has to resort to a combination of
approaches which, in our case, is the sequence alignment
and the associated trees which can be produced from the
pairwise similarities.

Algorithms: To make use of both the precompiled and
fairly reliable motif resources and the pairwise comparison
of full length sequences, doMosaic first brakes down the
protein into the regions which are already annotated. Cur-
rently, the program requires SWISS-PROT entry format to
scan in the feature tables correctly. Next, for each pair of
domains which can be formed between both sequences, a
full Smith-Waterman algorithm with affine gap-penalties is
run at the sequence level. This procedure can be performed
again for each single sequence against itself. Results are
then displayed on a grid with size of filled squares propor-
tional to the alignment score.

The raw scores generated by the Smith Waterman al-
gorithm increase with the lengths of the sequences being
aligned. The degree of length dependency varies with the
alignment parameters (gap penalties, matrices) and with
the residue frequencies in the amino acids. Empirical data
suggest that the relationship lies somewhere between linear
and logarithmic (see [1] for references). The inferences of
doMosaic depend on the relative similarities of related do-
mains which are normally of similar length. Therefore, the
main point here is not so much do distinguish between true
and false positives (or negatives) but rather to find a trans-
formation that is fast and removes a significant portion of
the length bias in the majority of cases.
The maximum local alignment scoreS from each compar-
ison is divided byln(mn). So that doMosaic could filter

1Two genes are paralogs if they have arisen from a common ancestor
and occur in the same organism. Orthologs are also descended from a
common ancestor but appear in different organisms.

out low scoring comparisons, significance cut off values
were derived for each BLOSUM matrix from 300 compar-
isons of random sequences between lengths 50 and 500.
Amino acid frequencies were taken from McCaldon and
Argos (1998) . The value was chosen such that 99% of ran-
dom comparisons fell below this cut off score (once trans-
formed as above). The cut-offs were 5.0, 4.0 and 6.0 for
the BLOSUM45, BLOSUM62 and BLOSUM80 matrices
respectively. The cut off value is then subtracted from the
length normalised score and 1.0 is added. If the value is
still below 1.0, it is set to 1.0 so that in the next step, it will
become 0. The natural log of the value is taken. This re-
duces to zero all comparisons that scored less than or equal
to the cut-off value. The value is divided by 5 to give a
value in the majority of biological cases between 0 and 1.
Some long and very similar domains (e.g. vWA domains)
will still score over 1.0. It is then multiplied by 100 for use
by doMosaic in sizing the individual tiles between 0 and
100%
The normalisation could certainly be improved by taking
into account the distribution of scores between real domain
alignments or p-value statistics. However, in all examples
the heuristics as described appear to work well enough to
discriminate related domains from random similarities.

All pairwise domain alignments can be analysed using
a neighbour-joining tree. This will group domains which
have arisen from an internal duplication event closer to-
gether than domains of one kind which have been in linear
order over a longer evolutionary period after, e.g., a more
ancient duplication event. Domains which have been in-
cised will also appear far off. Care must be taken if paralo-
gous sequences are compared as will be seen in the follow-
ing examples.

Applications: Figure 1 shows the domain-wise com-
parison of two paralogous human cadherin proteins.
CADH_HUMANis obtained from liver and intestines and
has five consecutive cadherin domains (A1, A2, ..., A5)
out of seven consecutive domains annotated in total
(A1, ..., A7). CAD4_HUMANis retinal, has seven consec-
utive cadherin domains (B1, B2, ..., B7) out of eight an-
notated domains in total (B1, ..., B8). B1, the first domain
of CAD4_HUMANhas highest similarity toA1 andA3, the
first and third domain ofCADH_HUMANandB2, the second
domain ofCAD4_HUMANhas highest similarity to the sec-
ond and fourth domain ofCADH_HUMAN. Figure 2 shows
a tree derived from all pairwise domain-comparisons be-
tween these two proteins and a graphical illustration of an
evolutionary model of domain duplication and insertion.
Cadherins are commonly thought to have arisen by sub-
sequent duplication events [13] but it is not clear if such
an event has occurred before or after a paralogous dupli-
cation or a speciation event (leading to two orthologous
sequences), if all have been duplicated one after another
etc. The tree is difficult to decipher and some more ancient
events as well as the recent domain additions can only be
guessed. The necessity to add other paralogs and orthologs,

DOMOSAIC - ANALYSIS OF THE MOSAIC-LIKE. . . Informatica27 (2003) 15–20 17

Figure 1: Comparison of CADH_HUMAN (North side) and CAD4_HUMAN (West side) using doMosaic. Each square
is placed in a cell (all cells are of equal size) and denotes a domain for which a similarity value above the threshold has
been found. The bigger and darker a square is, the more similar two domains are. Circles denote empty squares (similarity
below threshold). The relative length and order of domains can be read from the bars on top and left from the panel. Upon
mousing over a cell, information about the corresponding proteins is shown in a little window which pops up. Also, the
corresponding domains in the north and west bars are high-lighted such that the relative orientation in each of the proteins
becomes obvious even when the grid is dimensioned such that only a small part of all the cells are shown. Since the size
of the cells has been computed from similarities within a limited range, cells can never “bump” into each other.

possible intermediate sequences, the inability to distinguish
between domain loss and adding and so forth would make
the tree even more involved. However, even without re-
sorting to such a tree, doMosaic immediately gives a clear
answer for these two paralogous proteins: because of con-
served order, proximity and similar levels of homology, do-
mainsB1 andB2 from CAD4_HUMANhave most likely
been added together to a precursor with the “classical” five-
cadherin architecture in a fairly recent duplication event.
Taking into account a few moreCADHentities from other
vertebrates, suggests that this duplication event has most
likely occured only relatively recently, i.e., shortly before
mammal speciation (data not shown).

Example 2 in figure 3 shows the self comparison of
TRIO_HUMAN, a hetero-multimeric protein. Again, the co-
duplication of the spectrin repeats (domains1, 2, 4 and5
where2 and4 are only interspersed by a low-complexity
region of apoly-gln) is apparent and so is the probable
co-duplication of domains6 and7. Although the spectrin
family is well studied [20] the strong conservation which
will most likely have arisen from one single multiplication
event has not been reported as yet.

GUI: doMosaic appears essentially as a GUI which al-
lows changing parameters, loading and eliminating pro-

teins from a list etc. It is possible to adjust screen size, gap
penalties and choose the mutation matrix. Mousing over
domains shows score, name of domains and highlights the
associated domains in the string representations in the West
and North margins of the main display window. Both size
and colour intensity of cells in the grid indicate similarity
score.

Performance: depends obviously on the length and num-
ber of domains but for typical applications a run does not
take more than a few, mostly less than 2 real time seconds
on a 700MHz Intel pentium III. Memory requirements are
negligible.

Implementation status: To obtain platform indepen-
dency, all parts have been programmed in JAVA and
the version, as depicted on Figures 1 and 3 can
be obtained from the authors (DTG) or our web-site
(www.bioinf.man.ac.uk). A revised version with the tree
generation routine fully integrated is under construction.

18 Informatica27 (2003) 15–20 D.T. Gerrard et al.

B4 A3A6 B1 A1 A5 B3 A4 B2 A2 A7 B5

A1 A2 A3 A4 A5 A6 A7 B1 B2 B3 B4 B5

?

Figure 2: Top: The neighbour joining tree of all domains which were compared by doMosaic during the comparison
between the two cadherins (CADH_HUMAN: A and CAD4_HUMAN: B) and from the self-comparison of each cadherin
in Figure 1. All events above the dotted line (earlier events, closer to the root) probably have happened within one,
ancestral protein, before the full-gene duplication into the two proteins. Bottom: The most probable flow of domains
as obtained from the tree. At the question mark the situation is unclear as the order of the domains seems to be not
conserved. Probably there have been more events which could only be reconstructed with the help of even more family
members and/or more sophisticated tree programs.

3 Discussion and Conclusion

Since new experimental techniques are introduced, biolog-
ical data rapidly accumulate and diversify and so do tools
and methods to analyse these data. Many of these focus
on specialised areas and help to gain qualitatively new in-
sights, which in turn stimulate experimentalists to gener-
ate more data and new challenges for the bioinformatician.
Analysing domain evolution and mobility is such a spe-
cialised area which has recently become an important issue
since the increasing amount of sequence data requires more
specialised tools to push the limits of functional inference
further. Although the mobility of domains has been known
of for a long time [9], it was only recently that it became ap-
parent how complex a problem this imposes on their study
[2, 7, 27].2

Recent attempts to generate tools which provide further in-

2To illustrate the problem of domain mobility consider a graph
G=(V,G). Let domains be verticesVi, where each kind of a domain, e.g.,
all identified EGF-like domains or the p-kinase domains are represented
by one vertex, (V1) and (V2) respectively. Let the set of all sequences
which link the verticesVi, Vj for a pair of two different domains be de-
noted by edgeEij , irrespective of the order in whichi andj occur in any
of the sequences and whether other domains may also occur in that string.
Then the graph has a small-world structure with scale free character and
almost all domains appear in a single, giant, connected component. This
holds for a variety of motif databases and organisms, [7, 27], for structural
domains [2] and even for simplified model systems [7].

sight into the relationships between sequences have mostly
focused on the sequence level. Dotter [23] is similar in
spirit to doMosaic and displays the fulln × m alignment
of two proteins such that traces of all significant subopti-
mal alignments become visible. The domain arrangements
for both sequence can be displayed next to the matrix sim-
ilar to the two bars in doMosaic (see Figure 1). However,
similarities between domains are not displayed. Therefore,
evolutionary events such as duplications do not become
directly obvious. NIFAS [25], displays the phylogenetic
tree and domain arrangements of more than two sequences
but does not allow the direct comparison of two sequences.
Several other tools focus on the phylogenetic relationship,
in particular of paralogy and orthology of full sequences
[21, 24, 26].
However, these tools do no enable the direct and quantita-
tive analysis of domain duplication events. This is what do-
Mosaic does: domain rearrangements in homo- and hetero-
multimeric proteins can be compared and assigned to their
origin. doMosaic is of course not a primary analysis tool,
but it is particularly well suited for a quick analysis of do-
main based rearrangement events.
We plan to further develop the program such that it inte-
grates with TreeWiz [22] and includes features from NI-
FAS.

DOMOSAIC - ANALYSIS OF THE MOSAIC-LIKE. . . Informatica27 (2003) 15–20 19

Figure 3: Self comparison of TRIO_HUMAN using doMosaic. The plot is symmetric because when comparing two
domains transitivity holds.

Acknowledgements: We thank Julian Selley for tech-
nical assistance. EBB gratefully acknowledges support
through an MRC international recruitment grant. We thank
the referees for careful reading and useful comments which
helped to improve the manuscript.

References

[1] S. F. Altshul, R. Bundschuh, R.Olsen, and T. Hwa.
The estimation of statistical parameters for local
alignment score distributions.Nucleic Acids Res.,
29:351 – 361, 2001.

[2] G. Apic, J. Gough, and S. A. Teichmann. Domain
combinations in archaeal, eubacterial and eukaryotic
proteomes.J. Mol. Biol., 310:311–324, 2001.

[3] T. Attwood, M. Croning, D. Flower, A. Lewis,
J. Mabey, P. Scordis, J. Selley, and W. Wright.
PRINTS-S: the database formerly known as PRINTS.
Nucleic Acids Res., 28:225–227, 2000.

[4] A. Bairoch and B. Boeckmann. The SWISS-PROT
protein sequence data bank, recent developments.Nu-
cleic Acids Res., 21:3105 – 3109, 1993.

[5] A. Bateman, E. Birney, R. Durbin, S. R. Eddy, K. L.
Howe, and E. L. Sonnhammer. The Pfam protein fam-
ily database.Nucleic Acids Res., 28:263–266, 2000.

[6] E. Bolten, A. Schliep, S. Schneckener, D. Schom-
burg, and R. Schrader. Clustering protein sequences

– structure prediction by transitive homology.Bioin-
formatics, 17:935 – 941, 2001.

[7] E. Bornberg-Bauer. Randomness, structural unique-
ness, modularity and neutral evolution in sequence
space of model proteins.Z. Phys. Chem., 216:139
– 154, 2002.

[8] F. Corpet, F. Servant, J. Gouzy, and D. Kahn. ProDom
and ProDom-CG: tools for protein domain analysis
and whole genome comparisons.Nucleic Acids Res.,
28:267 – 269, 2000.

[9] R. F. Doolittle and T. L. Blundell. Sequence and
topology: Unity and diversity all over again.Curr.
Opn. Struct. Biol., 3:377 – 378, 1993.

[10] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison.Bi-
ological Sequence Analysis. Cambridge University
Press, 1998.

[11] A. J. Enright and C. A. Ouzounis. Gene RAGE: a
robust algorithm for sequence clustering and domain
detection.Bioinformatics, 16:451 – 457, 2000.

[12] J. Freudenberg, R. Zimmer, D. Hanisch, and
T. Lengauer. A hypergraph-based method for
unification of existing protein structure- and
sequence-families. In Silico Biology, 2001.
http://www.bioinfo.de/isb/2001/02/0031

[13] B. Geiger and O. Ayalon. Cadherins.Ann. Rev. Cell
and Dev. Biol., 8:307 – 332, 1992.

20 Informatica27 (2003) 15–20 D.T. Gerrard et al.

[14] S. Henikoff and J. Henikoff. Amino acid substitution
matrices from protein blocks.Proc. Natl. Acad. Sci.,
USA, 89:10915–10919, 1992.

[15] A. Krause, P. Nicodeme, E. Bornberg-Bauer,
M. Rehmsmeier, and M. Vingron. WWW-access to
the SYSTERS protein sequence cluster set.Bioinfor-
matics, 15:262 – 263, 1999.

[16] M. Linial, N. Linial, N. Tishby, and G. Yona. Global
self-organisation of all known protein sequences re-
veals inherent biological signatures.J. Mol. Biol.,
268:539 – 556, 1997.

[17] J. V. Maizel and R. P. Lenk. Enhanced graphical ma-
trix analysis of nucleic acid and protein sequences.
Proc. Natl. Acad. Sci., USA, 78:7665 – 7669, 1981.

[18] P. McCaldon and P. Argos. Oligopeptide biases in
protein sequences and their use in predicting protein
coding regions in nucleotide sequences.Proteins:
Structure, Function and Genetics, 4:99 – 122, 1988.

[19] J. Park and S. A. Teichmann. DIVCLUS: an au-
tomatic method in the GEANFAMMER package
that finds homologous domains in single- and multi-
domain proteins.Bioinformatics, 14:144 – 150, 1998.

[20] J. Pascual, J. Castresana, and M. Sarraste. Evolution
of the spectrin repeat.BioEssays, 19:811 – 817, 1997.

[21] M. Remm, C. E. Storm, and E. L. Sonnhammer.
Automatic clustering of orthologs and in-paralogs
from pairwise species comparisons.J. Mol. Biol.,
314:1041–1052, 2001.

[22] U. Rost and E. Bornberg-Bauer. TreeWiz: interactive
exploration of huge trees.Bioinformatics, 18:109 –
114, 2002.

[23] E. L. Sonnhammer and R. Durbin. A dot-matrix pro-
gram with dynamic threshold control suited for ge-
nomic DNA and protein sequence analysis.Gene,
167:1–10, 1996.

[24] E. L. Sonnhammer and J. C. Wootton. Integrated
graphical analysis of protein sequence features pre-
dicted from sequence composition.Proteins, 45:262
– 273, 2001.

[25] C. Storm and E. L. Sonnhammer. NIFAS: visual anal-
ysis of domain evolution in proteins.Bioinformatics,
17:343–348, 2001.

[26] C. E. Storm and E. L. Sonnhammer. Automated or-
tholog inference from phylogenetic trees and calcula-
tion of orthology reliability. Bioinformatics, 18:92 –
99, 2002.

[27] S. Wuchty. Scale-free behaviour in protein domain
networks.Mol. Biol. Evol., 18:1694 – 1702, 2001.

 Informatica 27 (2003) 1–1 1

Introduction:

Bioinformatics Tools and Applications

Dear Readers,

Advances in computing have traditionally been

driven by demands in rapidly evolving scientific
areas. Examples of research areas that recently have
been enjoying a rapid growth are life sciences. This
rapid growth has in turn led to a high demand for
computation tools that support the management,
interpretation and analysis of the data generated by
life science research. The field of Bioinformatics
aims at addressing this demand.

The revolution in the life sciences has led to the
emergence of new and challenging applications.
These complex applications are driving the need for
new algorithms and tools to facilitate the access,
analysis and interpretation of life science data. The
focus of this special issue of the journal is on
algorithms, systems, techniques and tools that
facilitate the way life science data is collected,
interpreted and retrieved.

In order to expose the readers of Informatica to
the recent trends in Bioinformatics, this special
issue of the journal presents some of the emerging
complex life science applications. The papers
included in this issue cover various topics such as
the interoperability of distributed biological
databases, protein functional analysis and gene
clustering. These topics will continue to be
important in facilitating new discovery and are
expected to be the subject of many future research
contributions.

The special issue starts with an article that
focuses on the interoperability of geographically
distributed and heterogeneous science databases.
The paper offers a summary of some of the
challenges facing the support of such
interoperability and proposes a scalable approach
that addresses this issue. In addition, the authors
analyze the query execution of multidatabase
queries and identify the performance limitations of
these queries. Inferring the function of a protein
using sequence data is an active area of research.
The process is generally based on sequence
similarity algorithms that establish the similarities
between known sequences and unknown sequences.
There are several previous software tools that
address this topic.

The second paper in this issue describes a
system that greatly improves on these systems by

using different processing techniques for different
types of regions of the proteins. Certain regions of
the proteins are functionally more important than
others and therefore tend to be better conserved.
The proposed system uses information about these
highly conserved regions to facilitate the functional
analysis of proteins.

The third paper in this issue concentrates on an
important area of Bioinformatics: gene clustering.
Increased attention to gene clustering was due to the
recent availability of high throughput microarray
technology. This technology allows the
measurement of gene expression data for thousands
of genes and generates a large amount of expression
data. Analyzing and interpreting this data can be
difficult. To assist scientists in this process, the
authors of the third paper of this issue propose an
integrated approach to gene clustering. One of the
innovative aspects of the proposed approach is that
it is highly automated and generates high quality
clustering result based on a dynamic validation
technique.

The editors would like to thank the authors for
their strong contributions to this special issue and
the reviewers for their diligent review of the papers.
We hope that the readers of Informatica will enjoy
this issue and will find it valuable in their future
research.

Editors of the Special Issue,

Johann Eder Omran Bukhres

eder@isys.uni-klu.ac.at bukhres@cs.iupui.edu

2 Informatica 27 (2003) 1–1 Introduction

 Informatica 27 (2003) 21–27 21

Mining and Validating Gene Expression Patterns: an Integrated
Approach and Applications
Shin-Mu Tseng and Ching-Pin Kao
Institute of Computer Science and Information Engineering
National Cheng Kung University
Tainan, Taiwan, R.O.C.
Email: tsengsm@mail.ncku.edu.tw

Keywords: gene expression, microarray, data mining, clustering, validation techniques

Received: July 5, 2002

The microarray technique has been widely used in recent years since it can capture the expressions of
thousands of genes in a single experiment. To meet the challenge of high volume and complexity of
microarray data, various data mining methods and applications have been proposed for analysing gene
expressions. Although numerous clustering methods have been studied, they can not provide automation,
high quality and high efficiency simultaneously for the biologists during the analysis process. In this
research, we propose an integrated approach that can analyse large volume of gene expression data
automatically and efficiently. Our approach integrates efficient clustering algorithms with a novel
validation technique such that the quality of the discovered gene expression patterns can be evaluated
on the fly. Through practical implementation and applications on real gene expression data, our
approach was shown to outperform other methods in terms of efficiency, clustering quality and
automation.

1 Introduction
With the innovation of microarray technology [5, 16], the
biological researchers can examine the expressions of
thousands of genes simultaneously in a single experiment.
This advances greatly the progress in exploring the real
functions of various genes. In recent years, large
amounts of gene expression datum have been generated
by the biologists. Thus, there is a great need to develop
effective analytical methods to analyze and to exploit the
information contained in gene expression data. Since
genes with related functions tend to have similar
expression patterns, possible roles for genes with
unknown functions can be suggested based on the known
functions of some other genes that are placed in the same
cluster. Therefore, it is an important research issue to
analyze and interpret the gene expression data obtained
via microarray experiments [4, 15]. The gene expression
patterns obtained by analysing microarray data can then
be used for a variety of inference tasks, like measurement
of a gene’s involvement in a particular cellular event or
process [1, 17, 19], predict regulatory elements [3], etc.

Clustering of gene expression is one of the most
important processes in analysing gene expression data.
Clustering methods aim at detecting groups of genes that
have similar expression patterns. Basically, a clustering
algorithm partitions entities into groups based on the
given features of the entities, so that the clusters are
homogeneous and well separated. For gene expression
analysis, the main algorithmic problem involved is to
cluster multi-condition gene expression patterns. More

specifically, the aim is to identify sets of genes that
behave similarly across the conditions. Furthermore, the
clustering results can be utilized to help understand
functions of genes. For example, the function of a gene
may be predicted based on the known functions of genes
within the same cluster.

A variety of clustering methods have been proposed for
mining gene expression data [2, 4, 6-11]. For example,
the average-link hierarchical clustering algorithm was
widely used to identify groups of co-regulated yeast
genes. Ben-Dor et al. [2] reported success of applying
CAST algorithm on gene expression analysis. Although a
number of clustering methods have been studied in the
rich literature, they incur problems in the following
aspects: 1) Automation, 2) Quality, and 3) Efficiency. In
the aspect of automation, most clustering algorithms
request the users to set up some parameters for
conducting the clustering task. For example, k-means [9]
requires the user to input the number of clusters k to be
generated. However, in real applications, it is difficult for
a biologist to determine the right parameters manually
for the clustering tasks. Hence, an automated clustering
method is required. In the aspect of quality, an accurate
and efficient validation method is lacked for evaluating
the quality of the clustering results. Consequently, it is
difficult to provide users with the information regarding
how good the clustering result is. Finally, in the aspect of
efficiency, the existing clustering algorithms may not
perform well when the optimal or near-optimal clustering

22 Informatica 27 (2003) 21–27 S.M. Tseng et al.

result is required from the global view.

In this paper, we propose an integrated approach for
mining multi-condition gene expression and validating
the clustering results. This approach integrates the
density-based clustering method with the validation
techniques to provide automation and accuracy for the
clustering. Furthermore, an iterative computing process
is adopted to reduce the computation in clustering such
as to meet the requirement of efficiency. The approach is
implemented and applied on real gene expression data,
and it is shown to deliver higher efficiency, clustering
quality and automation than other methods.

The rest of the paper is organized as follows: In Section 2,
some related literatures are introduced; Our approach is
described in section 3; Applications of the proposed
method on analysing gene expression data is
demonstrated in Section 4; the conclusion and future
work is made in Section 5.

2 Related Work
In recent years, the biologists can produce large amounts
of gene expression datum rapidly through the microarray
experiments, which can be divided into two categories.
The first types of microarray experiments are to monitor
the expressions of a set of genes under a series of varied
conditions; the second type of microarray experiments
aim at observing the expressions of genes under a same
environment but from different cells. The data generated
from first type of experiments can be used to detect the
trends and regularities of a gene under a series of
conditions, while the data from the second type of
experiments can provide information about the
classifications of genes. In this research, we focus on the
first type of gene expression data.

To analyse gene expression data effectively, a number of
clustering methods were proposed [2, 4, 6-11, 21]. They
can be classified into several different types: partitioning-
based methods (like k-means [9]), hierarchical methods
(like Hierarchical Agglomerative Clustering), density-
based methods (like CAST [2]), model-based methods,
etc. k-means partitions the dataset into k groups primarily
based on the distance between data items, where k is a
parameter specified by the user. Hierarchical clustering
methods have been applied extensively and shown to be
valuable on analyzing gene expression patterns. For
example, hierarchical clustering can be used to separate
normal and tumor tissues and to differentiate tumor types
based on gene expression patterns in each tissue. Self-
Organizing Maps were used by Tamayo et al. [7] for
advanced gene expression analysis. CAST (Cluster
Affinity Search Technique) takes as input a parameter
named affinity threshold t, where 0 < t < 1, and tries to
guarantee that the average similarity in each generated
cluster is higher than the threshold t. The main advantage
of CAST is that it can detect the outliers more effectively
and it executes efficiently. In [8], a detail survey was

made on the main characteristics and applications of
various clustering algorithms, which were also classified
into different categories including portioning,
hierarchical, density-based, grid-based, fuzzy clustering,
etc.

Although a number of clustering algorithms have been
proposed, they may not find the best clustering result
efficiently and automatically for the given microarray
dataset. To find the best clustering result, an important
problem involved is how to validate the quality for some
clustering result generated by a clustering algorithm. Jain
and Dubes [9] divided cluster validation procedures into
two main categories: external and internal criterion
analysis. External criterion analysis validates a clustering
result by comparing it to a given “standard” which is
another partition of the data objects. In contrast, internal
criterion analysis uses information from within the given
data set to represent the goodness of fit between the input
dataset and the clustering result.

There are many statistical measures that assess the
agreement between an external criterion and a clustering
result. For example, Milligan et al. [13, 14] evaluated the
performance of different clustering algorithms and
different statistical measures of agreement on both
synthetic and real data. In [8], a number of well-know
validity criteria and representative measuring indices
were studied further with detail empirical evaluations.
The problem of external criterion analysis is that reliable
external criteria are rarely available when analysing gene
expression data. Therefore, some new measures were
proposed for the internal criterion analysis. For example,
compactness and isolation of clusters are possible
measures of goodness of fit. A measure named Figure of
Merit (FOM) was used by Yeung et al. [20] for
evaluating the quality of clustering on a number of real
gene expression datasets.

The main drawback of the existing methods for analysing
gene expression pattern is that they can not meet the
requirements of automation, high quality and high
efficiency at the same time during the analysis process.
This motivated this research in designing a novel
approach that integrates clustering and validation
techniques for mining gene expression such that
automation, high quality and high efficiency can be met
simultaneously.

3 Proposed Approach
In this section, we first describe the definition of the
problem, then we present the details of our approach,
including the principles and an approximation method for
reducing the computations.

MINING AND VALIDATING GENE... Informatica 27 (2003) 21–27 23

3.1 Problem Definition
The objective of clustering methods is to discover
significant groups existed in a dataset. The problem of
gene expression clustering can be described briefly as
follows. Given a set of m genes with unique identifiers, a
vector Ei = {Ei1, Ei2, …, Ein} is associated with each gene
i, where Eij is a numerical data that represents the
response of gene i under condition j. The goal of gene
expression clustering is to group together genes with
similar expressions over the all conditions. That is, genes
with similar corresponding vectors should be classified
into the same cluster.

3.2 An Integrated Approach
The main ideas of the proposed approach are as follows.
Given a gene expression data, the first step of our
approach is to calculate a similarity matrix S in which the
entry Sij represents the similarity of the expression
patterns for genes i and j. Although a number of
alternative measures could be used for calculating the
similarity between gene expressions, we use Pearson’s
correlation coefficients [9] here for its wide application.
Note that a similarity matrix needs to be computed and
generated only once given a gene expression data. This
reduces a lot of computation overhead as incurred by
some clustering algorithms that calculate the similarities
dynamically.

In the second step, a density-and-affinity based algorithm
is applied as the base clustering algorithm. With a
specified input parameter, the base clustering algorithm
utilizes the similarity matrix S to conduct the clustering
task. Thus a clustering result will be produced by the
base clustering algorithm based on the given input
parameter. A good candidate for the base clustering
algorithm is CAST (Cluster Affinity Search Technique)
[2], since it generates a clustering result very quickly
based only on the value of an input parameter named
affinity threshold t, where 0 < t < 1.

In the third step, a validation test is performed to evaluate
the quality of the clustering result produced in step two.
We adopt Hubert’s Γ statistic [9] for measuring the
quality of produced clustering. Let X=[X(i, j)] and Y =[Y(i,
j)] be two n × n matrix where X(i, j) indicates the
similarity of genes i and j, Y(i, j) is defined as follows:

if genes i and j are in same cluster,
otrwisehe

Hubert’s Γ statistic represents the point serial correlation
between the matrix X and Y, and is defined as follows:

where M = n (n - 1) / 2 and Γ is between [-1, 1]. Let
matrix X be the similarity matrix derived from the gene

expression data, matrix Y and Hubert’s Γ statistic can be
calculated easily without much computation overhead.
For a clustering result, a higher value of Γ represents the
better clustering quality.

With the above steps, it is clear that a good clustering
with high quality can be obtained by applying a number
of different values for the affinity threshold t as input
parameters to the CAST algorithm, calculating the
Hubert’s Γ statistic of each clustering result respectively,
and choosing the one with the highest value of Hubert’s
Γ statistic as the output. In this way, a local-optimal
clustering result may be provided for the users
automatically. For example, as shown in Figure 1, the X
axis represents the values of affinity threshold t input to
CAST and the Y axis shows the obtained Hubert’s Γ
statistic for each of the clustering result. The highest
peak in the curve corresponds to the best clustering result,
which has Hubert’s Γ statistic value around 0.52
occurred when t is set as 0.25.

In fact, this approach is feasible in practical applications
for the following reasons:
1. Once the similarity matrix of the gene expressions

was generated at the beginning of execution, CAST
executes very fast.

2. The computation of Hubert’s Γ statistic for each
clustering result is easy, too. So the extra
computation overhead in doing quality validation
will be acceptable.

However, one problem incurred in the above simple
approach is how to determine the best value for the
affinity threshold t. The easiest way is varying the value
of affinity threshold t with a fixed increment and iterating
the executions of CAST by feeding in the series of values
as parameter repetitively. For example, we may vary the
values of t from 0.05 to 0.95 in steps of 0.05, as shown in
Figure 1. For each clustering result, its quality will be
measured by using Hubert’s Γ statistic and the one with
the highest measured quality is selected as the best result.
We call this approach CAST-FI (Fixed Increment) in the
following discussions. The main disadvantage of CAST-
FI is that many iterations of computation are required.
Therefore, an approximation method will be described
for reducing the computation overhead in the next
section.

Figure 1. Hubert’s Γ statistic vs. values of t.

⎩
⎨
⎧

=
0
1

),(jiY

∑∑
−

= +=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=Γ

1

1 1

),(),(1 n

i

n

ij YX

YjiYXjiX
M σσ

24 Informatica 27 (2003) 21–27 S.M. Tseng et al.

3.3 Approximation Method
The idea behind the approximation method is to reduce
the computations by eliminating unnecessary executions
of clustering such as to obtain a “nearly-best” clustering
result instead of the optimal one. That is, we try to make
the times of executing CAST as less as possible.
Therefore, we need to narrow down the range of the
parameter affinity threshold t effectively. The proposed
method works as follows:

1. Initially, a testing range R for setting affinity

threshold t is set as [0, 1]. We divide R equally into
m parts by the points P1, P2,…, Pm-1, where P1 < P2
< … < Pm-1, m�3. Then, the value of each of Pi is
taken as the affinity threshold t for executing CAST
and the Γ statistic of the clustering result for each of
Pi is calculated. We call this process a “run”.

2. When a run of executing the clustering is completed,

the clustering at point Pb that produces the highest Γ
statistic is considered as the best clustering. The
testing range R is then replaced by the range [Pb-1,
Pb+1] that contains the point Pb.

3. The above process is repeated until the testing range

R is smaller than a threshold δ or the difference
between the maximal value and minimal values of
the quality is smaller than another threshold σ.

4. The clustering result with the best quality during the

tested process is output as the answer.

In this way, we can obtain the clustering result that has a
“nearly-best” clustering quality with much less
computation. In the next section, through empirical
evaluation, we shall evaluate how good the generated
clustering result is and to what extent the computations
could be reduced by our approach.

4 Applications on Gene Expression
Analysis

To validate the feasibility and performance of the
proposed approach, we implement the proposed approach
in C++ and apply it for analyzing gene expression data.
We describe the experimental setup in Section 4.1 and
the detailed experimental results on different types of
data in Sections 4.2, 4.3 and 4.4.

4.1 Design of Experiments
To evaluate the performance of our approach, we use the
microarray expression data of yeast saccharomyces
cerevisiae obtained from Lawrence Berkeley National
Lab (LBNL) (http://rana.lbl.gov/EisenData.htm). The
dataset contains the expressions of 6221 genes under 80
experimental conditions. Based on this dataset, we
generate two datasets with different properties for testing.

For the first dataset (further named dataset A), we choose
2000 genes from the original dataset randomly. The
average similarity of dataset A is 0.137 by using
Pearson’s correlation coefficient as measurement of
similarity. Thus Dataset A represents a low-similarity
dataset. Then, in order to generate a dataset with higher
similarity, we retrieve a number of genes with high
similarity from the original dataset and duplicate these
gene expression patterns to generate a dataset of about
1900 genes. Additionally, 100 outliers were mixed with
the 1900 genes to form Dataset B of about 2000 genes
totally. The average similarity of Dataset B is about
0.696 and thus it represents a high similarity dataset.

We compare our approach with CAST-FI and the well-
known clustering method, namely k-means [9]. For our
approach, the parameters m, δ and σ are default as 4,
0.01 and 0.01, respectively. For k-means, the value of k is
tested in two ways: 1) k is varied from 3 to 21 in step of 2,
and 2) k is varied from 3 to 39 in step of 2, respectively.
The quality of clustering results was measured by using
Hubert’s Γ statistic. The experimental results on dataset
A and B are described in the following sections,
respectively.

4.2 Results on Dataset A
The total execution time and the best clustering quality
for the tested methods on Dataset I are listed in Table 1.
The notation “CAST-FI” indicates the approach running
CAST iteratively by varying affinity threshold t from
0.05 to 0.95 in fixed increment of 0.05, while the
notation “Our Approach” indicates the one described in
Section 3 using the proposed computation reduction
method.

Table 1. Experimental results (Dataset A).
Methods Time (sec) Number of clusters Γ Statistic

Our
Approach 27 57 0.514

CAST-FI 246 57 0.514
k-means
(k=3~21) 404 5 0.447

k-means
(k=3~39) 1092 5 0.447

It is obvious that our approach and CAST-FI outperform
k-means substantially in both of execution time and
clustering quality. In particular, our approach performs
15 times to 40 times faster than k-means with k ranged as
[3, 21] and [3, 39], respectively. In addition, the results
also show that the highest Γ statistic value generated by
our approach is very close to that of CAST-FI, meaning
that the clustering quality of our approach is as good as
CAST-FI. However, our approach is about 8 times faster
than CAST-FI. Therefore, it is shown that our approach
outperforms other clustering methods greatly no matter
in quality or computation time.

MINING AND VALIDATING GENE... Informatica 27 (2003) 21–27 25

Table 2 shows the distribution of clusters produced by
each tested method. It is shown that k-means generated 5
clusters for the best clustering result, while the size of
each cluster is ranged between 101 and 400. This
phenomenon holds no matter k is varied from 3 to 29 or
from 3 to 39. However, our approach produced 57
clusters for the best clustering result. In particular, it is
clear that 4 main clusters are generated, with two clusters
sized between 101 to 400 and another two sized between
401 to 600. Moreover, our approach also generates a
number of clusters with small size (1~10 and 11~100),
which are mostly outliers (or noise). This means that our
approach is superior to k-means in filtering out the
outliers from the main clusters. This can provide more
accurate clustering result and insight for gene expression
analysis.

Table 2. Distribution of produced clusters (Dataset A).
Cluster size

Methods 1~10 11~100 101~400 401~600

Our Approach 38 15 2 2
CAST-FI 38 15 2 2
k-means
(k=3~21) 0 0 5 0

k-means
(k=3~39) 0 0 5 0

The following observations were made from this
experiment:
1. In terms of clustering quality, our approach and

CASI-FI perform much better than k-means,
especially in isolating the outliers. This means that
the density-and-affinity based methods are superior
to partitioning-based methods in clustering low-
similarity gene expression data.

2. Our approach executes much faster than CASI-FI in

discovering the best clustering result, while the
resulted clustering quality is very close to that of
CASI-FI. This illustrates the advantage of the
approximation method for computing reduction as
described in Section 3.3.

4.3 Results on Dataset B
We conducted the same experiments by replacing dataset
A with dataset B, which represents a dataset with higher
similarity. Table 3 and Table 4 show the experimental
results of the tested methods and the distribution of
cluster size under dataset B, respectively. The following
observations were made from the empirical results:
1. It is obvious that our approach and CAST-FI

outperform k-means substantially in terms of the
clustering quality (Γ statistic). Compared to the
experimental results on dataset A, the degree of
improvement our approach performed over k-means
in terms of the clustering quality is much higher. In

fact, by observing the distribution of size in the
generated clusters as shown in Table 4, we found
that both our approach and CAST-FI produce a main
cluster with large size (401-600) and many other
small clusters, which are actually outliers. This
matches the real distribution of dataset B as
described in Section 4.1. In contrast, k-means
partitions the large cluster into several clusters with
uniform size. Consequently, the clustering result
distracts with the original data distribution. This
indicates that k-means can not perform well under
high similarity dataset. In particular, it can not
identify the outliers correctly.

2. In the aspect of execution time, again our approach

is much faster than other methods. Compared to
CAST-FI, our approach produces clustering quality
as good as that by CAST-FI with much shorter
execution time. This shows that our approach can
still achieve high efficiency and accuracy under high
similarity dataset.

Table 3. Experimental results (Dataset B).
Methods Time (sec) Number of clusters Γ Statistic

Our
Approach 13 63 0.833

CAST-FI 41 62 0.833
k-means
(k=2~20) 77 12 0.309

k-means
(k=2~38) 267 12 0.309

Table 4. Distribution of produced clusters (Dataset B).
Cluster size

Methods 1~10 11~100 101~400 401~600

Our Approach 62 0 0 1
CAST-FI 61 0 0 1
k-means
(k=2~20) 4 5 3 0

k-means
(k=2~38) 4 5 3 0

5 Conclusions and Future Work
An integrated approach for mining and validating gene
expression patterns is proposed in this paper. The
proposed approach can automatically and effectively
cluster microarray data generated by multi-condition
experiments. Through empirical evaluations on datasets
with different degree of similarities, our approach was
shown to achieve higher efficiency and clustering quality
than other methods. Moreover, the proposed approach
can discover the “nearly-best” clustering result without
requesting the users to input parameters. Therefore, the
proposed approach can provide high degree of
automation, efficiency and clustering quality, which are

26 Informatica 27 (2003) 21–27 S.M. Tseng et al.

lacked in other clustering methods for mining gene
expression data. Our approach can also be extended to
the parallel and distributed systems for achieving higher
performance in the future.

In the future, we will further explore the following
research issues:
1. Reduce the initial range of input parameter, namely

affinity threshold t, for executing CAST. This will
significantly reduce the computation further once the
correct range can be estimated initially.

2. Design a memory-efficient clustering method to be

integrated with our iteratively clustering approach.
This is especially useful when the number of tested
genes in the microarry is large.

3. Extend our approach for the parallel and distributed

system environment and evaluate its performance in
terms of efficiency and accuracy under various
system conditions like varied number of computing
units, etc.

6 Acknowledgement
This research was partially supported by National
Science Council, R. O. C., under grant NSC 90-2213-
E006-132. We would also like to thank the referees for
their precious comments and advices.

7 References
[1] U. Alon, N. Barkai, D. A. Notterman, K. Gish, S.

Ybarra, D. Mack & A. J. Levine (1999) Broad
patterns of gene expression revealed by clustering
analysis of tumor and normal colon tissues probed by
oligonucleotide arrays, Proc. Natl Acad. Sci. USA,
96, 6745-6750.

[2] Amir Ben-Dor & Zohar Yakhini (1999) Clustering

gene expression patterns. Proc. of the 3rd Annual
Int’l Conf. on Computational Molecular Biology
(RECOMB ‘99).

[3] A. Brazma, I. Jonassen, J. Vilo, & E. Ukkonen (1998)

Predicting gene regulatory elements in silico on a
genomic scale. Genome Research 8, 1202-1215.

[4] Ming-Syan Chen, Jiawei Han, & Philip S. Yu (1996)

Data mining: An Overview from a Database
Perspective. IEEE Transactions on Knowledge and
Data Engineering, Vol. 8, No.6.

[5] J. DeRisi, L. Penland, P. O. Brown, M. L. Bittner, P.

S. Meltzer, M. Ray, Y. Chen, Y. A. Su & J. M. Trent
(1996) Use of a cDNA microarray to analyze gene
expression patterns in human cancer. Nature
Genetics 14: 457-460

[6] Sudipto Guha, Rajeev Rastogi, & Kyuseok Shim
(1998) CURE: An efficient clustering algorithm for
large databases. Proc. of ACM Int’l Conf. on
Management of Data, p. 73-84, New York.

[7] Sudipto Guha, Rajeev Rastogi, & Kyuseok Shim

(1999) ROCK: a robust clustering algorithm for
categorical attributes. Proc. of the 15th Int’l Conf. on
Data Eng.

[8] Maria Halkidi, Yannis Batistakis & Michalis

Vazirgiannis (2001) On Clustering Validation
Techniques. Journal of Intelligent Information
Systems, Vol. 17, No (2-3), p. 107-145.

[9] Anil K. Jain & Richard C. Dubes (1988) Algorithms

for Clustering Data. Prentice Hall.

[10] Teuvo Kohonen (1990) The self-organizing map.

Proc. of the IEEE, Vol. 78, No 9, p. 1464-1480.

[11] Mark S. Aldenderfer & Roger K. Blashfield

(1984) Cluster Analysis. Sage Publications, Inc.

[12] J. B. McQueen (1967) Some Methods of

Classification and Analysis of Multivariate
Observations. Proc. of the 5th Berkeley Symposium
on Mathematical Statistics and Probability, p. 281-
297.

[13] G. W. Milligan, S. C. Soon & L. M. Sokol

(1983) The effect of cluster size, dimensionality and
the number of clusters on recovery of true cluster
structure. IEEE Trans. on Pattern Analysis and
Machine Intelligence, Vol. 5, p. 40-47.

[14] G. W. Milligan & M. C. Cooper (1986) A study

of the comparability of external criteria for
hierarchical cluster analysis. Multivariate Behavioral
Research, Vol. 21, p. 441-458.

[15] C. J. Roberts, B. Nelson, M. J. Marton, R.

Stoughton, M. R. Meyer, H. A. Bennett, Y. D. He, H.
Dai, W. L. Walker, T. R. Hughes, M. Tyers, C.
Boone & S.H. Friend (2000) Signaling and circuitry
of multiple map pathways revealed by matrix of
global gene expression profiles. Science, 283, 873-
880.

[16] M. Schena, D. Shalon, R. W. Davis & P. O.

Brown (1995) Quantitative monitoring of gene
expression patterns with a complementary DNA
microarray. Science 270: 467-470.

[17] P. T. Spellman, G. Sherlock, M. Q. Zhang, V.R.

Iyer, K. Anders, M. B. Eisen, P. O. Brown, D.
Botstein, & B. Fucher (1998) Comprehensive
Identification of Cell Cylce-regulated genes of the
yeast saccharomyces cerevisiae by microarray
hybridization. Molecular Biology of the Cell 9, 3273-
3297.

MINING AND VALIDATING GENE... Informatica 27 (2003) 21–27 27

[18] P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S.

Kitareewan, E. Dmitrovsky, E. S. Lander & T. R.
Golub (1999) Interpreting patterns of gene
expression with self-organizing maps: methods and
application to hematopoietic differentiation.
Proceedings of the National Academy of Science
USA, Vol. 96, p. 2907-2912.

[19] X. Wen, S. Fuhrman, G. S. Michaels, D. B. Carr,

S. Smith, J. L. Barker & R. Somogyi (1998)
Neurobiology large-scale temporal gene expression
mapping of central nervous system development.
Proc. Natl Acad. Sci. USA, 95, 334-339.

[20] K. Y. Yeung, D. R. Haynor & W. L. Ruzzo

(2001) Validating clustering for gene expression data.
Bioinformatics, Vol. 17, p. 309-318.

[21] Tian Zhang, Raghu Ramakrishnan & Miron

Livny (1996) BIRCH: An Efficient Data Clustering
Method for Very Large Databases. Proc. of the 1996
ACM SIGMOD Int’l Conf. on Management of Data,
p. 103-114, Montreal, Canada.

 Informatica 27 (2003) 29–37 29

Fault Detection and Isolation Using Hybrid Parameter Estimation
and Fuzzy Logic Residual Evaluation

Belkacem Athamena
Department of Automatics, University of Biskra, BP 145, Biskra RP, 07000, Algeria.
E-mail: b.athamena@caramail.com

Hadj Ahmed Abbassi
Department of electronics, University of Annaba, BP 12, Annaba, 23000, Algeria.
E-mail: habbassi@wissal.dz

Keywords: Fault detection and isolation, Fuzzy logic, Parameter estimation, Adaptive threshold.
Received: February 11, 2002

Fault diagnosis has become an issue of primary importance in modern process automation as it provides
the prerequisites for the task of fault detection. The ability to detect the faults is essential to improve
reliability and security of a complex control system. When a physical parameter change due to failure has
occurred in a system, the failure effect will hardly be visible in the output performance. Since the failure,
effect is reflected as a change in the predictor model. In this paper we describe a completed feasibility
study demonstrating the merit of employing hybrid parameter-estimation and fuzzy logic for fault
diagnosis. In this scheme, the residual generation is obtained from input-output data process, and
identification technique based on ARX model, and the residual evaluation is based on fuzzy logic adaptive
threshold method. The proposed fault detection and isolation tool has been tested on a magnetic levitation
vehicle system.

1 Introduction
One of the most important goals of intelligent automatic
control systems is to increase the reliability, availability,
and safety of those systems. A complex automatic system
can consist of hundreds of interdependent working
elements, which are individually subject to malfunction.
Total faults of the systems can cause unacceptable
economic loss or hazards to personnel. Therefore, it is
essential to provide on-line operating information by a
scheme of observation and monitoring which detects
faults as they occur, identifies the type of malfunction of
faulty components, and compensates for the faults by
appropriate actions and management to meet reliability
and safety requirements so that the system can indeed
continues to operate satisfactorily.
In many application the problem of fault detection and
isolation FDI is a crucial issue that has been theoretically
and experimentally investigated with different types of
approaches, as can be seen from the survey papers
(Willsky 1976, Isermann 1984, Basseville 1988, Gertler
1988, Frank 1990) and the books (Basseville &
Nikiforov 1993, Chen & Patton 1999, Gertler 1998,
Patton & al. 2000, Patton & al. 1989) among other
references. It has been widely acknowledged that the FDI
problem can be split into two steps: generation of
residuals, which are ideally close to zero under no-fault
conditions, minimally sensitive to noises and
disturbances, and maximally sensitive to faults, and
residual evaluation, namely design of decision rules
based on these residuals.
In this paper, we study the possible fault symptoms
occurring in a magnetic levitation vehicle system MLV.

The method proceeds in four stages. First, the MLV
model is estimated by hybrid parameter-estimation
technique. Then fault symptoms are defined analytically
according to physical system features and the residual
signal is then designed by the prediction error. After the
residual generation, the fundamental problem is residual
evaluation, for these applications, is that, even supposing
the model to be precise, the measurements are not; thus
evaluating precisely the decision threshold value valid
for every operating condition is difficult. To go beyond
this problem, several solutions have been proposed, for
instance, using adaptive threshold evaluation of the
residuals.
The paper is organized as follows: In section 2 the hybrid
parameter-estimation and the problem formulation are
described. Section 3 devotes to the fault diagnosis
concept of the fault detection scheme. The design and
simulation examples are given in section 4, and the
conclusion is drawn in section 5.

2 Hybrid parameter-estimation
The hybrid parameter-estimation method can be briefly
described as follows. Consider a single-input single-
output system described by a linear differential equation,

∑ ∑
= =

≥++−=
n

1i

m

j

j
j

i
i mn tvtubtyaty

0

)()(),()()()((1)

where the superscript notations means the time derivative
operation, that iii dttydty)()()(= and)(ty ,)(tu and

)(tv are output, input and noise, respectively.
Effectively, we have linear model with regard to the
parameters, but impracticable because explanatory

30 Informatica 27 (2003) 29–37 B. Athamena et al.

variables)(ty and)(tu are not available (Middleton &
Goodwin 1990). The principle is correct, but a previous
filtering of data is necessary in order to achieve a
transformation of model under a realist form. The
methodology is called chain moments of Poisson, which
that consists to use a stable nth-order filter. The basic
idea of the method is to transform the original system
model into an estimated model by introducing a set of
identical linear filters, operating on each term in the
original model. Let)(tg be the impulse response of the
filter, the transformed system model is then given by,

∫∑ ∫

∫ ∑ ∫

ττ−τ+ττ−τ+

ττ−τ−=ττ−τ

=

=

tm

j

t
j

j

t n

i

t
i

i

dtgvdtgub

dtgyadtgy

00 0

)(

0 1 0

)(

)()()()(

)()()()(
 (2)

where ())(ty i and ())(tu j denote the derivatives of order i
and j respectively. Introducing the variables)(tyFi ,

)(tuFj and)(0 tvF , equation (2) can be simplified into,

∑ ∑
= =

++−=
n

i

m

j
FFjjFiiF tvtubtyaty

1 0
00)()()()((3)

In practice, we prefer use a simple structure of)(tg ,
depending of minimum parameters, for this reason,
habitually we use,

tn et
n

tg α−

−
= 1

)!1(
1)((4)

The choice of α conditions the bias, but also the
convergence of the estimation. We can choose α in
manner that ni ei ,1, = , the filter coefficients approach to

the better of ni ai ,1, = , for example according to the
criterion of bandwidth (Athamena & Abbassi 2000)
then,

 ∑ ∑
= =

++−=
n

i

m

j
FFjjFiii tvtubtyaety

1 0
0)()()()()((5)

We obtain a linear model with regard to the parameters
by a transformation of the original data to the filtered
data, where an analogue relation to the equation (1).
The estimation problem consists of the parameter
identification, which appears in the model by the
treatment of the input/output data. We consider that θ
the parameter vector, which can correctly translate the
dynamic behavior of the process, and)(tϕ the regression
vector. The estimation problem is to find a good estimate
θ̂ of θ . The common measure of goodness of an
estimate in the least squares cost function,

∫ τθτϕ−τ=θ
t

T dytc
0

2)ˆ)()((
2
1),ˆ((6)

The estimation method that we will study in this paper
basically depend on our ability to rearrange the model so
that the predicted output describable as a linear function
of a parameter vector θ : that is, there exists some vector
of measured variables,)(tϕ , such that the model output

)(ˆ),(ˆ tyty ≈θ can be expressed as,

θϕ=)()(ˆ tty T (7)
where,

[]
[])()()()()(01

011

tututytyt
bbaeae

FmFFnF
T

T
mnn

LL

LL

=ϕ

−−=θ
 (8)

In this case, we can define the algorithm of the
generalized hybrid least squared according to,

)(
)()()()(

)()()()()()(

)()()()(
))(ˆ)()()(()()()(ˆ

t
ttPtTt

tPtttPttP

ttPtTt
tttyttPtt

T

T

T

T

Ω+
ϕϕ+Γ

ϕϕα−
=δ

ϕϕ+Γ
θϕ−ϕα

=θδ
 (9)

where δ is the delta operator (Middleton & Goodwin
1990, Athamena & Abbassi 2001) and,

=α)(t A (time-varying) gain, []10)(∈α t .
=Γ)(t A (time-varying) normalization term, 0)(>Γ t .

and, where)(tΩ represents a modification to the
covariance, with: 0)()(≥Ω=Ω tt T .
For the least square algorithm with forgetting factors, we
use,

1)(
)()()(
)()()()()(

1
1)(

=α

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ϕϕ+Γ

ϕϕ
−λ⎟

⎠
⎞

⎜
⎝
⎛

λ−
=Ω

t
ttPtT
tPtttTPtP

T
t

T

T

 (10)

the algorithm also needs initial values)0(θ̂ and)0(P .
Experience with this simple rule for setting λ shows that
a decrease in the value of the forgetting factor leads to
two effects:
• The parameter estimates converge to their true values

quicker thus, decreasing the faulty alarm delay time.
• But at the expense of increased sensitivity to noise. If

λ is much less than 1 the estimate may even oscillates
around its true value.

There are various ways around this problem, in this
method the constant λ in (10) is replaced by)(tλ . A
typical choice is a recursively given by,

())0(1)1()(0 λ−+−λλ=λ tt (11)
typical design values for 0λ and)0(λ are 0.99 and 0.95
respectively. The least square algorithm is used for its
speed of convergence, ease of implementation and
numerical stability. A large body of research has been
devoted to devising choices for the forgetting factor to
allow continued adaptively without overdue sensitivity to
transient disturbances and without catastrophic numerical
effects such as “covariance blow-up”.

3 Fault diagnosis concept
The fault diagnosis concept proposed here consists of the
basic steps residual generation, residual evaluation and
fault alarm presentation as shown in Figure 1 (Athamena
& Abbassi 2002).

3.1 Residual generation
Residual generation via hybrid parameter-estimation
relies on the principle that possible faults in the
monitored process can be associated with specific

FAULT DETECTION AND ISOLATION... Informatica 27 (2003) 29–37 31

parameters and states of a mathematical model of a
process given in general by an input-output relation. The
main idea is to generate residuals that reflect
inconsistencies between nominal and faulty system
operations. When faults are present, the residual
sequence distribution is changed. Many hypothesis tests
can be used to evaluate the residual sequences.

Figure 1: Fault Diagnosis Concept.

In this following,)(trk represents the residual in each
variable, that is the difference between the measurement
parameter vector)(tkθ and it’s estimated)(ˆ tkθ at each
time instant,

1,1),(ˆ)()(++=θ−θ= mnk tttr kkk (12)
if the process is operating normally, the innovation
process is zero-mean white noise.
Fault in dynamical systems can be detected with the aid
of an innovation sequence that has the property that if the
system operates normally the normalized innovation
sequence is a Gaussian white noise with zero mean and
with a unit covariance matrix. Faults that change the
system dynamics affect the characteristics of the
normalized innovation sequence by changing its white
noise nature, displacing its zero mean, and varying unit
covariance matrix. Thus, the problem is how to detect as
quickly as possible any change of these parameters from
their nominal value.

3.2 Fuzzy logic based decision signal
The residual evaluation is a logic decision making
process that transforms quantitative knowledge
(residuals) into qualitative knowledge (fault symptoms).
The goal is to decide if and where in the process the fault
has occurred, with a minimum rate of erroneous decision

(false alarms) that are caused by the existing disturbances
and modeling uncertainties. In Figure 2, the principle of
residual evaluation using fuzzy logic consists of a three-
step process. Firstly, the residuals have to be fuzzified,
then they have to be evaluated by an inference
mechanism using IF-THEN rules, and finally they have
to be defuzzified.

Figure 2: Residual evaluation concept.

The mean value of the residual)(tr k on a temporal
window of p sampling periods T,)(txk is given by,

∑
=

−=
p

j
kk jtr

p
tx

0

)(1)((13)

The residual derivative)(txk& will be estimated on the
same temporal window by a least square linear
approximation,

2

00

2

000

)()(
)(

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−−−
=

∑∑

∑∑∑

==

===

p

j

p

j

p

j
k

p

j

p

j
k

k

jjp

jtrjjtjrp
tx& (14)

The use of mean values over a small temporal window
(in the application 8=p) somewhat filters the
measurement noise and at the same time allows a quick
determination of any change in the residuals.

Fuzzification: The fuzzification of the residuals is a
mapping of the representation with crisp values into a
representation by fuzzy sets. The values)(txk and)(txk&
are then fuzzified by the fuzzy partitions

()())(, txXX kXik i
µ= and ()())(, txXX kXjk

j

&&&
&µ= defined over

Expert

Knowledge

Faults
Input Output

Analytical

Knowledge

Residuals

Evaluated residuals

RESIDUAL
GENERATION

FAULT ALARM
PRESENTATION

RESIDUAL
EVALUATION

Measurements

PROCESS

+

dt
d

Mean

-

Fuzzy logic based
decision signal

)(trk

)(txk

)(txk&

)(tck

kJ

)(td k

Fuzzy logic based
threshold selection

kJ∆

kJ 0

D E C I S I O N

)(1 td ...

Alarm

D
ef

uz
zif

ic
at

io
n

In
fe

re
nc

e
ru

le
s

Fu
zz

ifi
ca

tio
n

In
fe

re
nc

e
ru

le
s

D
ef

uz
zif

ic
at

io
n

Fu
zz

ifi
ca

tio
n

32 Informatica 27 (2003) 29–37 B. Athamena et al.

the universe of)(txk and)(txk& , each one composed by
five fuzzy sets.
To describe the process, linguistic variables such as
“large-negative”, “small-positive”, “zero” will be used
and applied to mean value and residual derivative. To
allow an approximate reasoning based on numerical
values a “fuzzification” of these values is runaway.
Fuzzy sets are built to correspond to each linguistic
variable, and membership functions ()10 ≤µ≤µ are
defined for those fuzzy sets. The total variations of)(txk
and)(txk& are split up into five subsets: negative-high
(NH), negative-medium (NM), zero (ZE), positive-
medium (PM) and positive-high (PH). The choice of the
numerical values for the boundary marks was made using
first the simulation results and after that, the
experimental results.
Symmetric trapezoidal membership functions are used
(Figure 3). This lead to a simple parameterization of each
partition with only 4 parameters 1α , 2α , 3α , 4α ,
corresponding to the trapezoid boundaries.

Figure 3: Membership functions of)(txk and)(txk& .

Inference rules: The common-sense shows clearly that
some situations describe by the combination of
membership functions of residuals and their derivatives
to some fuzzy sets are worse than others. For instance, if
the residual is medium positive with a negative
derivative, this means that it is decreasing, thus the
situation is not so bad, while if the residual is positive
high with a positive high derivative, the situation is bad
and worsening. For typical situations have been chosen
to describe the state of a variable: OK means that the
state in normal, SP means suspicious, AL means
alarming, and FA means faulty.
The 5 fuzzy sets of each partition form 25 combinations,
which lead to the decision table found in Table 1. Each
element of this table can be interpreted as a fuzzy rule of
the type,

ijjkik Sis stateTHEN X is tx AND X is tx IF &&)()((15)
In order to accelerate the processing of this table, it has
been modeled as zero order Sugeno fuzzy inference
model (Mamdani 1977), which can be viewed as a
predefuzzification consequent rule. The rule (15) written
as a zero order Sugeno fuzzy rule has the form,

ijijjkik C THEN X is tx AND X is tx IF Φ=&&)()((16)
Thus the symbolic states {OK, SP, AL, FA} in the table
are replaced by numerical constants { OKΦ , SPΦ , ALΦ ,

FAΦ }. These constants have been arbitrarily chosen to

{ 0=ΦOK , 33.0=Φ SP , 66.0=Φ AL , 1=Φ FA } but their
particular value is not important to the decision making
process.
The antecedent of the rule (16) represents an intersection
of the fuzzy sets, easily handled with an AND fuzzy logic
operator. The fire strength of a rule associated to the
position ij of the Table 1, denoted by ijw , is evaluated, at
each sampling time, by a T-norms as a product,

jikXkXkXkXij wwtxtxtxtxw
jiji

&&& && =µµ=µ∧µ=))(()).(())(())(((17)

Where iw and jw& represent the membership functions of
)(txk and)(txk& to the respective fuzzy sets.

)(txk&
 NH NM ZE PM PH

NH FA FA AL SP SP
NM FA AL SP SP SP
ZE SP OK OK OK SP
PM SP SP SP AL FA

)(txk

PH SP SP AL FA FA
Table 1: Inference rules.

Defuzzification: Different methods of defuzzification
exist, but it seems that none of them satisfies all criteria
defined for an “ideal defuzzification method”. The center
of gravity method is; in fact, the most frequently used
one for diagnostic system design (Schneider & Frank
1996). As the residuals and their derivative can belong to
several fuzzy sets, several elements in the decision table
can be valid at the same time; thus, the multiple rule
conclusions need to be aggregated. Multiple rules are
interpreted as the union of the corresponding fuzzy
relations (OR operator). In zero order Sugeno fuzzy
model, the output of a rule base as (16) is evaluated as a
weighted sum,

∑∑
∑∑ Φ

=
i j ij

i j ijij

k w

w
tc)((18)

The parameters 1α , and 2α in Figure 3 that define the
bounds of the fuzzy sets ZE and PM (or NM) in the
fuzzy partition associated to)(txk and)(txk& could be
easily chosen from an estimation of the measurements
noise variance. The parameters 3α and 4α could be
taken as the lower and upper thresholds used in classical
alarm detection. The means 4α is the value beyond
which the state of the variable is undoubtedly faulty, and

3α is an intermediary value.

3.3 Fuzzy logic based adaptive threshold
The most simple and straightforward method for fault
decision consists in a threshold test of the residual)(trk
or a measure)(krg formed from the residual. If constant
thresholds are used one has to cope with the problem of
the effects of unknown inputs. If the threshold is chosen
too small, false alarms will occur, if the threshold is
chosen too large, small faults can not be detected.
Therefore, it has recently been shown (Ding & Frank

-α4 –α3 –α2 –α1 α1 α2 α3 α4 x

NH NM Z E PM PH

)(xµ

FAULT DETECTION AND ISOLATION... Informatica 27 (2003) 29–37 33

1991) that it is advantageous to use thresholds that are
adapted to the operation of the process. The problem of
adaptive threshold logic is illustrated by a typical
example in Figure 4. The shape of the threshold follows a
certain maneuver of the fault-free process only taking
into account the influence of the unknown inputs.
Suppose the time evolution of the residual is due to a
maneuver of the process in the face of unmatched
parameters with a fault at Ft . Evidently, in contrast to a
constant threshold, where a false alarm occurs at FAt and
fault at Ft cannot be detected, the false alarm can be
avoided and the fault at Ft can be detected.

Figure 4: Adaptive threshold test.

A fuzzy-based approach for a robust threshold selection
for fault detection has been described by (Frank &
Kiupel 1992). The gradual meaning of fuzzy sets has
been exploited by defining a threshold through fuzzy
membership functions. There are a trapezoidal
membership function has been chosen such that the
rising and falling edges of the trapeze depend on a
parameter incorporating the variance of noise,
uncertainty, and disturbances.
The adaptive threshold consists of a predefined value,

kJ 0 , and an adaptive term, kJ∆ , which is determined by
heuristic knowledge. This approach has been developed
independently by Schneider (Schneider 1993) and Sauter
(Sauter & al. 1993). The threshold is adapted depending
on the changes of the values of)(txk and)(txk& in terms
of rules among fuzzy sets that are specified by proper
membership function. The resulting relation for the fuzzy
threshold adaptation is given by,

() ()kkkkkkk xxJJxxJ && ,, 0 ∆+= (19)
The term kJ 0 represents an appropriate threshold for the
normal system behavior. The adaptive term, ()kkk xxJ &,∆ ,
incorporates the effects of modeling errors. The term,

()kkk xxJ &,∆ , has positive as well as negative values such
that an adjustable threshold band can be realized which
follows the actual residual signal. A schematic diagram
of the suggested concept is presented in Figure 2.
The main four steps for the adaptive fuzzy based
threshold selection can be stated as:
1. Observation of relations between false alarms and

characteristic process conditions.
2. Formulation of rules of thumbs, which are organized

by: IF…THEN…STRUCTURES.

3. Choice of appropriate fuzzy variables and
membership functions.

4. Definition of a fuzzy rule table based on steps 2, 3.
After an initial setup of membership functions and a
fuzzy rule base, further knowledge can be incorporated
by changing the rules or by introducing new fuzzy
variables if necessary. In this way, unstructured
disturbances are incrementally included in the decision
process. Since this concept is based on linguistic
variables no theoretical process knowledge is required
but valuable heuristic information can be modified by
experienced operational personal.
For simple realization, a standard fuzzy rule is suggested.
The values)(txk and)(txk& are then fuzzified, each one
composed by four fuzzy sets (Figure 5). The linguistic
labels of those sets are the common ones: positive zero
(PZ), positive small (PS), positive medium (PM), and
positive large (PL).

Figure 5: Membership function.

The 4 fuzzy sets of each partition form 16 combinations,
which lead to the decision table found in Table 2.

)(txk&
 PZ PS PM PL

PZ PM PS PM PL
PS PM PS PM PL
PM PS PS PM PL

)(txk

PL PZ PS PM PL
Table 2: Inference rules.

Each element of this table can be interpreted as a fuzzy
rule of the type,

() ijkkkjkik J is xxJ THEN X is tx AND X is tx IF ∆∆ &&& ,)()((20)
The heuristics for generating the threshold can be
summarized as follows:
• For very small mean value of the residual the

threshold has to be increased to a medium level;
• For high residual derivative value the threshold has to

be increased considerably;
• For very high residual derivative value the threshold

has to be increased drastically; and
• For a very high residual derivative value the threshold

has to be increased to a medium level.
The rules are like those described with max-min
composition method and the center area of
defuzzification.
When)(tck over-passes a threshold, the isolation
procedure is fired. For a proper on-line processing, the
case when a fault has been corrected must be detected as
well as a defect rise. Thus, two threshold values are used,

Adaptive threshold

FtFAt

Fixed threshold
Fault

False alarm

Residual or decision

Time

 PZ PS PM PL

)(xµ

-a -b -c c b a x

34 Informatica 27 (2003) 29–37 B. Athamena et al.

one to decide the failure detection, and the other to detect
the fault correction, then,

() ()
()⎩

⎨
⎧
>
≤

 Fault: xxJ
Fault No: xxJ

 tc
kkk

kkk
k &

&

,
,

 (21)

4 The magnetic levitation vehicle

4.1 System dynamics
In this section, a design example will be presented to
illustrate the design procedure of the proposed FDI.
Figure 6 shows the cross section of a MLV system. The
track is a T-shaped concrete guideway. Electromagnets
are distributed along the guideway and along the length
of the train in matched pairs. The magnetic attraction of
the vertically paired magnets balances the force of
gravity and levitates the vehicle above the guideway. The
horizontally paired magnets stabilize the vehicle against
sideways forces. Forward propulsion is produced by
linear induction motor action between train and
guideway.

Figure 6: Cross section of a MLV train.

The equations characterizing the train’s vertical motion
are now being developed according to the law of physics.
It is desired to control the gap distance)(ty within a
close tolerance in normal operation of the train. The gap
distance)(ty between the track and the train magnets is,

)()()(thtzty −= (22)
then,

)()()(
)()()(

thtzty
thtzty
&&&&&&

&&&

−=
−= (23)

where the dots denote time derivatives. The magnet
produces a force that is dependent upon residual
magnetism and upon the current passing through the
magnetizing circuit. For small changes in the
magnetizing current)(ti and the gap distance)(ty , that
force is approximately,

)()()(tHytGitf +−= (24)

where G constant controls the input-output gain of the
open-loop system and H constant controls the poles of
the system. That force acts to accelerate the mass M of
the train in a vertical direction, so,

)()()()(tHytGitzMtf +−== && (25)
For increased current, the distance)(tz diminishes,
reducing)(ty as the vehicle is attracted to the guideway.
A network model for the magnetizing circuit is given in
Figure 7. This circuit represents a generator driving a coil
wrapped around the magnet on the vehicle. In this circuit,

)()()()(tvty
G

LHtLitRi =−+ & (26)

Figure 7: Magnetizing circuit model.

The three state variables)()(1 tytz = (Gap distance),
)()(2 tytz &= (Gap velocity) and)()(3 titz = (Magnetizing

current) are convenient, and in terms of them the vertical
motion state equations are,

⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

)(
)(

0
10

00

)(
)(
)(

0
0

010

)(
)(
)(

1
3

2

1

3

2

1

tf
tv

tz
tz
tz

tz
tz
tz

d
LL

R
G
H

M
G

G
H

&

&

&

 (27)

where)(tv is the voltage control input and)(tf d is the
force disturbance of guideway irregularities.
If the gap distance)(ty is considered to be the system
output, then the state variable output equation is,

)()(1 tzty = (28)
The voltage)(tv is considered to be control input, while

guideway irregularities)()(thtfd
&&= constitute a

disturbance. The system parameters M, G, L, and R can
be derived analytically by static test and dynamic
equilibrium of the vehicle.
The open-loop system with 0)(=tf d , described by a
linear differential equation,

() () ())()()()()(0
1

1
2

2
3

3 tvbtytyatyatya =+++ (29)
where,

MRH
Gb

HR
GLa

H
Ga

MR
MGLa

2

0321 ,,,)(
=−=−=

−
−= (30)

Then, the transformed system model is then given by,
)()()()()()()()(00333222111 tvbtyaetyaetyaety FFFF +−+−+−= (31)

The model in (31) has the form,
θϕ=)()(tty T (32)

where,
[]

[])()()()()(0321

0332211

tvtytytyt
baeaeae

FFFF
T

T

=ϕ

−−−=θ
 (33)

z h

Fixed reference plane

Train

Magnets

Track

y

)(ty
G

LH
&)(tv

+

+)(ti

FAULT DETECTION AND ISOLATION... Informatica 27 (2003) 29–37 35

4.2 Fault modeling
Due to the reduced space just four faults have been
investigated in this paper. The considered faults are
represented in the Table 3.

Fault Fault situation

1F Malfunction in the parameter R

2F Malfunction in the parameter L

3F Malfunction in the parameter H

4F Malfunction in the parameter G
Table 3: Fault symptoms of MLV system.

It is evident in (30, 33) that if)(1 tc ,)(3 tc and)(4 tc
changes but)(2 tc remain unchanged, this then implies a
change in R. (Throughout the paper it is assumed that
there are never two or more faults occurring
simultaneously in the system). Similarly, if both)(1 tc
and)(3 tc change, this then implies a change in L. If only

)(1 tc unchanged, this then implies a change in H. If)(1 tc ,
)(2 tc ,)(3 tc and)(4 tc changes, this then implies a

change in G (see Table 4). Therefore, faults can be
diagnosed by observing changes in)(tck in cooperation
with the fuzzy residual evaluation based on adaptive
threshold method. Furthermore, the size of a fault can be
diagnosed if the estimation is precise.

)(1 tc)(2 tc)(3 tc)(4 tc

1F 1 0 1 1

2F 1 0 1 0

3F 0 1 1 1

4F 1 1 1 1
Table 4: The decision table.

4.3 Experimental results
The effectiveness of method was verified using simulated
data. For this purpose, the MLV parameters were chosen
as:

mHLRkgMNmHNAG 33,7,3,58000,44 11 =Ω==== −−

A 2KHz sampling frequency is considered, two real-time
simulations have been carried out. For the choice of the
confidence degree, we opt for the value 5% that wants to
say that the estimation makes it with a confidence rate of
95%.

Test 1: The first set of faulty data simulates a change in
the efficiency of the armature resistance R, and a change
in the efficiently of the inductance L,

350t LL 250;t RR ≥=∆≥=∆ ,00.1,00.1
The steady-state values of the estimated model
parameters before and after the faults are,

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−
−

⎯→⎯

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−
−

⎯→⎯

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∆

∆

−

0.0016
0.0072-

10

10 7.9475
0.0018-

10

b
a
a
a

4-
L

4-

4-
R

5862.7
8571.128

5862.7
2143.32

0016.0
0036.0

105862.7
4286.64

4

0

3

2

1

By applying the RLS estimator with a forgetting factor,
the estimates of 321 ,, a a a and 0b were obtained and
converge quickly to their respective true values.
The percentage increase on 1a is calculated as

98.011 =∆ aa and the percentage increase on 3a is
calculated as 96.033 =∆ aa and the percentage decrease
on 0b is calculated as 97.000 =∆ bb . It is observed that
the relative change in size of the estimated model
parameter is approximately equivalent to the relative
change in size of the physical parameter. Therefore, the
fault size is diagnosed (Yu 1997). In Figure 8, it can be
seen that R∆ causes a significant change in the decisions
signal)(1 tc ,)(3 tc and)(4 tc and L∆ causes a
significant change in the decisions signal)(1 tc and

)(2 tc . So, change in R and L can be diagnosed
respectively.

Test 2: The second set of faulty data simulates a change
in H and G according to,

0t GG 0;t HH 40,10.010,10.0 ≥=∆≥=∆
The model parameter changes in the steady-state before
and after the faults are,

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−
−

⎯→⎯

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−
−

⎯→⎯

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∆

∆

−

0.0019
0.0039-

10

0.0014
0.0033-

10

b
a
a
a

4-
G

4-
H

3448.8
3429.71

8966.6
4286.64

0016.0
0036.0

105862.7
4286.64

4

0

3

2

1

The percentage increase on 1a is calculated as
09.022 =∆ aa and the percentage increase on 3a is

calculated as 08.033 =∆ aa and the percentage increase
on 0b is calculated as 07.000 =∆ bb .
In Figure 9, it can be seen that H∆ causes a significant
change in the decisions signal)(2 tc ,)(3 tc and)(4 tc and

G∆ causes a significant change in the decisions signal
)(1 tc ,)(2 tc ,)(3 tc and)(4 tc . So, change in H and G can

be diagnosed respectively.

36 Informatica 27 (2003) 29–37 B. Athamena et al.

(a)

(b)

(c)

(d)

Figure 8: Decision signal and adaptive threshold
residual evaluation.

(a)

(b)

(c)

(d)

Figure 9: Decision signal and adaptive threshold
residual evaluation.

FAULT DETECTION AND ISOLATION... Informatica 27 (2003) 29–37 37

In above two simulations, the changes in the physical
parameters are clearly detected and isolated. Note that
the model parameter change is delayed from the physical
parameter change for all the faults, due to the
convergence of the estimates of the model parameters.
The maximum delay is about 500 sample intervals, or 2.5
seconds, which is allowable in practice. This lag-time is
greatly influenced by the size of the forgetting factor, λ ,
in the RLS algorithm. It is seen that this fault can be
detected at a high robustness against false alarms.

5 Conclusion
In this paper, a completed feasibility study of process
fault diagnosis for a magnetic levitation vehicle system
using hybrid parameter-estimation and fuzzy logic
residual evaluation is presented. The failure effect due to
a system parameter change appears as a difference in the
prediction error. The fuzzy logic is, of course,
particularly tailored for the task of diagnosis. The
simulation study suggests that the combination of
different methods will be more efficient for fault
diagnosis in real industrial systems.

References
Athamena B. & Abbassi H.A. (2000) Fault detection and

diagnosis based on fuzzy logic: Application to
magnetic levitation system. International conference
on Modelling and simulation, MS'2000, Las Palmas
de Gran Canaria, Spain, 25-27 September.

Athamena B. & Abbassi H.A. (2001) Diagnosis
techniques for system faults of industrial processes.
Rencontres francophone sur la logique floue et ses
applications, LFA’2001, Mons, Belgique, 26-27
November.

Athamena B. & Abbassi H.A. (2002) Robust fault
detection and isolation in a complex dynamic system.
MMAR 2002, 8th IEEE International Conference on
Methods and Models in Automation and Robotics, 2-5
September 2002, Szczecin, Poland

Basseville M. (1988) Detecting changes in signals and
systems-A survey. Automatica, 24(3), 309-326.

Basseville M. & Nikiforov I.V. (1993) Detecting of
abrupt changes-theory and applications. Information
and system sciences series, Prentice-Hall, Englewood
Cliffs, NJ.

Chen, J. & Patton R.J. (1999) Robust model fault
diagnosis for dynamics systems. Kluwer Academic
Publishers, Boston, MA, USA.

Ding X. & Frank P.M. (1991) Frequency domain
approach and threshold selector for robust model-
based fault detection and isolation. Proc.
IFAC/IMACS Symp. SAFEPROCESS’91, Baden-
Baden, 307-3012.

Evsukoff A. & Montmain J. (1997) Dynamic model and
causal knowledge-based fault detection and isolation.
Proceeding of IFAC-SAFEPROCESS’97.

Frank P.M. (1990) Fault diagnosis in dynamic system
using analytical and knowledge based redundancy- A
survey and news results. Automatica, 26, 459-474.

Frank P.M. & Kiupel N. (1992) Fuzzy supervision for
lean production. in Proc. 6th Inst. Automat. Robot,
IAR Colloquium, Duisburg, Germany, 19 November.

Gertler J.J. (1988) Survey of model-based detection and
isolation in complexes plants. IEEE Control Systems
Mag., 8(6), 3-11.

Gertler J.J. (1999) Fault detection and diagnosis in
engineering systems. Marcel Dekker, New York, NY,
USA.

Isermann R. (1984) Process fault diagnosis based on
modeling and estimation methods-A survey.
Automatica, 20, 387-404.

Kumamaru K., Söderström T., Sagara S. & Morita K.
(1988) On-line fault detection in adaptive control
systems by using kullback discrimination index.
IFAC Identification and System Parameter
Estimation, Beijing, 1135-1140.

Mamdani E.H. (1977) The application of fuzzy set theory
to control systems-A survey. In Fuzzy Automata and
Decision Process, Eds. Amsterdam, The
Netherlands,77-88.

Middleton R.H. & Goodwin G.C. (1990) Improved finite
word length characteristics in digital control using
delta operators. IEEE, Transaction on Automatic
Control, Vol.AC-31, No.11, 1015-1021.

Middleton R.H. & Goodwin G.C. (1990) Digital control
and estimation: A unified approach. Prentice-Hall,
Englewood Cliffs, New Jersey.

Patton R.J., Frank P.M. & Clark R.N. (2000) Issues of
fault diagnosis for dynamic systems. Springer.

Patton R.J., Frank P.M. & Clark R. (1989) Fault
diagnosis in dynamic systems-Theory and
application, International series in systems and
control engineering, Prentice-Hall, London, U.K.

Patton R.J., Chen J. & Lopez Toribio C.J. (1998) Fuzzy
observers for non-linear dynamic systems fault
diagnosis. Proceeding of the 37th IEEE Conference on
Decision & Control, Tampa, Florida USA, 84-89.

Sauter D., Dubois G., Levrat E. & Bremont J. (1993)
Fault diagnosis in systems using fuzzy logic. in Proc.
EUFIT’93, 1st Europ. Congr. Fuzzy intell. Technol.,
Aachen, Germany.

Schneider H. (1993) Implementation of a fuzzy concept
for supervision and fault detection of robots. in Proc.
EUFIT’93, 1st Europ. Congr. Fuzzy intell. Technol.,
Aachen, Germany.

Schneider H. & Frank P.M. (1996) Observer-based
supervision and fault detection in robots using
nonlinear and fuzzy logic residual evaluation. IEEE,
Transactions on control systems technology, 4(3),
274-282.

Willsky A.S. (1976) A survey of design methods for
failure detection in dynamic systems. Automatica, 12,
601-611.

Yu D. (1997) Fault diagnosis for hydraulic drive system
using a Parameter-Estimation Method. Control
Engineering Practice, 5(9), 1283-1291.

Informatica27 (2003) 39–47 39

Practical Construction for Multicast Re-keying Schemes Using R-S Code and
A-G Code

Chun-yan Bai, Roberta Houston and Gui-liang Feng
The Center for Advanced Computer Studies
University of Louisiana at Lafayette
Lafayette, LA 70504
Email:cxb7146, rah1231, glf@cacs.louisiana.edu

Keywords: Multicast, Re-keying, Reed-Solomon code, Hash function, KDP

Received:August 20, 2002

Multicast Re-keying means the establishment of a new session key for the new subgroup in the multi-
cast system. Practical construction methods for multicast re-keying scheme using Reed-Solomon codes
and Algebraic-Geometric codes are presented in this paper with examples to show the detailed construc-
tions. The constructions require no computational assumptions. The storage complexity for group mem-
bers(Group Controller and other users) and the transmission complexity for the schemes have been reduced
to O(log(n)) at the same time.

1 Introduction

With the rapid development of networks, the need for
high bandwidth, very dynamic and secure group(multicast)
communications is increasingly evident in a wide variety of
commercial, govermnent, and Internet communities such
as video-on-demand, multi-party teleconferencing, stock
quote distribution and updating software. Specifically, the
security in the multicast communication is the necessity
for multiple users who share the same security attributes
and communication requirements to securely communicate
with each other using a common group session key.

The general goal of secure group communication is to
dynamically transmit a message encrypted by the newses-
sion keyover a broadcast channel shared by an exponen-
tial numbern = 2m of users so thatall but some spec-
ified small coalition ofk excluded users can decipher the
message, even if these excluded users collude with each
other in an arbitrary manner. This is what we call the
broadcast exclusionproblem(also known as theblacklist-
ing problem). The establishment of a newsession keyfor
the new subgroup is called theRe-keyingof the system.

In the multicast communication system, the group is dy-
namic, which means that at different time, different sub-
groups of the initial group is authorized to receive the mul-
ticast message because of those dynamically joining and
leaving group members. So the secure communication in
multicast environment is much more challenging than tra-
ditional point-to-point communication and raises numerous
new security problems. Examples are the forward secrecy
and backward secrecy guarantee. A protocol providesper-
fect backward secrecyif a member joining the group at time
t does not gain any information about the content of mes-
sages communicated at timest′ < t. A protocol provides
perfect forward secrecyif a member leaving the group at

time t does not gain any information about the content of
messages communicated at timet′ > t.

Member-joining is easy to handle by just encrypting the
new session key with the old session key which is decrypt-
able by all old members and sending the new session key
individually to each new member encrypted by their own
secret keys. So we just focus on the member-leaving case
and assume that there is a group controller(GC) who knows
all the system keys in this paper.

The initial study on the secure multicast communication
can be traced back to the early 90’s [1]. And a lot of works
had followed [2,3,4,5,6,7,8,9]. All in all, the work can be
divided into two major groups, one of which [2,3,4,5] uses
the concept ofkey tree structureto set up the new session
key based on the Diffie-Hellman key agreement. In [2],
Wallner proposed a scheme which requires onlyO(n) =
O(n+(n−1)) keys for GC,O(logn) = O(d+1) keys for
each user and have at mostO(logn) = O(kd − 1) trans-
missions overhead per single eviction. The requirement is
further improved in[3,4,5] which greatly reduces the trans-
mission and storage complexity of re-keying schemes. An-
other stronger property of the tree structured scheme is that
it allows the number of excluded usersk to be arbitrary,
rather than fixed in advance. But some balanced tree struc-
ture based schemes have the disadvantage of not providing
collusion prevention.

The other group makes use of thebroadcast encryption
idea proposed by Fiat and Naor[6]. The broadcast en-
cryption scheme enables the GC to communicate data se-
cretly to dynamically changing authorized users while pre-
venting any coalition of users to learn anything about the
data. Other studies on broadcast encryption schemes can
be found in [7,8] and [9]. In [7] , the concept of the Perfect
Hash Family(PHF) is reviewed and proved to be useful for
the secure new session key distribution. The possibility of

40 Informatica27 (2003) 39–47 C.Y.Bai et al.

using the error correcting code to construct such a scheme
is given there without providing any practical and detailed
construction. Hartonoet.al. [8] borrows the idea of Key
Distribution Pattern (KDP), based on which the broadcast
encryption scheme that can remove up tot users from a
group ofn users and is secure against collusion oft mali-
cious users can be set up. How to use the error correcting
codes to construct such a KDP is not discussed. In [9],
Poovendran and Baras show that by assigning probabili-
ties to member revocations, the optimality, correctness and
the system requirements of some of the schemes in [6,7,8]
can be systematically studied using information theoretic
concepts and also show that the optimal average number of
keys per member in a secure multicast scheme is related to
the entropy of the member revocation event, thus provides
a way for us to inspect each scheme from the theory point
of view.

2 Related Work review

Assume that there is a set of usersU , a group controller
GC and a setK of Key Encrypting Keys (KEK) that is
generated and stored by the GC.Session keys are used
for group member communication. A userui will have a
subset of Key Encrypting Keys,K(ui) ⊆ K. KEKs are
used to update the SK in the event of membership change
due to any of the following reasons: (a) a new member ad-
mission, (b) expiration of the SK, (c) member compromise,
(d) voluntary leave, and (e) member revocation. We only
consider the last case, member revocation in this paper.

The secure group communication requires KEKs to se-
curely distribute the updated SK. If every member has an
individual public key, for a group consisting ofn members,
the SK update will involveO(n) encryptions by the GC.
The linear increase of the required number of encryptions
in group size is not suitable for very large scale applications
common in Internet, due to the amount of computational
burden on the GC.

Next, we will review two scalable re-keying schemes
which can reduce the number of encryptions.

2.1 Re-keying scheme based on PHF

A re-keying scheme called OR scheme in [7] specifies an
algorithm by which the GC produces a common session
keykU\W for the groupU \W without letting those users
in W to know the new session key, whereW ⊆ U . The
scheme is as follows:

1. Key initialization : The GC generates and stores a
setK of KEKs and securely givesui the set of his KEKs
K(ui) ⊆ K.

2. Broadcast : To remove a set of usersW from U , the
GC randomly chooses a session keykU\W and encrypts it
with those keys not belonging toW , then broadcasts the
encrypted messages to all the users. That is, the GC broad-

casts

{Ek(kU\W)| k ∈ K, k 6∈ K(W),K(W) = ∪j∈W K(uj)}.

3. Decryption: Each userui ∈ U \ W uses one of his
own KEKs k ∈ K(ui) to decryptEk(kU\W) and obtain
the new session keykU\W .

We review the concept of PHF here for the completeness
of this paper. Letn andm be integers such that2 ≤ m ≤ n,
A = {1, 2, ...n} andB = {1, 2, ...m} be two sets. A
hash function is a functionh from A to B h : A → B.
We say a hash functionh : A → B is perfect on a subset
X ⊆ A if h is injective when restricted onX. Let w be an
integer such that2 ≤ w ≤ m,and letH ⊆ {h : A → B}.
H is called an(n,m, w) perfect hash family(PHF) if for
anyX ⊆ A with |X| = w there exists at least one element
h ∈ H such thath is perfect onX.

It is proven in [7] that if there exists a
PHF (N,n, m, w), then there exists a re-keying scheme
in which the number of KEKs for each user and the GC
are N and Nm respectively and the number of broad-
cast transmissions to remove up tow users is less than
(m− 1)N .

It is also proven in [7] that an(N, n, d, m) erasure
code gives rise to aPHF (N,n, m, w) as long asN >(

w
2

)
(N − d), thus can be used for the construction of

the above re-keying scheme. Such a scheme can prevent
w users from colluding. The performance of the re-keying
scheme based on PHF is determined by the parameterN
whenw andm are fixed, which should be minimized to
reduce the storage and transmission complexity. But the
author didn’t mention any details on which kind of error
correcting code should be used and how it is used for the
construction.

2.2 Re-keying scheme based on KDP

In [8], H. Kurnio reviewed the concept of Key distribution
Patterns(KDP).

Let X = {x1, x2, ..., xn} andB = {B1, B2, ..., BN}
be a family of subsets ofX. The pair(X,B) is called an
(n, N, t)-key distribution pattern if

|(Bi ∩Bj) \ ∪t
k=1Bsk

)| ≥ 1

for any(t + 2)-subset{i, j, s1, ..., st} of {1, 2, ..., N}.
With the idea of KDP, the author presented a theorem to

show the existence of a multicast re-keying scheme with
dynamic controller based on KDP. But how to effectively
construct KDP is still an open problem.

Inspired by the work from [7] and [8], we look at the
problem of multicast re-keying from the error-correcting
codes point of view in this paper. In order to achieve con-
structions with feasible storage that do not require com-
putational assumptions, we make an improvement on the
constraints that must be satisfied to construct the broadcast
encryption scheme in[7,8] by avoiding the requirement of

PRACTICAL CONSTRUCTION FOR MULTICAST. . . Informatica27 (2003) 39–47 41

being PHF and KDP. Based on the OR model mentioned
above and assumed a system with GC, we give two practi-
cal construction of schemes based on Reed-Solomon codes
and avoid any computational assumptions. Conditions un-
derlining the constructions are also given together with ex-
amples to show the detail constructions.

Kumaret.al. [10] also consider the blacklisting problem
through error-correcting codes, but their method is quite
different from ours.

3 Multicast Re-keying Scheme
based on R-S code

3.1 Background on code

Let GF (q) be a finite field.

Definition 3.1 (Linear Code) An [m, k, d] linear code
is a k-dimensional subspaceVm,k of m-dimensional linear
spaceVm over GFq, where the minimum Hamming dis-
tance between any pair of elements is d.

Reed-Solomon code is an important kind of linear block
BCH codes which had been widely used in such areas as
space communication systems, spread-spectrum communi-
cation systems and computer storage systems.

Definition 3.2 (Reed− Solomon Code) Let
x1, ..., xm ∈ GF (q) be distinct andk > 0. The
(m, k)q Reed-Solomon code is given by the subspace
{(f(x1), ..., f(xm))|f ∈ GFq,k}, whereGFq,k denote the
set of polynomials onGF (q) of degree less thank.

R-S code is a Maximum Distance Separable (MDS)
code, which means that the error-correcting capability of
the R-S code can reach the Singleton bound. The R-
S code has the property that the(m, k)q R-S code is an
[m, k, m− k + 1]q linear code and it requires thatm ≤ q.

3.2 R-S code based construction

3.2.1 First construction

Theorem 3.1 Let (N, k, d) be a Reed-Solomon code over
GF (q), whereN is the length of the codewords,k is the
length of the information bits andd is the minimum dis-
tance of the code. The number of the codewordsn = qk.
Let W be a subset of{1, 2, ..., n} with |W | = w. Then
such an error-correcting code can be used to construct a
multicast encryption scheme as long as it satisfies that

N > w ∗ (N − d).

Proof: LetT be the set of codewords of a(N, k, d) code,
|T | = n. We write each element ofT as(ci1, ci2, ..., ciN)
with cij ∈ {1, 2, ..., q}, where1 ≤ i ≤ n, 1 ≤ j ≤ N
andn is the number of codewords. For each j we define
a functionhj from A = {1, ..., n} to B = {1, ..., q} by
hj(i) = cij and letH = {hj |j = 1, ...N}.

In the key initialization phase, The GC generates and
stores a set ofNq keys defined asK = {k(h,b) | h ∈
H, b ∈ B}. For a userui, 1 ≤ i ≤ n, GC secretly givesui

the set ofN Key Encryption KeysK(ui) = {k(h,h(i))|h ∈
H}.

In the broadcast stage of removing a set of usersW from
U, |W | ≤ w, the GC randomly select a new session key and
encrypt it with those KEKs that do not belong toW , then
broadcast the encrypted messages to all the users. So those
users that have been removed can not use their own KEKs
to decrypt and obtain the new session key.

As to the decryption phase, we need to prove that any
userui that does not belong toW has at least one key to
decrypt and obtain the new session key.

Let W = {ui1, ..., uiw}. Since the minimum distance
of the code isd, for any given pair of elementsx1, x2 ∈
U , there are at mostN − d functions fromH such that
the values of theseN − d functions evaluated onx1 and
x2 are the same. For any userui 6∈ W , it has at most
N−d functions that is the same asui1, at mostN−d same
functions asui2, ... and at mostN − d same functions as
uiw. The worst case is that the sameN−d functions thatui

has withui1 is different from thoseN −d functions thatui

has withui2, which is different from thoseN −d functions
thatui has withui3, ... That is, all the w (N-d) functions
are different. So we conclude that ifN > w∗(N−d), then
ui has at least one function that is different from all those
functions belong toW . That is, there exists a functionhα ∈
H such that{hα(j)|j = i1, i2, ..., iw, i} are all distinct. It
follows thatk(hα,hα(i)) is in K(ui) ⊆ K(U \W), soui can
decrypt the encrypted message and obtain the new session
keykU\W .

The theorem holds for any setL of members who wants
to leave the original group as long as|L| ≤ w.

Example 3.1 Take the(N, k, d) = (4, 2, 3) RS code over
finite fieldGF (4) = GF (22) = {0, 1, α, α2}. The primi-
tive elementα is the root ofx2 + x + 1 = 0. From theorem
3.1 we know that, if

N − w(N − d) > 0,

then there exists a broadcast encryption scheme based on
such a RS code, which means thatw < N

N−d = 4
4−3 = 4.

Sincek = 2, the information sequence is

m = (m1, m2).

The codewords, that is KEKs for all users corresponding to
all possible information sequence is shown in Table 1.

3.2.2 Discussion

1. From [7], it is also known that any (N,k,d) error cor-
recting code gives rise to a PHF(N,n,m,w) which is proven
to be effective to set up the multicast encryption scheme.

42 Informatica27 (2003) 39–47 C.Y.Bai et al.

m2 m1 h(0) h(1) h(α) h(α2)
u1 0 0 0 0 0 0
u2 0 1 1 1 1 1
u3 0 α α α α α
u4 0 α2 α2 α2 α2 α2

u5 1 0 0 1 α α2

u6 1 1 1 0 α2 α
u7 1 α α α2 0 1
u8 1 α2 α2 α 1 0
u9 α 0 0 α α2 1
u10 α 1 1 α2 α 0
u11 α α α 0 1 α2

u12 α α2 α2 1 0 α
u13 α2 0 0 α2 1 α
u14 α2 1 1 α 0 α2

u15 α2 α α 1 α2 0
u16 α2 α2 α2 0 α 1

Table 1: User KEKs constructed from (4,2,3) R-S code

There, it requires that the minimum distance of the error-
correcting coded′ satisfies that

d′ >

((
w
2

)
− 1

)
N

(
w
2

) .

That is,the minimumd′ that satisfies the above inequality
is

d′ =



((
w
2

)
− 1

)
N

(
w
2

)

 + 1.

While here, from the above theorem, since

N > w ∗ (N − d),

the minimum distanced has to satisfy that

d >

(
1− 1

w

)
N.

That is, the minimumd that satisfies the above inequality
is

d =
⌊

w − 1
w

N

⌋
+ 1.

Becaused ≤ d′, the requirement for constructing the
broadcast encrypting scheme using R-S code had been re-
duced since it is more easier to find such a RS code, which
allows us to increase the length of the information bitk
when the code length is fixed and further more to reduce
the requirement for the bandwidth.

2. For any[n, k, d]q R-S code over finite fieldFq, when
N = q, k = logqn, where n is the number of codewords,

d = N − k + 1 = q − logqn + 1,

then from
N < w ∗ (N − d),

we get

w <
N

N − d
=

q

logqn− 1
.

Example 3.2 Take an[8, 3, 6]8 R-S code over finite field

GF (8) = {0, 1, α, α2, α3, α4, α5, α6}
as an example. Sinceq = 8, N = q = 8, k = 3, d =
N − k +1 = 8− 3+1 = 6, then the number of codewords
n = 83 = 512 and

w <
N

N − d
=

q

logqn− 1
=

8
3− 1

= 4.

So the[8, 3, 6]8 R-S code over finite fieldGF (8) can be
used to construct the secure broadcast scheme as long as
the number of members who want to quit is less than or
equal to 3 whereN > w(N − d) ↔ 8 > 3(8− 6).

3.2.3 Extension of the scheme

In order to improve the communication efficiency, the OR
scheme we discussed can be slightly modified with erasure
code such that the bandwidth used by the GC for broad-
casting information can be reduced.

An [n, k, m] erasure code is a special class of error-
correcting codes that allow recovery of a message if part
of its messages(≤ (n−m)) are damaged or erased during
the transmission. An erasure code can be constructed using
Reed-Solomon code over finite fieldGF (q). The decoding
procedure usesk pairs of(ei, pv(ei)) to recover the origi-
nalk information messages, whereei is one of the field ele-
ment overGF (q) andp(x) = v0+v1(x)+...+vk−1(xk−1)
is the polynomial for the R-S encoding.

The broadcast encryption scheme described in Theo-
rem 3.1 can be modified as follows. In the broadcast
phase, before broadcasting the new session keykU\W ,
an encoding procedure is first applied to the new ses-
sion key. The new session keykU\W was divided intot
pieceskU\W = (kU\W

1 , k
U\W
2 , ..., k

U\W
t), then encodes

them using[Nm, t, α] erasure code to obtain the codeword
C(kU\W) = (c1, c2, ..., cNm). The GC uses all the KEKs
that do not belong to the users ofW to encrypt the corre-
sponding components ofC(kU\W) and broadcasts the en-
crypted messages to all the users. That is, the GC broad-
casts

{Eki(ci) | ki ∈ K, ki 6∈ K(W)}.
As long as each non-excluded user has at leastα keys that
can decryptα messages of{Eki(ci)}, he can then apply the
erasure code to obtain the new session key. While for those
users inW , same as before, they can not find the session
keys.

Theorem 3.2 The above scheme works as long as the fol-
lowing inequality holds:

N − w(N − d) ≥ α.

PRACTICAL CONSTRUCTION FOR MULTICAST. . . Informatica27 (2003) 39–47 43

For an[n, k, m] erasure code overGF (q), we expectk
to be as large as possible in order to minimize the extra
bandwidthn/k for the transmission. Actually, the basic
scheme we discussed in Theorem 3.1 is a special case of
using[n, 1, 1] erasure code for the construction.

Example 3.3 Consider the same example as in Example
3.1: the RS code(N, k, d) = (4, 2, 3) over finite field
GF (4) = GF (22) = {0, 1, α, α2}. The primitive element
α is the root ofx2 +x+1 = 0. The KEKs for all users cor-
responding to all possible information sequence is shown
in Table 1.

For the above scheme to work, it needs that

N − w(N − d) ≥ α,

that is,
4− w(4− 3) ≥ α,

that is,
4− w ≥ α.

For α = 1, w can be 1,2 or 3. Forα = 2, w can be 1 or 2.
And forα = 3, w can only be 1. We takew = 2 andα = 2
as an example.

We divide the new session keykU\W into two parts
kU\W = (kU\W

0 , k
U\W
1), then encodeskU\W using a

[16,2,2] erasure code to obtain a codeword

C(kU\W) = (c1(0), c2(1), c3(α), ..., c16(α14)),

where
ci(ei) = p(ei), ei ∈ GF (16)

and
p(x) = k0 + k1x.

Suppose any two usersW = {us1 , us2}, |W | = 2 want
to leave the group, the GC uses all the KEKs that do not
belong to this two users to encrypt all these 16 pieces of
encoded keys and broadcasts the encrypted messages to all
the users. Then each user that is not inW has at least 2
keys to decrypt 2 messages, thus can recover the original
new session key.

3.3 Second R-S code based construction

In [8], Hartono proposed a broadcast encryption scheme
based on the KDP(Key Distribution Pattern) which can be
used for dynamic GC. If the GC is fixed in the system and
is trustable, then the condition for the scheme can be im-
proved to make it work for general case.

3.3.1 Scheme description

Theorem 3.3 Let X = {x1, x2, ...xn∗} be a set of KEKs,
U = {U1, U2, ..., Un} be the set ofusers′ KEKs, which
is a family of subset ofX, that is, for∀ i, Ui ⊆ X. Let
W = {Us1 , Us2 , ...Usw} be a subset ofU with |W | = w.
If for ∀ i, it satisfies that:

|Ui \ ∪w
k=1Usk

| ≥ 1,

Then a broadcast encryption scheme can be constructed
which can remove up tow users from a group ofn users.

In this scheme, The GC generates and stores a setX of
KEKs in the key initialization phase, and sends each user
ui a subsetUi ⊆ U of X as the user’s KEKs. When a set of
usersW want to quit from the group, the GC selects a new
session keykU\W and encrypts the session key with all
KEKs except those belong to users inW , that is, GC broad-
casts{Ekr

(kU\W) | kr ∈ X \ (Us1 ∪ Us2 ... ∪ Usw
)}. So,

those users inW can not decrypt the encrypted message.
While, since for∀ui thatUi ∈ X \W ,

|Ui \ ∪w
k=1Usk

| ≥ 1,

it has at least one key that does not belong toW , so it can
decryptEkr

(kU\W) and obtain the new session keykU\W .
From the theorem we know that for any givenw andn,

we should maken∗ as small as possible. Same, for any
givenw andn∗, we hopen to be as large as possible.

Next, we will show how to use Reed-Solomon code to
construct the KEK set X and U and how the scheme works.

3.3.2 R-S code based construction

We take the R-S code(N, k, d) over the finite field
GF (q) = {0, 1, α, ...αq−2}, The number of usersn = qk.
The RS codewordc of length N is generated fromk
information symbols taken from the finite fieldGF (q)
through polynomial

h(x) = m0 + m1x + m2x
2 + ...

+mk−2x
k−2 + mk−1x

k−1,

where
m = (m0, m1, ...mk−1)

and

c = (c0, c1, ..., cq−1)

= (h(0), h(1), h(α), h(α2), ..., h(αq−2)).

For each userui, the KEK set that corresponds to the k
information symbols

mi = (mi1,mi2, ...mik)

is
Ui = {(hi(0), hi(1), hi(α), ..., hi(αq−2)

)},
where|Ui| = q = N . So, the KEK set for all users is

U = ∪n
i=1Ui.

The total KEK setX for GC is

X = {Xi, i = 1, 2, ..., n∗},

wheren∗ = N ∗ q = q2, and

44 Informatica27 (2003) 39–47 C.Y.Bai et al.

Xi = {(h, β) |h ∈ {h(0), h(α), ..., h(αq−1)},

β ∈ GF (q).}
Next, we will use an example to show the exact proce-

dure on the RS-code construction of the scheme.

Example 3.4 Take the same example as in Example 3.1:
that is the(N, k, d) = (4, 2, 3) RS code over finite field
GF (4) = GF (22) = {0, 1, α, α2}. The primitive element
α is the root ofx2 + x + 1 = 0. The KEKs for all users
corresponding to all possible information sequence is
shown in Table 1. After extending the users’ KEKs by use
of the way shown in section 3.3.2, we obtain the KEKs set
X = {Xi, i = 1, 2, ..., 16} as shown in Table 2.

From Table 2 we can see that,

U1 = {x1, x5, x9, x13}

= {(h1, 0), (h2, 0), (h3, 0), (h4, 0)}

U2 = {x2, x6, x10, x14}

= {(h1, 1), (h2, 1), (h3, 1), (h4, 1)}

U3 = {x3, x7, x11, x15}

= {(h1, α), (h2, α), (h3, α), (h4, α)}

U4 = {x4, x8, x12, x16}

= {(h1, α
2), (h2, α

2), (h3, α
2), (h4, α

2)}

U5 = {x1, x6, x11, x16}

= {(h1, 0), (h2, 1), (h3, α), (h4, α
2)}

...

U16 = {x4, x5, x11, x14}

= {(h1, α
2), (h2, 0), (h3, α), (h4, 1)}.

All the KEKs hold by the GC is given by:

U = ∪16
i=1Ui.

Suppose there arew = 2 users who want to quit from the
group{u1, u2, ..., u16}, say usersW = {u7, u8}, we can
check that for each userui 6∈ W ,

|Ui \ ∪w
k=1Usk

| ≥ 1.

For example,
∣∣U1 \ ∪2

k=1usk

∣∣ = |{x1, x5}| = 2 ≥ 1.

So such a set of KEKs can be used to implement the broad-
cast encryption scheme.

4 Construction of the Scheme using
A-G code

Since the R-S code overGF (q) requires the length of the
codewordsN ≤ q, we can not make the codeword longer
than q. Using Algebraic-geometric code(A-G code), the
scheme can be extended to the case when codeword length
N > q. Next we will show an example on how to use A-G
code to construct the OR model for the multicast re-keying
scheme.

4.1 A-G code

For those who are interested in more details about A-G
code, please refer to the paper [11] and [12].

4.2 Example of A-G code based multicast
re-keying scheme

Let us consider the Hermitian code overGF (4) = GF (22)
with k = 2. The Hermitian curve overGF (22) is
x3 + y2 + y = 0. The curve has rational points:

{(0, 0), (0, 1), (1, α), (1, α2),

(α, α), (α, α2), (α2, α), (α2, α2)}

=4 {((x1, y1), (x2, y2), (x3, y3), (x4, y4),

(x5, y5), (x6, y6), (x7, y7), (x8, y8)}.
Let code polynomial bec(x) = m0 + m1x, it has 16

codewords:

c = (c(x1, y1), c(x2, y2), c(x3, y3), c(x4, y4),

c(x5, y5), c(x6, y6), c(x7, y7), c(x8, y8))

All the codewords, that is, the KEKs set are shown in Table
3.

In this example,c(x) has at most 2 zero points,d =
8− 2 = 6. sinceq = 4, N = 8, d = 6, the number of users
n = q2 = 16, the number of keys isN ∗ q = 8 ∗ 4 = 32.

For the OR multicast re-keying scheme to work, it re-
quires that

N > w(N − d),

that is,
8 > w(8− 6),

so w can be 2 or 3. Since w can be 3, fromN−w(N−d) =
α, we know thatα can be 2.

5 Conclusions

In this paper, two practical constructions for Multicast Re-
keying Schemes using Reed-Solomon Codes are given with
examples to show the detailed construction procedure. Be-
cause it has many properties we expected, RS code pro-
vides us a practical way to construct the multicast re-keying

PRACTICAL CONSTRUCTION FOR MULTICAST. . . Informatica27 (2003) 39–47 45

h1 h1 h1 h1 h2 h2 h2 h2 h3 h3 h3 h3 h4 h4 h4 h4

0 1 α α2 0 1 α α2 0 1 α α2 0 1 α α2

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

u1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
u2 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
u3 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
u4 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
u5 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
u6 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0
u7 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
u8 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0
u9 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0
u10 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0
u11 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1
u12 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0
u13 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0
u14 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1
u15 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0
u16 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0

Table 2: Construction of Re-keying scheme with (4,2,3) R-S code.

m2 m1 h(0) h(1) h(α) h(α2)
u1 0 0 0 0 0 0 0 0 0 0
u2 0 1 0 0 1 1 α α α2 α2

u3 0 α 0 0 α α α2 α2 1 1
u4 0 α2 0 0 α2 α2 1 1 α α
u5 1 0 1 1 1 1 1 1 1 1
u6 1 1 1 1 0 0 α2 α2 α α
u7 1 α 1 1 α2 α2 α α 0 0
u8 1 α2 1 1 α α 0 0 α2 α2

u9 α 0 α α α α α α α α
u10 α 1 α α α2 α2 0 0 1 1
u11 α α α α 0 0 1 1 α2 α2

u12 α α2 α α 1 1 α2 α2 0 0
u13 α2 0 α2 α2 α2 α2 α2 α2 α α
u14 α2 1 α2 α2 α α 1 1 0 0
u15 α2 α α2 α2 1 1 0 0 α α
u16 α2 α2 α2 α2 0 0 α α 1 1

Table 3: User KEKs constructed from (8,2,6) A-G code.

46 Informatica27 (2003) 39–47 C.Y.Bai et al.

scheme efficiently. The storage complexity and transmis-
sion complexity have been reduced at the same time, which
is another advantage of the method proposed in this paper.

Because this paper is only an initial work for using RS-
code in constructing the re-keying scheme, a lot of work is
being done and will be done in the future such as how to
improve the communication transmission efficiency by en-
coding the new session key with error correcting code first,
how to deal with multiuser and multistage leaving from the
group, how to handle when a new user is joining, but the
members in the group has reached the maximum, how to
apply AG code instead of RS code in the construction to
improve the performance, how to make the GC be a group
member also, how to extend these two schemes to apply for
the distributed environment and so on.

References

[1] S.Berkovits. How to Broadcast a Secret.Advances
in Cryptology - EUROCRYPT’91, Lecture Notes in
Computer Science 547, p535-541, 1991;

[2] D.M.Wallner, E.J.Harder and R.C.Agee. Key Man-
agement for Multicast: Issues and Architectures.In-
tenet Draft, September, 1999;

[3] C.K.Wong, M.Gouda an dS.S.Lam, Secure Group
Communication using Key graphs.Proceedings of
SIGCOMM’98, p68-79, 1998;

[4] A.Perrig, Efficient Collaborative Key Management
Protocols for Secure Autonomous Group Commu-
nication.CrypTec’99, Hongkong, December, 1999;

[5] I.Chang, R.Engel,et.al., Key Management for Se-
cure Internet Multicast using Boolean Fnction Min-
imization Techniques.INFOCOM’99,September,
1999;

[6] A.Fiat and M.Naor, Broadcast Encryption.Advances
in Cryptology - CRYPT’92, Lecture Notes in Com-
puter Science, vol.773, p481-491, 1993;

[7] S.Naini R. and H.Wang, New Constructions for
Multicast Re-Keying Schemes using Perfect Hash
Families. 7th ACM Conference on Computer
and Communication Security, ACM Press,p228-
234,2000;

[8] H.Harnio, R.S.Naini, W.Susilo and H. Wang, Key
Management for Secure Multicast with Dynamic
Controller. Information Security and Privacy, 5th
Australasian Conference, ACISP’00, Lecture Notes
in Computer Science 1841, p178-190,2000; Septem-
ber, 1998;

[9] R.Poovendran and J.S.Baras, An Information Theo-
retic Analysis of Rooted-Tree Based Secure Multicast
Key Distribution Schemes.IEEE Transactions on In-
formation Theory, May, 1999;

[10] R.Kumar, S.Rajagophlan and A.Sahai, Coding con-
structions for blacklisting problems without com-
putational assumptions.Advances in Cryptology -
CRYPTO’99, Lecture Notes in Computer Science,
p609-623, 1999;

PRACTICAL CONSTRUCTION FOR MULTICAST. . . Informatica27 (2003) 39–47 47

[11] G.L. Feng and T.R.N. Rao, Decoding Algebraic Ge-
ometric Codes up to the Design Minimum Distance.
IEEE Transaction on Information Theory, vol.1,
No.1, p37-45, Jan. 1993;

[12] G.L. Feng, V.K. Wei, T.R.N. Rao, and K.K. Tzeng,
Simplified Understanding and Efficient Decoding of
a Class of Algebraic-Geometric Codes.IEEE Trans-
action on Information Theory, vol.40, No.4, p981-
1002, Jul. 1994;

 Informatica 27 (2003) 49–55 49

Building and Managing Software Reuse Libraries

Zina Houhamdi
Computer Science Institute, University of Biskra, BP 145, Biskra, 07000, Algeria.
E-mail: z_houhamdi@yahoo.fr

Keywords: Reuse library, Taxonomy, Classification, Reuse Description Formalism, Software defects.

Received : October 1, 2002

Software reuse has been claimed to be one of the most promising approaches to enhance programmer
productivity and software quality. One of the problems to be addresses to achieve high software reuse
is organizing databases of software experience, in which information on software products and
processes is stored and organized to enhance reuse.
The Reuse Description Formalism (RDF) is a generalization of the faceted index approach to
classification. It was initially designed as a tool to help increase reusability of software components at
the code level (e.g. functions or subroutines). The goal of this study is to show that RDF can also be
used effectively to represent and reuse other types of software knowledge. The emphasis here is on
those proprieties of RDF that facilitates the representation of these objects.
This paper demonstrates RDF’s representation power by constructing sample classification taxonomy
for software defects, and explains how this taxonomy can be used by the system tester to predict the
types of defects associated with software components.

1 Introduction
Current software reuse systems based on the faceted
index approach [14] to classification suffer from one or
more of the following problems [3,9]: they are applicable
to a restricted set of domains; they posses poor retrieval
mechanisms; their classification schemes are not
extensible; and/or they lack mechanisms for ensuring the
consistency of library definitions. The primary
contribution of this study is the design and
implementation of the Reuse Description Formalism,
which overcomes these problems.
• RDF is applicable to a wide range of software and

non-software domains. The RDF specification
language is capable of representing not only software
components at the code level, but it is also capable of
representing more abstract or complex software entities
such as projects, defects, or processes. What is more,
these software entities can all be made part of one
software library and can be arranged in semantic nets
using various types of relations such as "is-a",
"component-of", and "members-of" [4].

• RDF provides an extensible representation scheme.
A software reuse library system must be flexible
enough to allow representation schemes to evolve as
the needs and level of expertise in an organization
increases. The RDF specification language provides
several alternatives to extend or adjust a taxonomy so
as to allow the incorporation of new objects into the
library without having to classify all other objects [5].

• RDF provides a consistency verification mechanism.
Most software reuse library systems are based on
representation models, which must satisfy certain basic
predicates for the library to be in a consistent state. The
RDF specification language includes an "assertion"
mechanism whose purpose is to help specify and

ensure the consistency of the object descriptions
contained in a library.

In short, RDF addresses the main limitations of current
faceted classification systems by extending their
representation model.
The remaining of this paper presents a detailed definition
of the RDF system. It introduces the concepts behind
RDF's representation and similarity models by
developing a sample software reuse library. These
concepts were formalized [10].
To create and organize reuse library, an extensive
domain analysis must be performed beforehand [13].
This analysis must produce a classification scheme
(including attributes and their types) as well as an
approximate measure of similarity between objects.
This section develops a small software library to classify
operations to manipulate data structures consisting of
repeated element (e.g., stacks, trees, Hash tables). For
representation purposes we start with a trivial library and
enhance it as more features of RDF are introduced.

2 Creating taxonomy
Booch [2] classifies operations over a data structure in
the following three classes, based on how the structure is
accessed.
• Constructors: operations that alter the data structure.
• Selectors: operations that evaluate the data structure.
• Iterators: operations that visit all element of the

structure.
We can describe this simple classification scheme by
defining an attribute called function as follows:

Attribute function : {construct, select, iterate};
Another attribute for classification of operations is
execution time as a function of the size of data structure.

50 Informatica 27 (2003) 49–55 Z. Houhamdi

Attribute timing: {constant, log, linear, loglinear, quadratic,
slow};

Attributes function and timing define a simple
classification scheme that can be used to describe four
operations for stack manipulation. Each of these
descriptions is called instance.

Push = [function = constructor & timing = constant];
Pop = [function = constructor & timing = constant];
Top = [function = select & timing = constant];
New = [function = constructor & timing = constant];

This section has introduced two basic concepts of RDF
language: attributes and instances. The type associated
with both attributes is an enumeration of terms. Each
instance defines the attribute values of a particular data
structure operation.

3 Extending Taxonomy
The characterization of the functionality of operation
presented above is too coarse. In fact, the descriptions of
push, pop and new are identical. This section refines this
characterization by extending the classification scheme.
There are at last three approaches to do this.
• Add or replace terms in the type of attribute.
• Add more attributes.
• Describe attribute values in terms of more primitive

attributes.
The first two approaches are common practice while
designing a taxonomy and the only alternatives a library
designer has with other classification systems such as
AIRS or faceted classification system. The third
approach is unique to RDF, and allows the construction
of hierarchical classification system.

3.1 Adding values to a type
In this approach, the classification scheme is refined by
including additional values to the type of an attribute. In
particular, we add new terms to the functionality
attribute. In the context of data structures consisting of
repeated elements, the constructor term will be replaced
by three new terms create, insert, and remove. With this
new definition we can now tell push from pop and tell
those from new. The updated definitions are as follows:

Attribute function : {create, insert, remove, select, iterate};
Push = [function = insert & timing = constant];
Pop = [function = remove & timing = constant];
Top = [function = select & timing = constant];
New = [function = create & timing = constant];

This drawback of this approach is that instance
definitions had to be manually modified (e.g., changing
construct by the corresponding new term in each
instance). Moreover, these extensions create flat
taxonomies with few attributes and many terms, instead
of hierarchies.

3.2 Adding attributes
In RDF, it is possible to define a new attribute and then
use it to refine the classification of selected instances.
Unlike other faceted classification system, this new
attribute does not have to be used in all instances. Hence,
the addition of attributes requires modifying only those
instances for which the new attribute is meaningful and
important.
For example, we extend the taxonomy by adding a new
attribute called exception. This attribute is used to
describe those operations that can signal a fatal exception
such as a stack overflow or underflow. The following
definitions are added or modified in our library:

Attribute exception : {underflow, overflow};
Push = [function = insert & timing = constant & exception =

overflow];
Pop = [function = remove & timing = constant & exception

= underflow];

Only those operations that can generate an exception
(push and pop) have been described using the attribute
exception. The remaining in the library (top and new)
were not modified and, therefore, have no defined value
for the attribute exception. It can be argued that the
attribute exception could have been defined with an
additional term called noexception to describe those
operations that do not generate exceptions. In this
solution, all instances would been defined using the same
set of attributes and therefore a system like AIRS could
still be used to model our taxonomy. Although this
argument is valid in the current example, in fact that
RDF can handle descriptions with different sets of
attributes in particularly important in the case of libraries
containing objects of different classes such as "project",
"systems", "packages", and "operations". The attributes
of these sample classes are most probably disjunct, but
they can all be classified in a single library.

3.3 Describing values of an attribute
RDF provides a new approach to extend a classification
scheme: describe all terms of an attribute using more
primitive attributes. This process is illustrated by refining
again the functionality attribute. Within the domain of
data structure consisting of repeated elements, the
functionality is described in term of three new attributes:
access (whether the data structure is written or only
read), target (which elements are affected), and newsize
(how the number of elements varies).

Attribute access : {write, read};
Attribute target : {leftmost,rightmost,keyed,any,all,none};
Attribute newsize : {increase, decrease, reset, same};

These new attributes are used to define each of terms that
belong to the attribute functionality.

Create = [in constructors & newsize=reset & target=none];
Insert = [in constructors & newsize = increase];
Remove = [in constructors & newsize = decrease];

BUILDING AND MANAGING SOFTWARE... Informatica 27 (2003) 49–55 51

Select = [in selectors];
Iterate = [in iterators];

Where constructor, selectors, and iterators each define a
class of instances. The class mechanism is used both as
an abstract mechanism and, also, as an abbreviation for
expressions. These classes are defined as follows:

Constructors = class (access = write);
Selectors = class (access = read & newsize = same);
Iterators = class (target = all);

The definition of the attribute functionality can now be
changed, because its element no longer belong to
enumeration type to a class of instances, namely the class
of instances defined in terms of one or more of the
attributes access, target, and newsize.

Attribute function : class (has access | has target | has

newsize);

Since all former terms of attribute function are defined,
instances described using these values (e.g., push) do not
need to be redefined. That is, this extension of the
classification system does not affect the classification of
objects already in the library.
This extended classification scheme allows us to define
new categories of functionality. For example, we can
define modify as a possible value of functionality, and
also describe more specific iterators.

Modify = [in modifiers];
Passive_iterate = [in iterators & in selectors];
Active_iterate = [in iterators & in constructors];
Modify_iterate = [in iterators & in modifiers];
Modifiers = class (access = write & newsize = same);

Where modifiers is the class of all operations that update
elements in the data structure.
In summary, the process required to extend a
classification scheme by redefining the terms of the
attribute is as follows:

1. Select an attribute a whose terms are to be
refined. Let T be the type of a. In the example, a
= functionality and T = {create, insert, remove,
select, iterate}.

2. Perform a domain analysis on the domain of the
terms of a. From this analysis, define a set A of
new attributes that describe terms in T, and
determine the type for each attribute in A. In the
example, A = {access, target, newsize} with their
corresponding term enumerations.

3. Redefine attribute a. possible values for a are not
terms as before (type T is no longer part of the
library), but instances that belong to a class
defined using the attributes in A.

4. Define each former term t ∈ T as an instance
using the attributes in A, following the same
procedure used to describe data structure
operations.

5. If needed, other values for a can be described.
This values can be specializations of former
terms (e.g., passive_iterate) or they can represent
new concepts (e.g., modify).

In principle, this process of refinement can be done
indefinitely providing deep hierarchical taxonomies, but
there is a point in which using this formalism is no
longer useful (e.g., do not use RDF to describe detailed
functionality, including pre- and post-conditions).

4 Creating object hierarchies
Reusable software usually consists of packages or
modules, made from operations and their packages. We
want to represent this modular structure, but we do not
want to force any granularity of reuse. That is, we want
to have a library consisting of packages and operations,
assuming that both complete packages and isolated
operations will be reused. The following declarations
define the kinds of reusable software components for a
library of data structure packages. Because a package can
have several subunits, the subunits attribute has a set type.

Attribute subunits : set of components;
Attribute parent : packages;
Components = class (in packages | in operations);
Packages = class (has subunits);
Operations = class (has function | has timing);

Two other attributes for packages are defined: maxsize
(whether there are limits in the number of elements of the
structure) and control (whether concurrent access is
supported).

Attribute maxsize : {bounded, limited, unbounded};
Attribute control : {sequential, concurrent};

With these declarations, a stack package comprising the
operations already described can be defined using one
extra attribute (parent). The implementation has no preset
bound on size and does not provide support for
concurrency.

Stack = [subunit = set (parent = stack) & maxsize =

unbounded & control = sequential];
Push = [parent = stack & function = insert & timing =

constant & exception = overflow];
Pop = [parent = stack & function = remove & timing =

constant & exception = underflow];
Top = [parent = stack & function = select & timing =

constant];
New = [parent = stack & function = create & timing =

constant];

Where the construct "set (parent = stack) denotes the set
of all instances defined in the library for which the
attribute parent is equal to stack, in other words, the set
{pop, push, top, new}.

5 Dependencies among attributes

52 Informatica 27 (2003) 49–55 Z. Houhamdi

All classification schemes assume that certain semantic
relations between attributes values are being maintained.
For this purpose, RDF provides a mechanism that uses
assertions to define semantic constrains between attribute
values. For example, consider the case of attributes
describing the functionality of an operation. If the data
structure is not written then there is no size change, and
if the structure is reset then there is no specific target.
These two relations can be expressed as follows:

Assertion access = read ⇒ newsize = same;
Assertion newsize = reset ⇒ target = none;

In addition, the attribute maxsize and control are only
relevant for packages, and all units that declare a package
as their parent must indeed be subunits of the package.

Assertion has maxsize | has control ⇒ in package;
Assertion in packages ⇒ subunits (parent = self);

The keyword self denotes the instance being analyzed for
compliance with the assertion.

6 Defining synonyms
One of the difficulties of describing operations given our
current taxonomy is remembering the precise terms used
in the library. Besides, certain concepts can be given or
referenced by more than one name. The introduction of
synonyms for terms has been suggested as a partial
solution to this problem.
One could declare that distance between two terms is
zero, making them synonyms from the point of view of
queries based on similarity. However, queries based on
exact matches will considered them different. In RDF is
possible to declare an identifier i1 to be a synonym of an
identifier i2 by simply declaring i1 = i2. For example:

Update = write; Preserve = read;

These definitions introduce the synonyms update and
preserve for the terms write and read of attribute access,
respectively.

7 Queries and comparing objects

In order to find reusable software components in the
library of packages and operations; it is necessary to
define the distance values associated with the terms of
enumerations types.

This allows RDF to compute distances not only
between these terms, but also between instances defined
using these terms. Distances between terms are defined
with a distance clause. For example attribute access and
newsize and their distance clauses are given below. The
distances shown here are just sample values. {The
process of assigning distances is not described in this
paper because the emphasis is not on how to define
similarity distances between object}.

Attribute access : {write, read}

Distance {write → read: 4 , read → write: 6};

Attribute newsize : {increase, decrease, reset, same}
Distance {increase → decrease: 5, same: 7,
decrease → increase: 5, reset: 3, reset → same:
10, same → reset: 10};

By transitivity, we can determine other distance not
explicitly given. For example, the distance from increase
to reset is 5 + 3 = 8, and the distance from decrease to
same is 12. Note that a bigger value for this distance (13)
can be obtained going from decrease to reset to same, but
RDF always uses the smallest value.
Basically, the distance between two instances is
computed by adding the distances of their corresponding
attribute values. For example, the distance from remove
to select is 16, given by the distance from write to read (4)
plus the distance from decrease to same (12).

Remove = [access = write & newsize = decrease];
 16 = 4 + 12
Select = [access = read & newsize = same];

Distances between instances are used by RDF to select
reuse candidates from a library. This selection is
performed using the query command. For example, the
following query finds components that are similar to an
operation that retrieves an arbitrary element from a data
structure in at most logarithmic time.

Query function = [in selectors & target = any] & timing =

log;

Consider another example. Find a data structure with
three operations: one to initialize, one to insert an
element, and one to traverse the structure without
modifying it; concurrent control is not needed, but the
structure must be able to handle an unbounded number of
elements.

Query maxsize = unbounded & control = sequential &
Subunits = {[function = create], [function = insert],

[function = passive_iterate]};

In this query, only the functionality of the operations has
been specified. Attribute timing is not defined; meaning
that any value for timing is equally acceptable in the
retrieved operations.

8 Sample RDF taxonomy
RDF was initially designed as a tool to help increase
reusability of software components at the code level (e.g.
functions or subroutines). The goal of this section is to
show that RDF can also be used effectively to represent
and reuse other types of software knowledge. This
section includes a taxonomy for representing software
defects, and explains how RDF library of software
defects can help a system tester.
One obvious necessity of software systems is the ability
to function without defects. Traditional software
construction processes have specific subprocesses to
detect defects (e.g., "unit test", and "acceptance test").
However, detecting faults is not enough: to reduce the

BUILDING AND MANAGING SOFTWARE... Informatica 27 (2003) 49–55 53

number of defects associated with a product and its
development process requires the ability to explain and
predict them. The ability to explain a defect helps to find
its source, thus reducing the coast associated with its
correction. In addition, being able to predict defects in a
software system helps to select processes, methods and
tools to avoid defects of a particular kind, reducing the
need for later detection and correction procedures.
Prediction also helps to improve the effectiveness of
testing mechanisms by increasing the chances of finding
defects.
In order to explain and predict software defects, we need
to characterize the different kinds of defects associated
with a particular software environment and project [1].

3.1 Characterizing defects using RDF
A software product can be defined by two distinct types
of entities [1,15]: data and processes. The first attribute
we use to discriminate among defects is whether they are
directly associated with processes or with documents. If a
defect is related to document, it is called a fault. If it is
related to process, it is called either a failure or an error:
failures are associated with processes that are performed
automatically and errors are associated with human
processes.
The attribute entity classifies the kind of entity (either
data or process) in which the defect occurs. The attribute
creator classifies the creator or agent of that entity (either
computer or human). These attributes are used to define
faults, errors, and failures.

Attribute entity : {data, process};
Attribute creator : {computer, human};
Defects = class (has entity | has creator);
Faults = class (entity = data);
Failures = class (entity = process & creator = computer);
Errors = class (entity = process & creator = human);

Cause of defects. Failure, faults and errors are
interrelated. Failures are caused by one or more faults
(system failures are also caused by environmental
accidents; here we only consider software related
failures). For example, a failure during the execution of a
program is caused by a fault in the program. Faults in a
document are the consequence of defects in the processes
that create the document or in the date used by these
processes. For example, failure in a software tool can
produce a fault in a document. The cause attribute
describes these relationships. Because we do not model
human processes, this attribute does not apply to errors.

Attribute cause : set of defects;
Assertion has cause ⇒ in failures |in faults;

Severity of a defect. Another way to characterize defects
is by their severity: this information helps prioritize
activities aimed at correcting defects. We distinguish
four levels of severity: fatal (stops production or
development completely), critical (impacts production or

development significantly), noncritical (prevents full use
of features), and minor.

Attribute severity : {fatal, critical, noncritical, minor};

Defects and the Lifecycle. We are interest in determining
when and where a defect enters the system and when it is
detected. Because the phases of the lifecycle are related
to documents (e.g., the requirements phase is related to
the requirement document), we use phases to measure the
time at which errors and failures occurs as well as to
determine the (kind of) document in which a fault occurs.
The occurrence attribute relates a defect to phase at
which it is detected. We explicitly declare the phase type
that is used in these two attributes.

Type phase = {requirement, specification, design, coding,

unit_test, integration, operation, integration_test,
acceptance_test, maintenance};

Attribute occurrence : phase;
Attribute detection : phase;

So far we have defined attributes to characterize defects
in general. The remaining analysis defines specific kinds
of failures, faults, and errors.

Kinds of failures. A failure occurs during the execution
of either the software product or a software tool. Our
focus is on failures associated with the execution of a
particular kind of software product: implementation of
data structures.

Attribute failure_kind : {overflow, underflow, illegal_access,

wrong_output, infinite_loop, tool_failure};
Assertion has failure_kind ⇒ in failures;

Kinds of faults. Faults are defects in documents: they
occur in executable documents (i.e., code) and also in
other types of documents. Again, our focus is on
documents interpreted by the computer, so we consider
only faults on those documents.

Attribute fault_kind : {control_flow, algebraic_computation,

data_use, data_initialization, data_definition, interface };
Assertion has fault_kind ⇒ in faults;

In general it is difficult to isolate defects in documents.
However, if a particular area in a document contains a
defect, one is interested in knowing whether something is
missing (omission) or something is wrong (commission).
We use the fault_mode attribute to distinguish between
these two cases.

Attribute fault_mode : {omission, commission};
Assertion has fault_mode ⇒ in faults;

Kinds of errors. Defects introduced by humans (i.e.,
errors) are ultimately the cause of the most other type of
defects in a software product; hence understanding their
nature is critical. On the other hand, a complete

54 Informatica 27 (2003) 49–55 Z. Houhamdi

characterization of errors involves modeling human
processes, which is out of the scope of this work. We
simply characterize errors by the particular domain that
is misunderstood or misused, using the error_kind
attribute.

Attribute error_kind : {appilication_area, problem_solution,
syntax, semantics, environment, clerical};

Assertion has error_kind ⇒in errors;

3.2 Sample descriptions
The following examples of defects and their
characterization use the proposed classification scheme.
The particular software project is the construction of a
package to manipulate Hash tables.

Case 1. Consider a programmer coding a particular
function, which according to the specifications must
receive as, input two integer arguments. The programmer
understands exactly what must be implemented, but
mistakenly declares the function with only one formal
argument. This fault is detected while reading code
during unit testing. These defects are classified as
follows:

Fault_1 = [in fault & occurrence = coding & detection =

unit_test & severity = critical & cause = {error1} &
fault_mode = omission & fault_kind = interface];

Error1 = [in error & error_kind = clerical];

Case 2. Consider the case that deletions in a Hash table
do not always reclaim storage. This causes a system
crash during operation due to an overflow in a Hash
table; the problem is corrected promptly by reformatting
the table. The specific problem is that a code optimizer
swapped two statements. These defects are classified as
follows:

Failure_2 = [in failures & severity = noncritical &

occurrence = operation & cause = {Swapped_stmt} &
failure_kind = overflow];

Swapped_stmt = [in faults & severity = critical & occurrence
= coding & detection = operation & cause =
{Failure_op} & fault_kind = control_flow & fault_mode =
commission];

Failure_op = [in failures & occurrence = coding &
detection = operation & failure_kind = tool_failure];

3.3 Explaining and predicting defects
Having a database with software components, software
defects, and their interrelations are useful to explain and
predict defects. These explanations/predictions are not
automatic: they are done by a person who obtains
relevant information using queries to the database. (We
assume that distances between terms of all attributes are
defined.)
The following is a description of a failure that has been
diagnosed as an overflow in a data structure; this failure
occurred during integration test.

Overflow_fail = [in failures & severity = fatal & occurrence =
integration-test & failure_kind = overflow];

We do know the kind of fault that caused overflow_fail,
so we query the database for faults that have caused
failures using the following query command.

Query in faults & occurrence = coding & cause =
{overflow_fail}.

To predict defects in packages, defects descriptions must
be integrated with package descriptions in a single
database. We relate packages with their faults (and thus
indirectly with errors and failures) by adding attributes to
both packages and faults. The docum attribute for faults is
the package in which the fault occurs; the fault_set
attribute for package describes the set of know faults.

Attribute docum : Packages;
Assertion has docum ⇒ in faults;
Attribute fault_set : set of faults;
Assertion has fault_set ⇒ in Packages & fault_set = set

(docum = self);

Assume that we want to predict the kinds of defects that
may be associated with the hashing data structure
package. The following query retrieve packages that are
similar to the Hash package. The subunits are assumed to
be already defined.

Query maxsize = bounded & control = sequential &

subunits = {hash_create, hash_insert, hash_lookup,
hash_delete};

Assuming that similar packages will have similar defects,
we can use the faults of the retrieval packages to predict
the faults that may occur in the Hash package.

9 Conclusion
In summary, we have presented a software reuse library
system called RDF and show how its representation
model overcome the limitations of current reuse library
systems based on faceted representations of objects [3,8].
RDF overcomes part of the limitations of current faceted
system by extending the their representation model. Two
main concepts form the core of RDF's representation
model: instance and classes. Instances are descriptions of
reusable objects, while classes represent collections of
instances with a set of common properties. Objects are
described in terms of attributes and associated values.
Unlike faceted classification, which is limited to having
only terms as attribute (facet) values, RDF allows
attributes values to be instances and even sets of
instances.
This generalization can be used to create one-to-one,
one-to-many, and many-to-many relations between
different object classes within a library. In other words,
RDF's specification language [5] is powerful enough to
represent a wide variety of software domains, ranging
from standard software components such as data
structure packages and their operations, to more complex

BUILDING AND MANAGING SOFTWARE... Informatica 27 (2003) 49–55 55

domains such as software defects and software process
models. In addition, RDF language provides facilities
for ensuring the consistency of the libraries.
We have already study tree other domains to demonstrate
RDF’s representation power by representing taxonomy
definitions of various software domains. First, it includes
taxonomies for describing components of a commercial
software library called the EVB GRACE library [6] and a
library for Command, Control, and Information Systems
(CCIS) developed at Contel Technology Center [9].
Second, it includes a taxonomy for describing software
evaluation models using GQM (Goal/Question/Metric)
paradigm [7]. Finally, it presents taxonomy for
describing software process models.
Yet, no evaluation has been performed on RDF’s
similarity-based retrieval mechanism. Towards this end,
we are currently developing a reuse software library–
based on information contained in the software
engineering laboratory (SEL) database [11]. This
database contains thousands of records containing
functional and structural descriptions, a well as statistical
data, related to hundreds of projects developed at the
NASA Goddard Space Flight Center. In addition, this
database contains information regarding the origin of the
project components [12], which indicates whether they
were implemented from scratch or by reusing other
components at NASA. This reuse history will allow us to
evaluate our similarity-based retrieval mechanism by
comparing the reuse candidates it proposes with the ones
that were actually used at NASA.

References
[1]. V. Basili and Rombach (1987) Tailoring the

Software Process to Project Goals and
Environments. In proceedings of the 9th
International Conference on Software Engineering,
IEEE Computer Society Press, California, pages
345-357.

[2]. G. Booch (1987) Software Components with Ada,
Benjamin-Cumming Publishing Company, Menlo
Park, California.

[3]. Z. Houhamdi and S. Ghoul (2201) A Reuse
Description Formalism, ACS/IEEE International
Conference on Computer Systems and Applications,
AICCSA’2001, Lebanese American University,
Beirut, Lebanon, pp. 25--32.

[4]. Z. Houhamdi and S. Ghoul (2001) A Classification
System for software reuse, Fifth International
Symposium on Programming System, ISPS2001,

USTHB Computer science Institute, Algiers, Algeria
,pp. 339—345.

[5]. Z. Houhamdi (2001) A Specification language for
software reuse, CSS/IEEE Alexandria Chapter. 11th
International Conference On computers: Theory
and Application, ICCTA2001, Head of Electrical
Control, Alexandria, Egypt, pp. 125-133.

[6]. Z. Houhamdi (2001) Developing a Reuse Library,
CSS/IEEE Alexandria Chapter. 11th International
Conference On computers: Theory and Application,
ICCTA2001, Head of Electrical Control,
Alexandria, Egypt, pp. 134--148.

[7]. Z. Houhamdi (2001) An adaptative approach to
reuse software, SCS/IEEE 2001. The third Middle
East Symposium on Simulation and Modeling,
MESM’2001, Amman University, Amman, Jordan,
pp.108--113 .

[8]. Z. Houhamdi (2002) Software Reuse: a new
classification approach, The International
Symposium on Innovation in Information and
Communication Technology, ISIICT’2001,
Philadelphia University, Amman, Jordan, pp. 247--
258.

[9]. Z. Houhamdi and S. Ghoul (2001) Classifying
software for reusability. Mail of technical and
scientific knowledge. Periodic magazine of the
university of Biskra, Algeria, N°01, pp.41-47.

[10]. Z. Houhamdi and S. Ghoul (2002) RDF : A
Formalism for reusing software. The South African
Computer Journal, SART/SACJ, N° 29, (accepted).

[11]. R. Kester (1990) SEL Ada reuse analysis and
representation, Technical Report, NASA Space
Flight Center, Greenbelt, Maryland.

[12]. Software engineering Laboratory (SEL) database
Organization and User’s guide (1990), NASA
Goddard Space Flight Center, Greenbelt,
Maryland., revision 1 edition.

[13]. R. Prieto-Diaz (1987) Domain analysis for software
reusability, In proceedings of the 11th international
Computer Software and applications Conference
(COMPSA’87). IEEE Computer Society Press, pp.
23--29.

[14]. R. Prieto-Diaz (1991) Implementing faceted
classification for software reuse, Communication of
the ACM pp. 88--97.

[15]. P.A. Straub (1992) The nature of Bias and Defects
in the Software Specification Process. Ph.D. thesis,
computer Science Department, University of
Maryland

Informatica27 (2003) 57–73 57

Deriving Self-Stabilizing Protocols for Services Specified in LOTOS

Monika Kapus-Kolar
Jožef Stefan Institute, POB 3000, SI-1001 Ljubljana, Slovenia
monika.kapus-kolar@ijs.si

Keywords: distributed service implementation, automated protocol derivation, LOTOS

Received:September 6, 2002

A transformation is proposed which, given a specification of the required external behaviour of a distributed
server and a partitioning of the specified service actions among the server components, derives a behaviour
of individual components implementing the service. The adopted specification language is close to Ba-
sic LOTOS. Unlike in other protocol derivation algorithms based on LOTOS-like languages, distributed
conflicts in the given service are allowed, and resolved by self-stabilization of the derived protocol.

1 Introduction

In top-down distributed systems design, one of the most
difficult transformations is decomposition of a process into
a set of co-operating subprocesses. Such a transformation
is considered correct if it preserves, to the required degree,
those actions of the process which are considered essential.
Such actions are often referred to as theservicethat the pro-
cess offers to its environment, i.e. the process is observed
in the role of aserver.

A service consists of atomic service actions, of which the
most important areservice primitives, i.e. atomic interac-
tions between the server and its users, executed inservice
access points. In addition, one might decide to introduce
somehidden service actions, to represent various impor-
tant events within the server.

When decomposing a server, the first step is to decide on
its internal architecture. It can be represented as a set of
server components(e.g. one component per service access
point), with channels for their communication. We shall
assume that all components are on the same hierarchical
level, for a multi-level architecture can always be obtained
by gradual decomposition.

The next step is to assign individual service actions to
individual server components, paying attention to the loca-
tion and capability of components.

The final step is to specify details of the inter-compo-
nent communication, i.e. to derive an efficientprotocol
implementing the service, where efficiency is measured in
terms of the communication load. While the first two steps
require creative decisions, protocol derivation can beau-
tomated. Given a formal specification of the architecture
of a server, of its service and of its distribution, one can
mechanically decide on the protocol exchanges necessary
to implement the specified distributed causal relations and
choices between service actions.

A protocol is typically much more complex than the ser-
vice it implements. Besides, one usually does not care
about the exact nature of an otherwise satisfactory proto-

col. Therefore, algorithms for automated protocol deriva-
tion are most welcome! They automate exactly that part of
server decomposition which is the most difficult for a hu-
man, requiring simultaneous reasoning about the numerous
co-operating parties.

Even if one decides for automated protocol derivation,
it remains possible to strongly influence the resulting pro-
tocol, by introducing dummy hidden service actions. For
example, introducing a pair of consecutive service actions
executed by two different server components introduces a
protocol message from the first to the second component.
Prefixing each of a set of alternatives by a service action
at a particular component makes the choice local to the
component. In other words, instead of spending time on
protocol design, one should rather concentrate on detailed
service design, specifying all important dynamic decisions
as explicit service actions [16]. By various allocations of
the actions to server components, service implementations
with various degrees of centralization are obtained.

A prerequisite for automated protocol derivation is that
the service is specified in a formal language. It is desir-
able that the derived behaviours of individual server com-
ponents are specified in the same language as the service,
so that the same algorithm can be used for further decom-
position.

It is desirable that a protocol derivation algorithm is to a
large extent compositional, so that it can cope with large
service specifications, provided that they are well struc-
tured. Moreover, a compositional algorithm reflects the ser-
vice structure in the derived protocol specification, increas-
ing the service designers’ confidence into the automatically
generated implementation.

It is difficult to construct a general protocol derivation al-
gorithm with high-quality results and low complexity. Typ-
ical algorithms work on small classes of service specifica-
tions.

Protocol synthesis has been subject to intensive research
since the middle eighties. An exhaustive survey can be
found in [26], so we provide no systematic review of the

58 Informatica27 (2003) 57–73 M. Kapus-Kolar

existing methods and refer to them only where necessary
for comparison with the proposed solutions.

The protocol derivation transformation proposed in our
paper is an enhancement of that in [10]. As in [10], we
assume that a server consists of anarbitrary fixed num-
ber of componentsexchanging the necessary protocol mes-
sagesasynchronously, over reliable, unbounded, initially
empty first-in-first-out (FIFO) channels with a finite, but
unknown transit delay. The adopted specification language
is a syntactically simplified sublanguage of LOTOS [7, 2],
a standard process-algebraic language intended primarily
for specification of concurrent and reactive systems. Ser-
vice primitives are not allowed to carry parameters, neither
do we allow specification of real-time constraints. How-
ever, the principles for enhancing a basic protocol deriva-
tion method to cope with data and real time are well known
[11, 12, 23].

For a service containing distributed conflicts, a precise
implementation takes care that they never cause divergence
in service execution. Firstly one should try to make all con-
flicts local to individual components, by inserting auxiliary
hidden service actions, but that is acceptable only as long
as no external service choice is undesirably converted into
an internal server choice. For the remaining distributed
conflicts, divergence prevention requires extensive inter-
component communication [9, 20, 21]. Although even such
protocols can be derived compositionally [17], the commu-
nication costs they introduce are usually acceptable only if
exact service implementation is crucial or during the pe-
riods when server users compete strongly for the service.
In a typical situation, the probability of a distributed con-
flict is so low that divergence should rather be resolved than
prevented.

In LOTOS, there are two process composition operators
allowing specification of service actions in distributed con-
flict, the operator of choice and the operator of disabling.
In [10], only local choice is allowed. For disabling, the
derived protocols are supposed toself-stabilize after diver-
gence, but the proposed solution is not correct in the gen-
eral case [15]. Besides, [10] has problems with implemen-
tation of parallel composition [15]. In an unpublished re-
sponse to [15], Bochmann and Higashino proposed some
solutions for the problems, but have not integrated them
into their protocol derivation algorithm and have not been
able to specify the solution for disabling in LOTOS.

We specify self-stabilization upon disabling purely in the
adopted LOTOS-like language, and also suggest how to
implement distributed choice. Further improvements over
[10] are implementation solutions for processes with suc-
cessful termination as a decisive event, for processes which
might enter inaction without first declaring successful ter-
mination, for combining terminating and non-terminating
alternatives, for process disabling with multiple initiators,
and for interaction hiding and renaming. The proposed so-
lutions can be seen also as an improvement over [3], an-
other algorithm for the purpose in which we have identified
a bug [15].

Name of the construct Syntax
Specification w ::= spec b where D endspec

D ::= setof d
Process definition d ::= p(x) is b | p is b
Process name p ::= ProcIdentifier
Parameter name x ::= ParIdentifier
Behaviour b ::=
Inaction stop
Successful termination | δ
Sequential composition | b1Àb2

Action prefix | a; b2

Choice | b1[]b2

Parallel composition | b1|[G]|b2

Disabling | b1[>b2

Hiding | hide G in b1 endhide
Renaming | ren R in b1 endren
Process instantiation | p(v) | p

G ::= setof g
Interaction gate g ::= s | h
Data value v ::= termof typen∗

Index n ::= 1 | 2
R ::= setof r

Gate renaming r ::= g′/g
Action a ::= i | s | h | ho
Service primitive s ::= uc

Service-primitive type u ::= PrimIdentifier
Server component c ::= CompIdentifier
Auxiliary gate h ::= sc

c′ | rc
c′ | an

c′ | bc′ | t
Data offer o ::= !v | ?v | ?x :v

Table 1: The adopted specification language

The paper is organized as follows. Section 2 introduces
the adopted specification language and its service specifi-
cation sublanguage, some building blocks for the derived
protocol specifications, and the adopted protocol correct-
ness criterion. Section 3 describes the adopted principles
of protocol derivation. The derivation is guided by various
service specification attributes. In Section 4, we introduce
rules for attribute evaluation and suggest how to obtain a
well-formed service specification. Section 5 comprises dis-
cussion and conclusions.

2 Preliminaries

2.1 Specification language and its service
specification sublanguage

The language employed, defined in Table 1 in a Backus-
Naur-like form, is an abstract representation of some LO-
TOS constructs, in the exclusive setting of the protocol
derivation problem. Not shown in the table are parentheses
for control of parsing, the syntax for sets, and shorthands.

A b denotes a behaviour, i.e. a process exhibiting it, for
instance a server as a whole, an individual server compo-
nent, a service part or some other partial server behaviour.
For a particular server, letC denote the universe of its com-
ponents.

DERIVING SELF-STABILIZING PROTOCOLS. . . Informatica27 (2003) 57–73 59

spec ε where D endspec = spec δ where D endspec
ε|[G]|b = b|[G]|ε = b a; ε = a; δ
εÀb = bÀε = b ε; b = b
hide G in ε endhide = ε ren R in ε endren = ε

Table 2: Absorption rules forε

stopdenotes inaction of the specified process.
δ denotes successful termination.
In some cases, the protocol derivation mapping defined

below introduces anε specifying execution of no actions.ε
is similar toδ, because execution of no actions is successful
by definition. With the help of the absorption rules in Ta-
ble 2, it will be possible to make the derived specifications
free ofε.

i denotes an anonymous internal action of the specified
process. Besides internal actions, processes execute inter-
actions with their environment. Such an external action is
primarily denoted by the interaction gate on which it oc-
curs. If it is a service primitive, it is specified as auc and
denotes a typeu interaction between server componentc
and a service user. If it is an action on an auxiliary gate
h, it might be associated with a data offero, that has to
match with the data offer of the process environment. The
only data that our processes can handle are strings of zero
or more elements 1 and/or 2.

A componentc can send messages to another compo-
nentc′ over gatesc

c′ , while c′ receives them over gaterc′
c .

For specific purposes,c′ will sometimes call the gatean
c

(accept), wheren will be a partial context identifier. If
c′ is unable to immediately handle a message received on
gaterc′

c , it will store it into a FIFO buffer and subsequently
claim it on an internal gatebc. Gatet will always be an
internal gate of a server component, serving for hidden in-
teraction of its parts.

A data offer "!v" denotes exactly the data value specified
by the termv. A data offer "?x : v" or "?v" denotes any
data value which has a prefix specified byv. When the
interaction occurs, one of the values legal for the data offer
is selected, and if variablex is specified, stored into it for
future use.

"b1Àb2" denotes a process first behaving asb1, and after
its successful termination asb2, whereδ of b1 is interpreted
in "b1Àb2" asi. "a; b2" is the special case of the sequential
composition whereb1 is an individual action, so that noi is
needed for transfer of control tob2.

"b1[]b2" denotes a process ready to behave asb1 or as
b2. Sometimes we will use "[]" as a prefix operator, where
choice from an empty set of processes is equivalent tostop.

"b1|[G]|b2" denotes parallel composition of processesb1

andb2, whereG specifies the degree and form of their syn-
chronization. An action on a gate listed inG or a δ can
only be executed as a common action of the two processes,
while the processes execute other actions independently.
The usual shorthand for "|[]|" is "|||". Sometimes we will
use "|||" as a prefix operator, where parallel composition of
an empty set of processes specifies anε.

No. e

(1) w::= spec b where D endspec
(2) d ::= p is b
(3) b ::= stop
(4) b ::= δ
(5) b ::= b1Àb2

(6) b ::= a; b2

(7) b ::= b1|[S]|b2

(8) b ::= b1[]b2

(9) b ::= b1[>b2

(10) b ::= hide S in b1 endhide
(11) b ::= ren R in b1 endren
(12) b ::= p
(13)a ::= s | i

S ::= setof s
r ::= uc

2/uc
1

Table 3: Service specification sublanguage

"b1[> b2" denotes a process with behaviourb1 poten-
tially disabled upon the start of processb2. While b1 is still
active, the process might terminate by executingδ in b1.

"hide G in b1 endhide" denotes a process behaving as
b1 with its actions on the gates listed inG hidden from its
environment. For the environment, the hidden actions are
equivalent toi.

"ren R in b1 endren" denotes a process behaving as
b1 with its visible gates (and thereby the actions on them)
renamed as specified inR, where in anr, the first and the
second item respectively define the new and the old name.

Explicit processes can be defined and instantiated, possi-
bly with an input parameter. In the original LOTOS syntax,
explicit processes are defined on formal gates, that are asso-
ciated with actual gates upon process instantiation. In our
simplified language, gate instantiation can be expressed as
renaming of the gates on which a process is originally de-
fined applied to the particular process instance.

A specificationw defines a behaviourb and the processes
instantiated in it, except for the processes predefined in
Section 2.2. IfD is empty, "where D" may be omitted. If
it is a service specification (Table 3), then 1) any specified
action must be a service primitive or ani, 2) gate renam-
ing is allowed only locally to individual server components,
and 3) all the explicitly specified processes must be without
parameters. Some rows in Table 3 are numbered, so that the
corresponding rows in some of the remaining tables can re-
fer to them. In all our example service specifications, every
i and everyδ is furnished with a superscript denoting the
server component responsible for it.

The relation used throughout the paper for judging
equivalence of behaviours isobservational equivalence
"≈" [2], i.e. we are interested only into the external be-
haviour of processes, that is in the actions which they make
available for synchronization with their environment (all
actions excepti and actions transformed intoi by hiding).

60 Informatica27 (2003) 57–73 M. Kapus-Kolar

2.2 Some building blocks for protocol
specifications

The contribution of our paper lies in functions for generat-
ing protocol specifications in the proposed language. These
specifications will be based on some characteristic patterns,
for generation of which we define some auxiliary functions
(Table 4).

Sc(C, v) := |||c′∈(C\{c})s
c
c′ !v

Rc(C, v) := |||c′∈(C\{c})r
c
c′ !v

Ec(C, C ′, v) := (if (c ∈ C) thenSc(C
′, v) elseε endif |||

if (c ∈ C′) thenRc(C, v) elseε endif)
Pc(S) := {uc|(uc ∈ S)}
Pc(R) := {(u′c/uc)|((u′c/uc) ∈ R)}

Table 4: Auxiliary specification-generating functions

Sc(C, v) generates a specification of parallel sending of
protocol messagev from componentc to each member
of C other thanc. Likewise, Rc(C, v) specifies parallel
receiving ofv at c from each member ofC other thanc.

Ec(C, C ′, v) specifies exchange of messagev in such
a way that each component inC ′ receives it from every
component inC other than itself.

Pc(S) andPc(R) are projection functions.Pc(S) ex-
tracts fromS the service primitives belonging to compo-
nentc, whilePc(R) extracts fromR the renamings of such
primitives.

We also assume that there are three predefined processes.
Processes "Loop" and "Loop(v)" execute an infinite series
of "g" or "g?v" actions, respectively. Shorthands for in-
stantiation of the processes on a gateg for a prefixv are
"Loop(g)" and "Loop(g?v)", respectively.

Process "FIFO(v)" is an unbounded FIFO buffer ready
to store messages with prefix "v" and to terminate when-
ever empty. A shorthand for instantiaton of the process
on an input gateg1 and an output gateg2 for a prefix v
is "FIFO(g1, g2, v)". To specify that aFIFO(g1, g2, v)
should accept all kinds of messages, one setsv to an empty
string, that we denote byε. Such are the buffers pairwise
connecting server components. They constitute the com-
munication medium, defined as

Medium is |||c 6=c′FIFO(sc
c′ , r

c′
c , ε)

2.3 Protocol correctness criterion

Given a service behaviourb, we derive abc for each indi-
vidual componentc. The protocol must satisfy the mini-
mal correctness criterion that every protocol message sent
is also received. We further expect that in the absence of
distributed conflicts, the server behaves towards its users
precisely as required (see Table 5). Note that "≈ (bÀ δ)"
might also be sufficient, because successful termination of
a distributed server, as an act of multiple server compo-
nents, does not qualify as one of the regular service actions,
i.e. service actions assigned to individual components.

If b contains distributed conflicts, precise service exe-
cution is expected only for those server runs which do

(Service ≈ b) ∨ ((|C| > 1) ∧ (Service ≈ (bÀδ)))
whereService = hide G in (|||c∈Cbc)|[G]|Medium

endhide

G = ∪c6=c′{sc
c′ , r

c′
c }

Table 5: Precise service implementation

not reveal any of the conflicts. When divergence in ser-
vice execution occurs, the server should continue to sup-
port only the direction of service execution with the highest
pre-assigned priority, while the directions competing with
it must be abandoned as quickly as possible.

For a "b1[>b2", it is appropriate thatb2 has a higher pri-
ority thanb1. We adopt this arrangement also for "b1[]b2".
There are, however, two exceptions. If the server compo-
nents responsible for the start ofb2 manage to agree on
successful termination ofb1 beforeb2 starts,b2 must be
abandoned. In the case of "b1[]b2", b2 must be abandoned
already when the components manage to agree on the start
of b1.

3 Principles of protocol derivation

3.1 Service attributes and the concept of a
well-formed service specification

When mapping a service specification subexpression into
its counterparts at individual server components, one refers
to its various attributes. A subexpression attribute reveals
some property of the subexpression itself or some property
of the context in which it is embedded. Computation of
service attributes is discussed in Section 4.1.

There is always a dilemma whether to conceive a very
general mapping, i.e. a mapping with very few restrictions
on the attributes, or a simple mapping with a very restricted
applicability. We take the following pragmatic approach.

Above all, we try to avoid restrictions on the specifica-
tion style (see [28] for a survey of the most typical styles)
because, even if a service specification can be restyled au-
tomatically, the derived protocol specification will reflect
the new style, and as such be hardly comprehensible to the
designers of the original specification.

On the other hand, we rely without hesitation on restric-
tions which can be met simply by introducing some addi-
tional hidden service actions. Such insertion can always be
automated and causes no restructuring of the service speci-
fication. Besides, there is usually more than one way to sat-
isfy a restriction by action insertion. By choosing one way
or another, it is possible to influence the derived protocol,
i.e. its efficiency and the role of individual server compo-
nents. Hence by relying strongly on such restrictions, we
not only simplify the protocol derivation mapping, but also
make space for protocol customization.

A service specification satisfying all the prescribed re-
strictions is awell-formed specification. We postpone sug-
gestions for obtaining such a specification to Section 4.2.

DERIVING SELF-STABILIZING PROTOCOLS. . . Informatica27 (2003) 57–73 61

3.2 Compositional approach to service
implementation

When mapping a service specification in a compositional
way, we map each of its constituent process specifications,
including the main service process. Mapping a specifica-
tion of a processp, we map specificationsb of the individ-
ual parts of the behaviour specified by its body.

During service execution, each instantiation of such ap
gives rise to a new instance of the behaviour specified by
such ab. Each such instance is an individual service part
and, as such, expected to be implemented in an indepen-
dent way. In other words, such an instance represents a
special context, that first of all needs a dynamically unique
identifier. The identifier can then be included in all proto-
col messages belonging to the particular instance, to make
its distributed implementation communication-closed. The
simplest way to produce such an identifier is to concate-
nate (specified by operator "·") z, the dynamically unique
identifier of the particular instance ofp, andCI(b), the dy-
namically unique context identifier ofb within the body of
p [14].

Mapping a specification of a processp onto ac results in
a specification of a local processp with a formal parameter
"z". When the local process is instantiated, "z" propagates
into its body the identifier of the particular process instance,
so that it can be used in the associated protocol messages.
The main service process is instantiated only once, so its
"z" can be assigned statically. For a dynamically created
process instance, "z" is the identifier of its instantiation.
Those properties are reflected in Table 6, more precisely
described below.

(1) Tc(w, z) := spec Termc(b, z)
where {Tc(d)|(d ∈ D)} endspec

(2) Tc(d) := p(z) is Termc(b1, z)
(12)T′c(b, z) := p(z ·CI(b))

Table 6: MappingT for a service specification and map-
pingT′ for process instantiation

Tc(b, z) will be the basic function for mapping a service
part b onto a componentc within a contextz. Sometimes
the implementation of ab generated by mappingT will be
enriched with some additional protocol messages report-
ing its successful termination to server components not yet
knowing it. The mapping which generates such enriched
implementation will be calledTermc(b, z). MappingT
of a structuredb combines the mappingsTerm of its con-
stituent parts.

For ab, it might be that ac has no duties in its distributed
implementation, i.e. thatc is not a participating component
of b (formally ¬PCc(b), i.e. not a member ofPC(b)). In
such a case,Tc(b, z) will be ε or stop, while in the case of
PCc(b), Tc(b, z) will more precisely be calledT′c(b, z).

In the following, letTerm(b, z) denote aTerm imple-
mentation ofb, i.e. allTermc(b, z) plus the protocol chan-
nels. Likewise,T(b, z) denotes aT implementation.

In an environment of competing service parts, it is im-
portant to have a simple characterization of all protocol
messages belonging to a particular partb. In a T(b, z),
such a message will carry either identifierCI(b) or identi-
fier CI(b′) of a subpartb′ of b. To indicate that messages
of the second type also belong tob, CI(b′) will in all cases
haveCI(b) as a prefix. In aTerm(b, z), the addition-
ally introduced messages will carry identifierCI+(b). As
T(b, z) is a part ofTerm(b, z), CI(b) will have CI+(b)
as a prefix. So it will be possible to specify readiness to
receive any message belonging to aTerm(b, z) simply by
?z ·CI+(b) in the receptions.

The basic building blocks of context identifiers, hence
also of protocol messages, are1 and2, because they refer
typically to partsb1 andb2 of a b. That is, of course, not
the only possible choice. By changing2 to 0, for example,
one could obtain pure binary identifiers. In any case, it is
important that the number of different messages on individ-
ual channels is kept low, for message encodings can then
be short. For that reason, messages (i.e. the context iden-
tifiers they contain) are re-used extensively, except where
that could corrupt their dynamic uniqueness.

Example 1 For the example service in Table 7, it is crucial
that the implementations of the two concurrent instances of
process Proc use different protocol messages. Likewise it
is important that protocol messages are re-used, because
Proc is instantiated an infinite number of times.

The reception buffers of the three components (see Sec-
tion 3.9) are not shown in the example, to make the spec-
ifications more readable. The buffers are not crucial for
deadlock prevention, anyhow.

3.3 Termination types

For ab representing the entire service that is being imple-
mented, it is evident that its successful termination (if any)
must be implemented asδ (or as itsε equivalent) at each of
the server components. In other words, eachTermc(b, z)
must be terminating, i.e. eachc must be a terminating
component ofb for mappingTerm, formally TC+

c (b), i.e.
c must be an element ofTC+(b).

If a b is not the last part of the service,TC+
c (b) is

not mandatory. It is sometimes better to letTermc(b, z)
finish by stop instead, i.e. ¬TC+

c (b) [14]. Such in-
action at c is later disrupted by activities ofc outside
Termc(b, z). If b never successfully terminates, formally
¬TM(b), ¬TC+

c (b) is the only option.
If TC+

c (b), one has to decide whetherc should detect or
declare termination ofb already within theTc(b, z) part of
Termc(b, z), i.e. whetherTC+

c (b) should implyTCc(b),
i.e. thatc is an element ofTC(b). If TC+

c (b) but not
TCc(b), formally RTc(b), c terminatesTermc(b, z) upon
receiving termination reports "z·CI+(b)" from all the end-
ing components ofT(b, z) [14] (see Table 8). Where the
danger exists of such a report being received already within
Tc(b, z), care is taken that it is different from any message
referred to withinTc(b, z). Hence protocolTerm(b, z)

62 Informatica27 (2003) 57–73 M. Kapus-Kolar

w = spec ren aα/Aα, bγ/Bγ , cβ/Cβ in Proc endren ||| ren dα/Aα, eγ/Bγ , fβ/Cβ in Proc endren

where Proc is (((Aα; δα)|||(Bγ ; δγ))À(Cβ ; Proc)) endspec
Tα(w, ε) ≈ spec ren aα/Aα in Proc(1) endren ||| ren dα/Aα in Proc(2) endren

where Proc(z) is (Aα; sα
β !z; rα

β !z; Proc(z)) endspec

Tβ(w, ε) ≈ spec ren cβ/Cβ in Proc(1) endren ||| ren fβ/Cβ in Proc(2) endren

where Proc(z) is (((rβ
α!z; δ)|||(rβ

γ !z; δ))ÀCβ ; ((sβ
α!z; δ)|||(sβ

γ !z; δ))ÀProc(z)) endspec
Tγ(w, ε) ≈ spec ren bγ/Bγ in Proc(1) endren ||| ren eγ/Bγ in Proc(2) endren

where Proc(z) is (Bγ ; sγ
β !z; rγ

β !z; Proc(z)) endspec

Table 7: An example of multiple process instantiation

Tc(b, z) := if PCc(b) thenT′c(b, z) elseif TCc(b) thenε elsestopendif endif
Termc(b, z) := if TC+

c (b) thenif TCc(b) then(Tc(b, z) if ECc(b) thenÀSc((TC+(b) \ TC(b)), z ·CI+(b)) endif)
else((Tc(b, z)[>δ)|||Rc(EC(b), z ·CI+(b))) endif

elseTc(b, z) endif

Table 8: FunctionsT andTerm

has two phases, namely protocolT(b, z) and exchange of
termination reports.

A c is an ending component ofb for mappingT, for-
mally ECc(b), i.e. c is a member ofEC(b), if it might
be the last component to execute an action withinT(b, z).
If ECc(b), c must, of course, declare termination already
within Tc(b, z), i.e. ECc(b) by definition impliesTCc(b),
and therebyTC+

c (b).

In many cases, we are free to decide whetherTC+
c (b)

should implyTCc(b) or not, but it is not always directly
evident how our decision would influence the overall num-
ber of the involved protocol messages. Therefore we fol-
low the classical solution thatTC+

c (b) should always im-
ply TCc(b) (i.e. ¬RTc(b)), except where that would lead
to an erroneous service implementation (discussed in the
operator-specific sections). If there are no such cases, map-
ping Term systematically reduces to mappingT, i.e. there
is a single mapping function, like in the earlier approaches
[3, 10].

If ¬PCc(b), TCc(b) will always be equal toTC+
c (b),

reducingTermc(b, z) to a mereε or stop (see function
T in Table 8). Hence the components participating in the
distributed implementation of ab remain those listed in
PC(b), even if we enhance the mapping function fromT
to Term.

For a protocolT(b, z), we define that it successfully ter-
minates when allTc(b, z) with TCc(b) successfully ter-
minate. Likewise, successful termination ofTerm(b, z)
requires successful termination of allTermc(b, z) with
TC+

c (b).

3.4 Implementation of inaction

A stop has no participating component, so the first rule in
Table 8 implies that every server component implements it
as astop.

3.5 Implementation of successful
termination

In some cases, it is crucial to have in mind that success-
ful terminationδ is also a kind of an action. These are the
cases where it is in a decisive position, like an initialδ in
a "b1[]b2" or theδ of b1 or an initialδ of b2 in a "b1[> b2"
[14]. So one selects, as convenient, for eachδ a server com-
ponent responsible for its execution, its only participating
component. MappingT′ for the component is aδ (Table 9).

(4)T′c(b, z) := δ

Table 9: MappingT′ for successful termination

3.6 Implementation of hiding and renaming

The only properties of actions within a service partb that
influence protocol message exchange are their position
within b and their assignment to server components. That
is not changed by hiding or local renaming, so implemen-
tation of those operations is trivial (Table 10).

(10)T′c(b, z) := hide Pc(S) in Termc(b1, z) endhide
(11)T′c(b, z) := ren Pc(R) in Termc(b1, z) endren

Table 10: MappingT′ for hiding and renaming

3.7 Implementation of action prefix

To map an "a; b2" onto a participantc (Table 11), one first
needsPc(a), the projection ofa. If c is not the executor of
a, i.e. its only participant, the projection is empty. Ifa is a
service primitive, its executor is evident from its identifier.
If it is an i, one selects its executor as convenient.

If a componentc might be the first to execute an ac-
tion within Term(b2, z), it is a starting component of
b2, formally SCc(b2), i.e. c is a member ofSC(b2).
Such ac is responsible for preventing a premature start of

DERIVING SELF-STABILIZING PROTOCOLS. . . Informatica27 (2003) 57–73 63

(13)Pc(a) := if PCc(a) thena elseε endif
(6) T′c(b, z) := (Pc(a);Ec(PC(a), SC(b2), z ·CI(b))

ÀTermc(b2, z))

Table 11: MappingT′ for action prefix

Term(b2, z), i.e. it must not startTermc(b2, z) until it
executesa or receives a report "z ·CI(b)" on it. Hence
protocolT(b, z) has three phases, namely execution ofa,
exchange of reports ona, and protocolTerm(b2, z).

3.8 Implementation of sequential
composition

For ab specified as "b1 À b2", we require thatb1, at least
sometimes, successfully terminates, because otherwiseb2

would be irrelevant.
ProtocolT(b, z) (Table 12) has three phases, namely

protocolTerm(b1, z), exchange of reports "z ·CI(b)" on
its termination, and protocolTerm(b2, z). Where dan-
ger exists that a message belonging to the second phase
is received already within aTermc(b1, z), care is taken
that it is different from any message referred to within
Termc(b1, z). It is crucial that everyc with duties within
the second or the third phase terminatesTermc(b1, z) in
all the terminating runs ofb1, i.e. thatTC+

c (b1) is true.

(5)T′c(b, z) := (Termc(b1, z)
ÀEc(EC+(b1), SC(b2), z ·CI(b))
ÀTermc(b2, z))

Table 12: MappingT′ for sequential composition

As in the case of action prefix, reports on termination
of the first phase are sent to the starting components of
b2, but now their senders are the ending components of
Term(b1, z) [19]. A c is an ending component ofb1 for
mappingTerm, formally EC+

c (b1), i.e. c is a member of
EC+(b1), if it might be the last component to execute an
action withinTerm(b1, z). It is crucial that a terminat-
ing b1 has at least one ending component, and that in ev-
ery non-terminating run of such ab1, there is at least one
ending componentc not terminatingTermc(b1, z), so that
start ofTerm(b2, z) is prevented.

We want the second phase (i.e. termination reporting)
to completely isolateTerm(b2, z) from Term(b1, z), so
that protocol messages fromTerm(b1, z) and termina-
tion reports may be re-used withinTerm(b2, z). That is
particularly important for implementation of iteration and
tail recursion, as in Example 2. To achieve the isolation,
we take care that upon the start ofTerm(b2, z), compo-
nents receiving within it no longer want to receive within
Term(b1, z).

Example 2 In Table 13, we implement a service consisting
of two consecutive parts. It might happen that the first part
does not terminate, but a premature start of the second part
is nevertheless prevented.

3.9 Implementation of parallel composition

For ab specified as "b1|[S]|b2", we assume that all actions
specified inb1 or b2, including δ, are actually executable
within b, i.e. that they are all relevant.

ProtocolT(b, z) (Table 14) consists basically of proto-
colsTerm(b1, z) andTerm(b2, z) running in parallel and
locally synchronized on service primitives fromS.

If there are any distributed conflicts inb1 and/orb2, for-
mally AD(b), Term(b1, z) and/orTerm(b2, z) are typ-
ically imprecise implementations ofb1 and b2, unable to
synchronize properly onS. So ifS is non-empty,AD(b) is
forbidden.

If S is empty,b1 andb2 are nevertheless synchronized
on their successful termination (if any). If termination ofb
is subject to a distributed conflict withinb1 and/orb2, for-
mally TD(b), negotiation of more than one component is
required withinTerm(b1, z) and/orTerm(b2, z). That is
unacceptable, for such termination is a decisive termination
(see below). SoTD(b) is forbidden.

For independent concurrent execution ofTerm(b1, z)
andTerm(b2, z), it should be sufficient to take care that
their protocol message spaces are disjoint [10]. Unfortu-
nately, it turns out that on a shared channel, unprompt re-
ception in one of the protocols might hinder reception in
the other. In the case of a non-emptyS, that might even
lead to a deadlock [15].

Kant and Higashino suggested that eachc could solve the
problem by prompt reception of messages into a pool, for
further consumption byTermc(b1, z) or Termc(b2, z).
So in Table 14, we introduce for each partTermc(bn, z)
for each channel from ac′ to c that is shared (formally
SHc′,c(b)), a FIFO buffer for incoming messages. Such
a buffer is, unlikeTermc(bn, z), always ready to receive
from the channel on gaterc

c′ , thereby removing the pos-
sibility of blocking.Termc(bn, z) can subsequently claim
the received messages from the buffer on a hidden gatebc′ .
As demonstrated in the following example, such buffers
might be necessary even ifS is empty. On the other hand,
buffers are often redundant, but that is hard to establish.

Example 3 In the first part of Table 15, there is a parallel
composition implemented properly.

In the second part, the reception buffers are omitted, and
there is a scenario "aα; sα

β !1; dα; sα
β !2" leading to a dead-

w = spec ((aα; Proc)[](bα; δβ))À(bγ ; δγ)

where Proc is (cβ ; cα; Proc) endspec
Tα(w, 1) ≈ spec (aα; sα

β !11; Proc)[](bα; sα
β !12; δ)

where Proc is (rα
β !11; cα; sα

β !11; Proc)
endspec

Tβ(w, 1) ≈ spec ((rβ
α!11; Proc)[](rβ

α!12; δ))Àsβ
γ !1; δ

where Proc is (cβ ; sβ
α!11; rβ

α!11; Proc)
endspec

Tγ(w, 1) ≈ spec rγ
β !1; bγ ; δ endspec

Table 13: An example combining finite and infinite alter-
natives

64 Informatica27 (2003) 57–73 M. Kapus-Kolar

(7) T′c(b, z) := (Parc,1|[Pc(S)]|Parc,2)
whereParc,n := hide {bc′ |SHc′,c(b)} in ren {(bc′/r

c
c′)|SHc′,c(b)} in Termc(bn, z) endren

|[{bc′ |SHc′,c(b)}]| |||SHc′,c(b)FIFO(rc
c′ ,bc′ , z ·CI+(bn)) endhide

Table 14: MappingT′ for parallel composition

w = spec (((aα; δα)|||(bβ ; δβ))À(cβ ; δβ))|[bβ]|(dα; bβ ; δβ) endspec
Tα(w, ε) ≈ spec (aα; sα

β !1; δ)|||(dα; sα
β !2; δ) endspec

Tβ(w, ε) ≈ spec hide bα in (bβ ;bα!1; cβ ; δ)|[bα]|FIFO(rβ
α,bα, 1) endhide

|[bβ]|hide bα in (bα!2; bβ ; δ)|[bα]|FIFO(rβ
α,bα, 2) endhide endspec

Tα(w, ε) ≈ spec (aα; sα
β !1; δ)|||(dα; sα

β !2; δ) endspec

Tβ(w, ε) ≈ spec (bβ ; rβ
α!1; cβ ; δ)|[bβ]|(rβ

α!2; bβ ; δ) endspec

w = spec (((aα; δα)|||(bβ ; δβ))À(cβ ; δβ))|||(dα; eβ ; δβ) endspec
Tα(w, ε) ≈ spec (aα; sα

β !1; δ)|||(dα; sα
β !2; δ) endspec

Tβ(w, ε) ≈ spec (bβ ; rβ
α!1; cβ ; δ)|||(rβ

α!2; eβ ; δ) endspec

Table 15: An example of parallel composition requiring buffered reception

w = spec (δα[>(aα; bβ ; δα))|[aα]|(δα[](iα; aα; δα))
endspec

Tα(w, 1) ≈ spec ((δ[>(aα; sα
β !11; rα

β !11; δ))
|[aα]|(δ[](i; aα; δ)))
Àsα

β !1; δ endspec

Tβ(w, 1) ≈ spec ((rβ
α!11; bβ ; sβ

α!11; stop)[>δ)

|||(rβ
α!1; δ) endspec

Table 16: An example of decisive and synchronized termi-
nation

lock, because message 2 is not the first in the channel.

In the third part, we no longer require that the two con-
current parts are synchronized onbβ . We also rename the
secondbβ into eβ , to distinguish it from the first one. The
above scenario no longer leads to a deadlock, but its desti-
nation state erroneously requires thatbβ is executed before
eβ . Again, reception buffers would help.

For a b specified as "b1|[S]|b2", successful termination
of T(b, z) requires successful termination ofTerm(b1, z)
andTerm(b2, z). If such termination is decisive for one
or both of the component protocols, i.e. represents aδ in
a decisive position withinb1 or b2, formally DT (b), its
implementation is problematic [14, 15]. It has been sug-
gested that such aδ should be put under control of a sin-
gle server component, its pre-assigned executor, responsi-
ble both for its decisive role and for its synchronization role
[14]. If successful termination ofT(b, z) is to be a matter
of a single component, the latter must be the only member
of TC(b), and consequently the only member ofEC(b),
TC+(b1), TC+(b2), EC(b1) andEC(b2).

Example 4 An example of decisive and synchronized ter-
mination is given in Table 16. Termination ofb has been put
under exclusive control of componentα, while component
β receives only a report of it.

3.10 Implementation of choice

For ab specified as "b1[]b2", we assume that there are ser-
vice actions (at least aδ) in both alternatives, so that both
are relevant. The operator introduces distributed conflicts,
formally DC(b), if b has more than one starting compo-
nent.

ProtocolT(b, z) combines protocolsTerm(b1, z) and
Term(b2, z). b2 is the higher-priority alternative, so
Term(b2, z) upon its start always quickly disables
Term(b1, z), even ifTerm(b1, z) has already started. On
the other hand, when a component detects the start of
Term(b1, z), it tries to prevent starting ofTerm(b2, z),
but might be unsuccessful.

Until one of the alternatives is abandoned, protocols
Term(b1, z) andTerm(b2, z) run in parallel, so we re-
quire that their protocol message sets are disjoint.

Within Term(b1, z), any starting action must be
promptly reported to any starting componentc of b2, for-
mally SRc(b1), to inform it that execution ofb2 should
not start unless it already has. Analogously, we re-
quire SRc(b2) for any starting componentc of b1. If
DC(b), any component might already be executingb1

whenTerm(b2, z) starts, so we requireSRc(b2) also for
the non-starting participants ofb1, to make them quickly
abandon execution ofb1. Note that the executor of an ac-
tion is informed of the action by the action itself.

If not earlier, a participantc abandonsTermc(b2, z)
upon successful termination ofTermc(b1, z), if any. At
that moment, it must already be obvious thatTerm(b2, z)
will never start, i.e. every starting component ofb2

must have already executed an action withinTerm(b1, z),
thereby refusing to be an initiator ofTerm(b2, z). In
other words, such a starting componentc′ must guard the
termination atc, formally GT+

c,c′(b1).
If not earlier, a participantc abandonsTermc(b1, z)

upon successful termination ofTermc(b2, z), if any. At
that moment,c must already have detected the start of
Term(b2, z), and that is true if and only ifc is a partic-
ipating component ofb2.

DERIVING SELF-STABILIZING PROTOCOLS. . . Informatica27 (2003) 57–73 65

(8) T′c(b, z) := if ¬DC(b) then(Termc(b1, z)[]Termc(b2, z))
elseren ∪n=1,2 ({(uc/uc

n)|(uc ∈ ASc(bn))}+ {(rc
c′/a

n
c′)|CH+

c′,c(bn)}) in hide t in

((Constc,1|[StGtc,2 + RecGtc,2 + {t}]|Constc,2)
|[StGtc,1 + RecGtc,1 + StGtc,2 + RecGtc,2]|Constc,3)
|[RecGtc,1 + {a2

c′ |CH+
c′,c(b1)}]|Constc,4

endhide endren
whereConstc,1 := (((Taskc,1Àt; stop)[>(OneStRecc,2À(AllStRecc,2|||AllRecc,1)))[>δ)

whereTaskc,1 := ren {(uc
1/uc)|(uc ∈ ASc(b1))}+ {(a1

c′/r
c
c′)|CH+

c′,c(b1)} in Parc,1 endren

whereParc,1 := see Table 14
Constc,2 := (Taskc,2[](t; δ))
whereTaskc,2 := ren {(uc

2/uc)|(uc ∈ ASc(b2))}+ {(a2
c′/r

c
c′)|CH+

c′,c(b2)}
in Termc(b2, z) endren

Constc,3 := (((OneStRecc,2À(AllStRecc,2|||AllRecc,1))[]
(OneStRecc,1À(AllStRecc,1

[>(OneRecc,2À(AllStRecc,2|||AllRecc,1)))))
[>δ)

Constc,4 := ((|||
CH+

c′,c(b1)
(Loop(a1

c′?z ·CI+(b1))[>Loop(a2
c′?z ·CI+(b2))))[>δ)

StGtc,n := {uc
n|(uc ∈ SSc(bn))}

RecGtc,n := {an
c′ |CH+

c′,c(bn)}
OneRecc,n := ([]g∈RecGtc,n(g?z ·CI+(bn); δ))
OneStRecc,n := (([]g∈StGtc,n(g; δ))[]OneRecc,n)
AllRecc,n := (stop|||(|||g∈RecGtc,nLoop(g?z ·CI+(bn))))
AllStRecc,n := ((|||g∈StGtc,nLoop(g))|||AllRecc,n) endif

Table 17: MappingT′ for choice

A participant c combines Termc(b1, z) and
Termc(b2, z) as specified in Table 17. If¬DC(b),
Term(b1, z) is known to be the selected alternative
as soon as it starts, so everyc is allowed to execute
Termc(b1, z) andTermc(b2, z) as alternatives.

If DC(b), Termc(b1, z) and Termc(b2, z) must be
combined in such a complicated way that no LOTOS op-
erator can express it directly. So we resort to the so called
constraint-oriented specification style[28]. This is the
style in which two or more parallel processes synchronize
on the actions they collectively control, and each process
imposes its own constraints on the execution of the actions,
so that they are enabled only when so allowed by all the
processes referring to them.

A T′c(b, z) consists of four constraints.Constc,1

and Constc,2 are respectively responsible for execution
of Termc(b1, z) andTermc(b2, z), while Constc,3 and
Constc,4 serve for their additional co-ordination.

In the first place, we must be aware that in the case
of DC(b), protocolsTerm(b1, z) and Term(b2, z) are
actually executed in parallel for some time, so every
shared incoming channel in principle requires an in-
put buffer for Termc(b1, z) and an input buffer for
Termc(b2, z) (see Section 3.9). But as noc′ ever trans-
mits to c within Termc′(b1, z) after it has transmitted
to c within Termc′(b2, z), input buffers for prompt re-
ception are necessary only forTermc(b1, z). So we en-
hanceTermc(b1, z) into Parc,1, as described in Table 14,
though the buffers are usually redundant.

Internally toT′c(b, z), we rename every service prim-
itive uc in Termc(b1, z) (i.e. in Parc,1) into uc

1. Like-
wise, we internally rename every service primitiveuc

in Termc(b2, z) into uc
2. Besides, we internally to

T′c(b, z) split every reception gaterc
c′ into gatesa1

c′ and
a2

c′ , where messages forTermc(b1, z) are, according to
their contents, routed to the first gate, and messages for
Termc(b2, z) to the second gate. The renamings are
guided by service attributesASc(bn) (lists all the service
actions ofbn atc) andCH+

c′,c(bn) (true if the channel from
c′ to c is employed withinTerm(bn, z)).

Applying all the above renamings toParc,1 and
Termc(b2, z), we obtain processesTaskc,1 andTaskc,2,
respectively, that have disjoint sets of service primitives
and reception gates. Every action withinT′c(b, z) is an ac-
tion of Taskc,1 or an action ofTaskc,2, except that there
is also an action on a hidden gatet serving for synchroniza-
tion of Constc,1 andConstc,2 upon successful termina-
tion of Taskc,1.

The critical actions ofTaskc,1 are its starting actions.
They must influence execution ofTaskc,2, so they are sub-
ject to synchronization betweenConstc,1 andConstc,3.
A starting action ofTaskc,1 is a starting service action of
b1 at c, i.e. a member ofSSc(b1), or a reception. If it is
a member ofSSc(b1), it might also be ani or aδ, i.e. not
suitable for synchronization, so we in principle require that
every member ofSSc(b1) is a service primitive. Ifc is not
a starting component ofb2, Constc,3 is redundant, hence
the requirement is not necessary.

The critical actions ofTaskc,2 are its starting actions.
They must in principle influence execution ofTaskc,1, so
they are subject to synchronization betweenConstc,1 and
Constc,2. A starting action ofTaskc,2 is a member of
SSc(b2) or a reception. If disruption ofTaskc,1 is nec-
essary, i.e. ifPCc(b1), we require that every member of

66 Informatica27 (2003) 57–73 M. Kapus-Kolar

w = spec ((aα; δ)|||(bβ ; δ))[]((cγ ; δ)|||(bβ ; δ)) endspec

w1 = spec ((aα; (δβ |||δγ))|||(bβ ; δγ))[]((cγ ; (δα|||δβ))|||(bβ ; (δα|||δγ))) endspec

w2 = spec ((aα; (δβ |||δγ))|||(bβ ; iγ ; (δα|||δβ)))[]((cγ ; (δα|||δβ))|||(bβ ; (δα|||δγ))) endspec

w3 = spec ((aα; (δβ |||δγ))|||(bβ ; iγ ; (δα|||δβ)))[]((cγ ; ((iα; δγ)|||δβ))|||(bβ ; ((iα; δβ)|||δγ))) endspec
Tα(w3, ε) ≈ spec ren rα

γ /a1
γ , rα

β/a2
β , rα

γ /a2
γ in hide t in

((((hide bγ in ((aα; ((sα
β !1; δ)|||(sα

γ !1; δ)))|||(bγ !1; δ))|[bγ]|FIFO(a1
γ ,bγ , 1) endhideÀt; stop)

[>(((a2
β?2; δ)[](a2

γ?2; δ))À(Loop(a2
β?2)|||Loop(a2

γ?2)|||Loop(a1
γ?1))))[>δ)

|[a2
β ,a2

γ , t]|(((a2
γ !2; sα

γ !2; δ)|||(a2
β !2; sα

β !2; δ)) [](t; δ))

|[a1
γ ,a2

γ]|((Loop(a1
γ?1)[>Loop(a2

γ?2))[>δ)
endhide endren endspec

Tβ(w3, ε) ≈ spec ren bβ/bβ
1 , rβ

α/a1
α, rβ

γ/a1
γ , bβ/bβ

2 , rβ
α/a2

α, rβ
γ/a2

γ in hide t in

(((((hide bα,bγ in ((bα!1; δ)|||(bβ
1 ; sβ

γ !1;bγ !1; δ))
|[bα,bγ]|(FIFO(a1

α,bα, 1)|||FIFO(a1
γ ,bγ , 1)) endhideÀt; stop)

[>(((bβ
2 ; δ)[](a2

γ?2; δ))À(Loop(bβ
2)|||Loop(a2

γ?2)|||Loop(a1
α?1)|||Loop(a1

γ?1))))[> δ)

|[bβ
2 ,a2

γ , t]|(((a2
γ !2; δ)|||(bβ

2 ; ((sβ
α!2; δ)|||(sβ

γ !2; δ))Àa2
α!2; δ)) [](t; δ)))

|[bβ
1 ,a1

α,a1
γ , bβ

2 ,a2
γ]|(((((bβ

2 ; δ)[](a2
γ?2; δ))À(Loop(bβ

2)|||Loop(a2
γ?2)|||Loop(a1

α?1)|||Loop(a1
γ?1)))[]

(((bβ
1 ; δ)[](a1

α?1; δ)[](a1
γ?1; δ))À

((Loop(bβ
1)|||Loop(a1

α?1)|||Loop(a1
γ?1))

[>(a2
γ?2; (Loop(bβ

2)|||Loop(a2
γ?2)|||Loop(a1

α?1)|||Loop(a1
γ?1))))))

[> δ))
|[a1

α,a1
γ ,a2

α,a2
γ]|(((Loop(a1

α?1)[>Loop(a2
α?2))|||(Loop(a1

γ?1)[>Loop(a2
γ?2)))[>δ)

endhide endren endspec
Tγ(w3, ε) ≈ spec ren rγ

α/a1
α, rγ

β/a1
β , rγ

α/a2
α, rγ

β/a2
β in hide t in

(((((hide bα,bβ in ((bα!1; δ)|||(bβ !1; ((sγ
α!1; δ)|||(sγ

β !1; δ))))

|[bα,bβ]|(FIFO(a1
α,bα, 1)|||FIFO(a1

β ,bβ , 1)) endhideÀt; stop)

[>(((cγ ; δ)[](a2
β?2; δ))À(Loop(cγ)|||Loop(a2

β?2)|||Loop(a1
α?1)|||Loop(a1

β?1))))[>δ)

|[cγ ,a2
β , t]|(((cγ ; ((sγ

α!2; δ)|||(sγ
β !2; δ))Àa2

α!2; δ)|||(a2
β !2; δ)) [](t; δ)))

|[a1
α,a1

β , cγ ,a2
β]|(((((cγ ; δ)[](a2

β?2; δ))À(Loop(cγ)|||Loop(a2
β?2)|||Loop(a1

α?1)|||Loop(a1
β?1)))[]

(((a1
α?1; δ)[](a1

β?1; δ))À
((Loop(a1

α?1)|||Loop(a1
β?1))

[>(a2
β?2; (Loop(cγ)|||Loop(a2

β?2)|||Loop(a1
α?1)|||Loop(a1

β?1))))))
[>δ))

|[a1
α,a1

β ,a2
α,a2

β]|(((Loop(a1
α?1)[>Loop(a2

α?2))|||(Loop(a1
β?1)[>Loop(a2

β?2)))[>δ)
endhide endren endspec

Table 18: An example of distributed choice

(9) T′c(b, z) := if ¬DC(b) then(Termc(b1, z)[>Termc(b2, z))
elseren ∪n=1,2 ({(uc/uc

n)|(uc ∈ ASc(bn))}+ {(rc
c′/a

n
c′)|CH+

c′,c(bn)}) in hide t in

((Constc,1|[StGtc,2 + RecGtc,2 + {t}]|Constc,2)
|[StGtc,2 + RecGtc,2 + {pc

1}]|Constc,3)
|[RecGtc,1 + {a2

c′ |CH+
c′,c(b1)}]|Constc,4

endhide endren
whereConstc,3 := ((AllStRecc,2[](p

c
1;OneRecc,2ÀAllStRecc,2))[>δ)

the rest of definitions as in Table 17 endif

Table 19: MappingT′ for disabling

SSc(b2) is a service primitive.

The gates on which the starting service primitives and
receptions within aTaskc,n occur are listed inStGtc,n

and RecGtc,n, respectively. OneStRecc,n specifies a
process ready to synchronize on one action ofTaskc,n

on gates fromStGtc,n and RecGtc,n. AllStRecc,n

specifies a processes ready to synchronize on all such ac-
tions. ProcessesOneRecc,n and AllRecc,n are anal-

ogous toOneStRecc,n andAllStRecc,n, respectively,
except that they refer only to receptions.

Constc,1 prescribes the following: 1) Basically, execute
Taskc,1 and indicate its successful termination by at. 2)
If Taskc,2 starts in the meantime (that will always be be-
fore t), stop the basic activity, but remain ready for recep-
tion of protocol messages sent toTaskc,1. 3) Always be
ready to terminate, thoughConstc,2 will ensure that that

DERIVING SELF-STABILIZING PROTOCOLS. . . Informatica27 (2003) 57–73 67

w = spec ((aα; δ)|||(bβ ; δ))[>((cα; δ)|||(bβ ; δ)) endspec

w1 = spec hide pα,pβ in (((aα; δα)|||(bβ ; δβ))À((pα; δα)|||(pβ ; δβ))À(δα|||δβ))[>((cα; δβ)|||(bβ ; δα)) endhide
endspec

Tα(w1, ε) ≈ spec hide pα, t in ren rα
β/a1

β , rα
β/a2

β in

(((((hide bβ in (aα; ((sα
β !1; δ)|||(bβ !1; δ))Àpα; ((sα

β !1; δ)|||(bβ !1; δ)))
|[bβ]|FIFO(a1

β ,bβ , 1) endhideÀt; stop)

[>(((cα; δ)[](a2
β?2; δ))À(Loop(cα)|||Loop(a2

β?2)|||Loop(a1
β?1))))[>δ)

|[cα,a2
β , t]|(((cα; sα

β !2; δ)|||(a2
β !2; δ)) [](t; δ)))

|[pα, cα,a2
β , t]|(((Loop(cα)|||Loop(a2

β?2))[](pα;a2
β?2; (Loop(cα)|||Loop(a2

β?2))))[>δ))
|[a1

β ,a2
β]|((Loop(a1

β?1)[>Loop(a2
β?2))[>δ) endren endhide endspec

Tβ(w1, ε) ≈ spec hide pβ , t in ren bβ/bβ
1 , rβ

α/a1
α, bβ/bβ

2 , rβ
β/a2

α in

(((((hide bα in (bβ
1 ; ((sβ

α!1; δ)|||(bα!1; δ))Àpβ ; ((sβ
α!1; δ)|||(bα!1; δ)))

|[bα]|FIFO(a1
α,bα, 1) endhideÀt; stop)

[>(((bβ
2 ; δ)[](a2

α?2; δ))À(Loop(bβ
2)|||Loop(a2

α?2)|||Loop(a1
α?1))))[>δ)

|[bβ
2 ,a2

α, t]|(((a2
α!2; δ)|||(bβ

2 ; sβ
α!2; δ)) [](t; δ)))

|[pβ , bβ
2 ,a2

α, t]|(((Loop(bβ
2)|||Loop(a2

α?2))[](pβ ;a2
α?2; (Loop(bβ

2)|||Loop(a2
α?2))))[>δ))

|[a1
α,a2

α]|((Loop(a1
α?1)[>Loop(a2

α?2))[>δ) endren endhide endspec

Table 20: An example of distributed disabling

will happen only after successful termination ofTaskc,1 or
Taskc,2.

Constc,2 prescribes the following: ExecuteTaskc,2 or
terminate upon at indicating thatTaskc,1 has successfully
terminated.

Constc,3 in addition prescribes that in the case that the
first action belongs toTaskc,1, Taskc,2 may start only
upon a reception, i.e. upon detecting thatTerm(b2, z) has
already started at a remote site.

With the described measures for prompt start report-
ing and for prevention of premature local termination,
T′c(b, z) will progress towards completion ofTaskc,1 or
Taskc,2 as appropriate.

There is, however, still a problem to solve.Taskc,2 must
not terminate whilec may still expect messages sent to
Taskc,1. So we require thatTaskc,2 (i.e. Termc(b2, z))
never successfully terminates without receiving on each of
the channels on whichTermc(b1, z) receives. Upon a re-
ception withinTermc(b2, z), c knows that on the chan-
nel, there will be no more messages forTermc(b1, z). For
some channels, the requirement might be redundant.

It is convenient ifc indeed promptly becomes unwilling
to receive on gates inRecGtc,1, to improve the possibility
of re-use of protocol messages belonging toTermc(b1, z).
Therefore we introduceConstc,4. An analogous con-
straint for protocol messages belonging toTermc(b2, z)
would also be desirable, but we have found its automatic
specification too difficult.

Example 5 An example of distributed choice is given in
Table 18. The original service specificationw is gradu-
ally transformed into a well-formed specification, follow-
ing suggestions from Section 4.2.w1 secures prompt re-
porting of each individual starting service action.w2 in
addition secures that no component terminates the first al-
ternative until it is selected by componentsβ and γ, the

starting components of the second alternative.w3 in addi-
tion secures that every channel employed for the first alter-
native is also employed for the second one.

In each individual component specification, the first and
the second alternative are highlighted by a box. When di-
vergence occurs, components execute the first alternative,
but gradually switch to the other. We see that every protocol
message of the first alternative is a 1, and every message of
the second one is a 2. All the specified FIFO buffers are
redundant.

3.11 Implementation of disabling

For a b specified as "b1[> b2", we assume that there are
service actions (at least aδ) in both parts, so that both are
relevant. The operator does not introduce distributed con-
flicts, formally ¬DC(b), if there is ac which is the only
participating component ofb1 and also the only starting
component ofb2.

ProtocolsTerm(b1, z) andTerm(b2, z) are combined
as for "b1[]b2", except thatTerm(b2, z) is allowed to start
as long as there is a starting componentc of b2 which has
not yet detected thatb1 is successfully terminating and con-
firmed this knowledge by executing a special-purpose ser-
vice primitivepc in b1.

A participant c combines Termc(b1, z) and
Termc(b2, z) as specified in Table 19. If¬DC(b),
activation ofTerm(b2, z) is a local matter of the starting
component ofb2. For any otherc, Termc(b1, z) is
equivalent tostop, i.e. the component just waits for an
eventual start ofTermc(b2, z).

If DC(b), we require thatb1 consists of a regular partb3

followed by a dummy partb4 indicating its successful ter-
mination (if ¬TM(b1), b4 is never activated, and as such
not specified), i.e. we pretend that the service we are imple-
menting is actually "b3[>b2". More precisely, we require

68 Informatica27 (2003) 57–73 M. Kapus-Kolar

b4 = ((|||SCc(b2)(p
c; δc))À(|||TC+

c (b1)
δc))

wherep primitives are supposed to be hidden on a higher
service level and not among the visible primitives ofb3.
Note that we also prescribe the executor of each individ-
ual δ. SinceDC(b) andTM(b1) imply that b in no way
synchronizes with concurrent service parts, anypc may be
regarded entirely as an internal action ofT′c(b, z).

For such ab1, protocol Term(b1, z) consists of two
phases. The first phase isTerm(b3, z) followed by re-
porting of successful termination to all the starting com-
ponents ofb4, i.e. exactly to the starting components ofb2.
In other words, the components are, as required, promptly
informed when starting ofTerm(b2, z) becomes unde-
sirable. If the first phase successfully terminates before
Term(b2, z) starts,T(b, z) starts executing the usual dis-
tributed implementation of a well-formed "b4[]b2". If the
start ofTerm(b2, z) is sufficiently delayed, the executed
alternative isb4, i.e. b1 is not disrupted byb2. In any case,
no participant abandonsTerm(b2, z) until every starting
componentc of b2 has executed apc, i.e. refused to be an
initiator of Term(b2, z).

Comparing T′c(b1[> b2, z) with T′c(b1[]b2, z), we
see that, instead of waiting for the starting actions of
Termc(b1, z), Constc,3 now waits for the onlypc in
Termc(b1, z), if any. Consequently, instead of synchro-
nizing on the gates inStGtc,1 andRecGtc,1, Constc,1

and Constc,3 have to synchronize just onpc
1, hence

Constc,3 is much easier to specify.

Example 6 An example of distributed disabling is given in
Table 20. To obtain a well-formed service specification, we
furnish the first part with the required hiddenp actions,
and make sure that the starting actions of the second part
are promptly reported and that both protocol channels are
used for the part.

4 Computation and tuning of service
attributes

4.1 Attribute evaluation rules

The attributes in Table 21 provide information on service
actions and their executors.SSc andASc respectively list
for ana, b or p its starting service actions and all its service
actions atc. SCc and PCc respectively indicate for an
a or b that c is its starting component or its participating
component.

The attributes in Table 22 provide information on suc-
cessful terminations.TM , IT andDT respectively indi-
cate for ab or p that it might successfully terminate, that it
might terminate initially, or that the termination might be
decisive.

The attributes in Table 23 provide information on dis-
tributed conflicts. DC indicates for ab that distributed
conflicts are introduced by its top-level composition opera-
tor. AD andTD respectively indicate for ab or p whether

No. SSc No. SSc

(2) SSc(p) = SSc(b) (4) SSc(b) = {δ|PCc(b)}
(3) SSc(b) = ∅ (6) SSc(b) = SSc(a)
(12) SSc(b) = SSc(p) (13)SSc(a) = {a|PCc(a)}
(7) SSc(b) = ((SSc(b1)\S) ∪ (SSc(b2)\S)∪

(SSc(b1) ∩ SSc(b2) ∩ S))
(8,9) SSc(b) = (SSc(b1) ∪ SSc(b2))
(5) SSc(b) = ((SSc(b1) \ {δ}) ∪ {i|(δ ∈ SSc(b1))})
(10) SSc(b) = ((SSc(b1) \ S) ∪ {i|((SSc(b1) ∩ S) 6= ∅)})
(11) SSc(b) = ((SSc(b1) \ {s|∃(s′/s) ∈ R})∪

{s′|∃s ∈ SSc(b1) : ((s′/s) ∈ R)})
No. ASc No. ASc

(2) ASc(p) = ASc(b) (4) ASc(b) = SSc(b)
(3) ASc(b) = ∅ (12)ASc(b) = ASc(p)
(5) ASc(b) = ((ASc(b1)\{δ})∪{i} ∪ASc(b2))
(6) ASc(b) = (SSc(a) ∪ASc(b2))
(7–9)ASc(b) = (ASc(b1) ∪ASc(b2))
(10) ASc(b) = ((ASc(b1) \ S) ∪ {i|((ASc(b1) ∩ S) 6= ∅)})
(11) ASc(b) = ((ASc(b1) \ {s|∃(s′/s) ∈ R})∪

{s′|∃s ∈ ASc(b1) : ((s′/s) ∈ R)})
(3–12)(SCc(b) = (SSc(b) 6= ∅))∧

(PCc(b) = (ASc(b) 6= ∅))
(4) ∃c : (PC(b) = {c})
(13) (∃c : (PC(a) = {c})) ∧ ((∃u : (a = uc)) ⇒ PCc(a))

Table 21: Service actions and their executors

No. DT No. DT

(2) DT (p) = DT (b) (10,11)DT (b) = DT (b1)
(3,4)DT (b) = false (12) DT (b) = DT (p)
(5,6)DT (b) = DT (b2) (7) DT (b) = (DT (b1) ∨DT (b2))
(8) DT (b) = (DT (b1) ∨DT (b2) ∨ IT (b))
(9) DT (b) = (TM(b1) ∨ IT (b2) ∨DT (b2))

(3–12)TM(b) = ∃c : (δ ∈ ASc(b))
(3–12)IT (b) = ∃c : (δ ∈ SSc(b))

Table 22: Successful terminations

No. AD No. AD

(2) AD(p) = AD(b) (3,4) AD(b) = false
(6) AD(b) = AD(b2) (5,7)AD(b) = (AD(b1) ∨AD(b2))
(12) AD(b) = AD(p) (10,11)AD(b) = AD(b1)
(8,9)AD(b) = (AD(b1) ∨AD(b2) ∨DC(b))

No. TD No. TD

(2) TD(p) = TD(b) (10,11)TD(b) = TD(b1)
(3,4)TD(b) = false (12) TD(b) = TD(p)
(5,6)TD(b) = TD(b2) (7) TD(b) = (TD(b1) ∨ TD(b2))
(8) TD(b) = (TD(b1) ∨ TD(b2) ∨ (DC(b) ∧ IT (b)))
(9) TD(b) = (TD(b2) ∨ (DC(b) ∧ (TM(b1) ∨ IT (b2))))

(8) DC(b) := (|SC(b)|>1)
(9) DC(b) := (|PC(b1) ∪ SC(b2)|>1)

Table 23: Distributed conflicts

there are any distributed conflicts in it and whether there are
distributed conflicts involving its successful termination.

The attributeSRc in Table 24 indicates for ab or p that
its start must be promptly reported toc.

The attributeECc in Table 25 indicates for ab or p that
c is its ending component for mappingT. EC+

c is the ana-
logue for mappingTerm.

DERIVING SELF-STABILIZING PROTOCOLS. . . Informatica27 (2003) 57–73 69

No.SRc No. SRc

(1) SRc(b) = false (5,7,9–11)SRc(b1) = SRc(b)
(2) SRc(b) = SRc(p) (5,6) SRc(b2) = false
(7) SRc(b2) = SRc(b) (12)SRc(p) = (SRc(p) ∨ SRc(b))
(8) SRc(b1) = (SRc(b) ∨ SCc(b2))
(8) SRc(b2) = (SRc(b) ∨ SCc(b1) ∨ (DC(b) ∧ PCc(b1)))
(9) SRc(b2) = (SRc(b) ∨ PCc(b1))

Table 24: Start reporting

No. ECc No. ECc

(2) ECc(p) = EC+
c (b) (5,6) ECc(b) = EC+

c (b2)
(3) ECc(b) = false (10,11)ECc(b) = EC+

c (b1)
(4) ECc(b) = PCc(b) (12) ECc(b) = ECc(p)
(7–9) ECc(b) = (EC+

c (b1) ∨ EC+
c (b2))

(3–12)EC+
c (b) = ((ECc(b)∧ 6 ∃c′ : RTc′(b)) ∨RTc(b))

Table 25: Ending components

No. TC+
c No.TC+

c

(1) TC+
c (b) = TM(b) (2) TC+

c (b) = TC+
c (p)

(5) TC+
c (b1) = (ECc(b1) ∨ PCc(b2) ∨ TCc(b))

(5–9) TC+
c (b2) = (TCc(b) ∧ PCc(b) ∧ TM(b2))

(7–11)TC+
c (b1) = (TCc(b) ∧ PCc(b) ∧ TM(b1))

(12) TC+
c (p) = (TC+

c (p) ∧ TCc(b))

No. TCc

(3–6,10,11)TCc(b) = TC+
c (b)

(7) TCc(b) = (TC+
c (b) ∧ (ECc(b) ∨ ¬PCc(b)∨

(¬DT (b)∧ 6 ∃c′ : SHc′,c(b))))
(8,9) TCc(b) = (TC+

c (b)∧
(((∀c′ ∈ SC(b2) : GT+

c,c′(b1))∧
(¬DC(b)∨
((ECc(b) ∨ ¬TM(b1))∧
6 ∃c′ : (CH+

c′,c(b1) ∧ ¬CT+
c′,c(b2))))∧

(¬TM(b2) ∨ PCc(b2)))
∨¬PCc(b)))

(12) TCc(b) = (TC+
c (b) ∧ (TC+

c (p) ∨ ¬PCc(b)))

(3–12)RTc(b) = (TC+
c (b) ∧ ¬TCc(b))

Table 26: Termination types

The attributes in Table 26 provide information on termi-
nation types.TCc andTC+

c respectively indicate for ab
or p that c is its terminating component for mappingT or
Term. RTc indicates for ab that c detects its termination
upon receiving a special report on it.

The attributes in Table 27 provide information on utiliza-
tion of protocol channels.CHc,c′ andCH+

c,c′ respectively
indicate for ab or p that mappingT or Term introduces
protocol messages on the channel fromc to c′. CTc,c′ and
CT+

c,c′ respectively indicate that the channel is used in ev-
ery successfully terminating run. For ab consisting of two
competing parts,SHc,c′ indicates if the channel is shared.

The attributesGTc,c′ andGT+
c,c′ in Table 28 respectively

indicate for ab or p that in mappingT or Term, its success-
ful termination atc is guarded byc′.

By the rules in Table 29, we choose for ab such identi-
fiersCI andCI+ that all protocol messages introduced by
mappingT or Term, respectively, are dynamically unique.

No.CHc,c′ No. CHc,c′

(2) CHc,c′(p) = CH+
c,c′(b) (10,11)CHc,c′(b) = CH+

c,c′(b1)

(3,4)CHc,c′(b) = false (12) CHc,c′(b) = CHc,c′(p)
(5) CHc,c′(b) = (CH+

c,c′(b1) ∨ CH+
c,c′(b2)∨

((c 6= c′) ∧ EC+
c (b1) ∧ SCc′(b2)))

(6) CHc,c′(b) = (CH+
c,c′(b2)∨

((c 6= c′) ∧ PCc(a) ∧ SCc′(b2)))
(7–9)CHc,c′(b) = (CH+

c,c′(b1) ∨ CH+
c,c′(b2))

No.CTc,c′ No. CTc,c′

(2) CTc,c′(p) = CT+
c,c′(b) (10,11)CTc,c′(b) = CT+

c,c′(b1)

(3) CTc,c′(b) = true (12) CTc,c′(b) = CTc,c′(p)
(4) CTc,c′(b) = false
(5) CTc,c′(b) = (CT+

c,c′(b1) ∨ CT+
c,c′(b2)∨

((c 6= c′) ∧ EC+
c (b1) ∧ SCc′(b2)))

(6) CTc,c′(b) = (CT+
c,c′(b2)∨

((c 6= c′) ∧ PCc(a) ∧ SCc′(b2)))
(7) CTc,c′(b) = (CT+

c,c′(b1) ∨ CT+
c,c′(b2))

(8,9)CTc,c′(b) = (CT+
c,c′(b1) ∧ CT+

c,c′(b2))

(3–12)CH+
c,c′(b) = (CHc,c′(b) ∨ (ECc(b) ∧RTc′(b)))

(3–12)CT+
c,c′(b) = (CTc,c′(b) ∨ (ECc(b) ∧RTc′(b)))

(7–9)SHc,c′(b) = (CH+
c,c′(b1) ∧ CH+

c,c′(b2))

Table 27: Channel utilization

No. GTc,c′ No. GTc,c′

(2) GTc,c′(p) = GT+
c,c′(b) (10,11)GTc,c′(b) = GT+

c,c′(b1)

(3) GTc,c′(b) = true (12) GTc,c′(b) = GTc,c′(p)
(4) GTc,c′(b) = (¬TCc(b) ∨ ((c = c′) ∧ PCc(b)))
(5) GTc,c′(b) = (GT+

c,c′(b1) ∨GT+
c,c′(b2)∨

(PCc(b2)∧
∃c′′: (EC+

c′′(b1) ∧GT+
c′′,c′(b1))))

(6) GTc,c′(b) = ((PCc′(a) ∧ ((c = c′) ∨ PCc(b2)))∨
GT+

c,c′(b2))

(7) GTc,c′(b) = (GT+
c,c′(b1) ∨GT+

c,c′(b2))

(8,9)GTc,c′(b) = (GT+
c,c′(b1) ∧GT+

c,c′(b2))

(3–12)GT+
c,c′(b) = (¬TC+

c (b) ∨ (TCc(b) ∧GTc,c′(b))∨
(¬TCc(b)∧
∃c′′ : (ECc′′(b) ∧GTc′′,c′(b))))

Table 28: Termination guarding

No. CI+ No. CI+

(1,2) CI+(b) = ε (5,6)CI+(b2) = CI(b)
(5,10,11)CI+(b1) = CI(b)
(7–9)if ∃c, c′ : SHc,c′(b)

thenCI+(b1) = CI(b)·1 , CI+(b2) = CI(b)·2
elseCI+(b1) = CI+(b2) = CI(b) endif

No. CI

(3–6,10,11)CI(b) = CI+(b)
(7–9)if (((CI+(b1) 6= CI(b)) ∧ (CI+(b2) 6= CI(b)))∨

6 ∃c, c′ : (TC+
c (b) ∧RTc′(b) ∧ CHc,c′(b)))

thenCI(b) = CI+(b)
elseCI(b) = CI+(b)·1 endif

(12) if 6 ∃c, c′ : (TC+
c (b) ∧RTc′(b) ∧ CHc,c′(b))

thenCI(b) = CI+(b)
elseCI(b) = CI+(b)·1 endif

Table 29: Context identifiers

Attribute evaluation rules for a service specification con-

70 Informatica27 (2003) 57–73 M. Kapus-Kolar

stitute a system of equations which might have more than
one solution for the attributes of the explicitly defined pro-
cesses. One should always maximize their attributeTC+,
while other attributes must be minimized.

4.2 Additional restrictions and their
satisfaction

Table 30 summarizes the additional restrictions introduced
so far for a well-formed service specification.

The first three restrictions state that no irrelevant service
part may be specified. The restriction for parallel compo-
sition is actually more rigorous than its approximation in
Table 30 (see Section 3.9).

The next two restrictions refer to the ending components
of a b. Usually they can be satisfied simply by proper
choice of executors for individualδ in b, but not always.
It might be that a "b1[]b2" or a "b1[> b2" is terminating,
but no c qualifies for its ending component, because a
GT+

c,c′(b1) or PCc(b2) or a CT+
c′,c(b2) is not true as re-

quired. GT+
c,c′(b1) can be satisfied by securing that in the

terminating runs ofb1, the last (possibly dummy) action at
c always comes after a (possibly dummy) action atc′. For
PCc(b2), it suffices to insert intob2 a dummy action atc.
ForCT+

c′,c(b2), it helps to introduce into every terminating
run of b2 an action atc prefixed by an action atc′.

The next two restrictions require that there are hiddenp
primitives at certain places in the service specification. If
p primitives are already used for other purposes, any other
reserved service primitive type will do.

The next restriction states that ab with distributed con-
flicts must not synchronize with a concurrent service part,
in order to avoid deadlock resulting from imprecise imple-
mentation ofb. However, if the concurrent service part is
sufficiently flexible (like, for example, a skilled user of an
imprecisely implemented service), there will be no dead-
lock and the restriction may be ignored.

The next two restrictions secure prompt start report-
ing. An ordinary actiona is always specified in a context
"a; b2". A report recipientc must be the executor ofa or a
starting component ofb2, so that the message will be gen-
erated to implement the action-prefix operator. If ac is a
missing starting component ofb2, that can be solved by in-
troducing intob2 a dummy starting service action atc. For
reporting of aδ, there is no suchb2 following, so we have
only the first option.

In a general case, execution of a disruptiveb might start
by concurrent execution and reporting of several starting
actions. To avoid as much as possible such multiple report-
ing of the start ofb, it is advisable to rewrite the specifica-
tion of b into the action-prefix form (as required in [10] for
b2 in a "b1[> b2"), i.e. make sure thatAP (b) (defined in
Table 31).

The last two restrictions state that a service action in a
particular position must not be ani or a δ. If it is an i,
change it into a service primitive and hide it on a higher
level. If it is a δ, prefix it with a subsequently hidden ser-

(5) TM(b1)
(7) ((∪c∈CASc(b1)) ∩ (S + {δ}))

= ((∪c∈CASc(b2)) ∩ (S + {δ}))
(8,9) (|PC(b1)|> 0) ∧ (|PC(b2)|> 0)

(7) DT (b) ⇒ (|EC(b)| = 1)
(3–12)ECc(b) ⇒ TCc(b)

(1) 6 ∃c : (pc ∈ ASc(b))
(9) DC(b) ⇒ ∃b3 :

((b1 = (b3 if TM(b1) then
À(|||SCc(b2)(p

c; δc))À(|||
TC+

c (b1)
δc)

endif)
∧ 6 ∃c : (pc ∈ ASc(b3)))

(7) ((S 6= ∅) ⇒ ¬AD(b)) ∧ ¬TD(b)

(4) SRc(b) ⇒ PCc(b)
(6) SRc(b) ⇒ (PCc(a) ∨ SCc(b2))

(8) DC(b) ⇒ (SCc(b2) ⇒ (({i, δ} ∩ SSc(b1)) = ∅))
(8,9) DC(b) ⇒ (PCc(b1) ⇒ (({i, δ} ∩ SSc(b2)) = ∅))

Table 30: Restrictions

No. AP No. AP

(2) AP (p) = AP (b) (3,4,6) AP (b) = true
(7,9)AP (b) = false (8) AP (b) = (AP (b1) ∧AP (b2))
(12) AP (b) = AP (p) (5,10,11)AP (b) = AP (b1)

Table 31: Action-prefix form

vice primitive. For both cases,DC(b) implies thatb runs
in such a context that the transformation is irrelevant.

5 Discussion and conclusions

5.1 Correctness

A formal proof of the protocol derivation method is given
in [18], and briefly outlined below.

For every service partb, the only property that really
matters is correctness of itsT′ and Term implementa-
tions for the context in which it is embedded, where aT′

implementation consists of the members ofPC(b), while
a Term implementation might also involve some other
server components. However, when proving the property,
we also assume over twenty auxiliary properties of the im-
plementations.

All the properties are proven by induction on the ser-
vice structure. Most of them are synthesized properties.
We prove them for theT′ implementations ofstop andδ.
For every compositeb (i.e. for every service composition
operator), we prove that ifTerm implementations of the
constituent service parts possess the properties, theT′ im-
plementation ofb possesses their analogues. In addition
we prove that if theT′ implementation of ab possesses the
properties, itsTerm implementations possess their ana-
logues. For the few inherited properties, the proof goes in
the reverse direction. By proving the main property for the
main service process, we prove that the entire service is
properly implemented.

DERIVING SELF-STABILIZING PROTOCOLS. . . Informatica27 (2003) 57–73 71

5.2 Message complexity

The operators potentially introducing protocol messages
are the operators of sequence, choice and disabling. It
is often possible to reduce the number of such operators
by restructuring the service specification, i.e. by making
its inherent parallelism more explicit. If such restyling of
the service (and consequently of the protocol) is not unac-
ceptable for readability reasons, it can greatly reduce the
message complexity, and can even be automated [25]. One
should also strive for optimal insertion of dummy service
actions and optimal assignment of hidden service actions
to server components.

Anyway, some of the messages introduced by our proto-
col derivation mapping are redundant.

– In some cases, it would be possible to omit a message
based on the observation that for the service partb1

to which it belongs, it sequences two service actions
which are already sequenced for a concurrent service
partb2 synchronized on them [13].

– It would be possible to further optimize terminations
of implementations of individual service parts, and
their reporting in individual runs [14, 24].

– When implementing a "b1[]b2", one could make better
use of the fact that only the initial parts ofb1 andb2

are concurrent.

– When implementing a "b1[>b2", one could make bet-
ter use of the fact that only the initial part ofb2 is
concurrent tob1.

With more extensive re-use of messages, their encodings
could be shorter, but messages would no longer directly
identify the service part to which they belong, leading to
more complicated protocol specifications.

5.3 Comparison with similar methods

The popular formal technique for specifying self-
stabilizing protocols have long been finite state machines
(FSMs) [6, 27, 22]. With their explicit representation of
states, they are very convenient for the purpose. Namely,
when a process proceeds along a selected path in the tran-
sition graph representing its FSM, the fact that it ignores
messages belonging to the abandoned paths can be spec-
ified simply by furnishing each state on the selected path
with loops representing reception of such messages. In
a process-algebraic language like LOTOS, there is no ex-
plicit notion of states, so specification of self-stabilization
is a tricky task.

There are two basic approaches to deriving self-
stabilizing protocols. In the older approach [6, 27], a pro-
tocol is first derived for the ideal case with no divergences
and subsequently furnished with the reception-ignoring
loops. The derivation algorithm in [22], like ours, handles
the ideal and the non-ideal cases in an integrated manner,

and is consequently much less complex. Moreover, the al-
gorithm derives protocols in a compositional way, support-
ing implementation of sequence, choice and iteration. For
those operators, the structure of services is quite well re-
flected in the derived protocols. Unfortunately, FSMs are
less suited for explicit specification of more complex op-
erators, particularly for such introducing concurrency. We
have solved the problem by switching to the more expres-
sive LOTOS.

We know no comparable LOTOS-based protocol deriva-
tion transformation. Some hidden divergence is allowed in
[1], but it is resolved with the help of global controllers.

5.4 Handling of data

We intend to extend our method to service actions associ-
ated with data [5, 11], to approach the ideal that the service
specification language should be the same as the protocol
specification language. The strategy for flexible integrated
handling of messages implementing proper ordering of ac-
tions and those carrying data is simple [11]: 1) In the ser-
vice, identify the points where inter-component exchange
of data would be desirable. 2) At each point, introduce a
(possibly dummy) action of the data sender followed by a
(possibly dummy) action of the data recipient, so that there
will be an action-ordering message between the two com-
ponents. 3) Let the message carry the data. In our case, data
could also be carried in a message reporting termination of
a b to ac with RTc(b).

Data exchange is also desirable as a powerful means for
compositional service specification. Whenever the more
specific operators (e.g. sequential composition, choice and
disabling) do not suffice for describing a particular kind of
composition of a set of service parts, one can still run the
parts in parallel and let them exchange and process infor-
mation on their respective states.

5.5 Handling of quantitative temporal
constraints

Once being able to handle service actions with data, one
can easily implement quantitative temporal constraints [12,
23]. Such a constraint specifies the allowed time gap be-
tween two service actions. So the time when the first action
is executed is just another piece of data generated by the
first action and needed for timely execution of the second
one. Temporal constraints can also be employed for pre-
venting distributed conflicts and for further optimization of
protocol traffic [23].

5.6 The problem of co-ordinated
self-stabilization

The most difficult challenge for future research seems to
be implementation of self-stabilization after divergence in
synchronized service parts. The problem is important be-
cause synchronized processes are the core of the constraint-

72 Informatica27 (2003) 57–73 M. Kapus-Kolar

oriented specification style, that is indispensable for ex-
pressing more exotic forms of service composition. To
solve it in a general case, one would need a protocol in-
corporating negotiation of implementations of concurrent
service parts, so an enhancement along the lines of [29]
could help.

5.7 Conclusions

Automatic implementation of self-stabilization after diver-
gence is an important achievement in LOTOS-based pro-
tocol derivation, because many realistic services contain
distributed conflicts (e.g. a connection establishment ser-
vice with both parties as possible initiators). In the era
of service integration, the problem is even more acute, be-
cause one often wishes to combine services which are not
exactly compatible. Take for example feature interactions
in telecommunications, which can be nicely detected and
managed based on specifications in LOTOS [4]. With the
possibility of compositional derivation of self-stabilizing
protocols, it suffices to specify dynamic management of
such interactions on the service level.

In our future work, we will focus on protocol derivation
in E-LOTOS [8], the enhanced successor of LOTOS, be-
cause it supports specification of real-time aspects.

References

[1] Bista BB, Takahashi K, Shiratori N: A compositional
approach for constructing communication services
and protocols. IEICE Transactions on Fundamentals
E82-A(11):2546–2557 (1999)

[2] Bolognesi T, Brinksma E: Introduction to the ISO
specification language LOTOS. Computer Networks
and ISDN Systems 14(1):25–59 (1987)

[3] Brinksma E, Langerak R: Functionality decomposi-
tion by compositional correctness preserving trans-
formation. South African Computer Journal 13:2–13
(1995)

[4] Dietrich F, Hubaux J-P: Formal methods for commu-
nication services: meeting the industry expectations.
Computer Networks 38(1):99–120 (2002)

[5] Gotzhein R, Bochmann Gv: Deriving protocol spec-
ifications from service specifications including pa-
rameters. ACM Transactions on Computer Systems
8(4):255–283 (1990)

[6] Gouda MG, Yu YT: Synthesis of communicat-
ing finite-state machines with guaranteed progress.
IEEE Trans. on Communications COM-32(7):779–
788 (1984)

[7] ISO/IEC: Information Processing Systems – Open
Systems Interconnection – LOTOS – A Formal De-
scription Technique Based on the Temporal Ordering
of Observational Behaviour. IS 8807, 1989

[8] ISO/IEC: Information Technology - Enhancements to
LOTOS (E-LOTOS). IS 15473, 2001

[9] Kahlouche H, Girardot JJ: A stepwise refinement
based approach for synthesizing protocol specifica-
tions in an interpreted Petri net model. Proceedings
of IEEE INFOCOM’96, pp 1165–1173, 1996

[10] Kant C, Higashino T, Bochmann Gv: Deriving pro-
tocol specifications from service specifications writ-
ten in LOTOS. Distributed Computing 10(1):29-47
(1996)

[11] Kapus-Kolar M: Deriving protocol specifications
from service specifications including parameters. Mi-
croprocessing and Microprogramming 32:731–738
(1991)

[12] Kapus-Kolar M: Deriving protocol specifications
from service specifications with heterogeneous tim-
ing requirements. Proceedings SERTS’91. IEE, Lon-
don 1991, pp 266–270

[13] Kapus-Kolar M: On context-sensitive service-based
protocol derivation. Proceedings of MELECON’96.
IEEE Computer Society Press 1996, pp 955–958

[14] Kapus-Kolar M: More efficient functionality de-
composition in LOTOS. Informatica (Ljubljana)
23(2):259–273 (1999)

[15] Kapus-Kolar M: Comments on deriving protocol
specifications from service specifications written
in LOTOS. Distributed Computing 12(4):175–177
(1999)

[16] Kapus-Kolar M: Service-based synthesis of two-
party protocols. Elektrotehniški vestnik 67(3):153–
161 (2000)

[17] Kapus-Kolar M: Global conflict resolution in au-
tomated service-based protocol synthesis. South
African Computer Journal 27:34–48 (2001)

[18] Kapus-Kolar M: Deriving self-stabilizing protocols
for services specified in LOTOS. Technical Report
#8476, Jožef Stefan Institute, Ljubljana, 2003

[19] Khendek F, Bochmann Gv, Kant C: New results on
deriving protocol specifications from service speci-
fications. Proceedings of ACM SIGCOMM’89, pp
136–145, 1989

[20] Langerak R: Decomposition of functionality: A
correctness-preserving LOTOS transformation. Pro-
tocol Specification, Testing and Verification X. North-
Holland, Amsterdam 1990, pp 203–218

[21] Naik K, Cheng Z, Wei DSL: Distributed implementa-
tion of the disabling operator in LOTOS. Information
and Software Technology 41(3):123–130 (1999)

DERIVING SELF-STABILIZING PROTOCOLS. . . Informatica27 (2003) 57–73 73

[22] Nakamura M, Kakuda Y, Kikuno T: On constructing
communication protocols from component - based
service specifications. Computer Communications
19(14):1200–1215 (1996)

[23] Nakata A, Higashino T, Taniguchi K: Protocol syn-
thesis from timed and structured specifications. Pro-
ceedings of ICNP’95. IEEE Computer Society Press
1995, pp 74–81

[24] Nakata A, Higashino T, Taniguchi K: Protocol syn-
thesis from context-free processes using event struc-
tures. Proceedings RTCSA’98. IEEE Computer Soci-
ety Press 1998, pp 173–180

[25] Pavón Gomez S, Hulström M, Quemada J, de Frutos
D, Ortega Mallen Y: Inverse expansion. Formal De-
scription Techniques IV. North-Holland, Amsterdam
1992, pp 297-312

[26] Saleh K: Synthesis of communication protocols: An
annotated bibliography. Computer Communication
Review 26(5):40–59 (1996)

[27] Saleh K, Probert RL: An extended service-based
method for the synthesis of protocols. Proceedings
of the Sixth Bilkent Intern. Symp. on Computer and
Information Sciences. Elsevier, Amsterdam 1991, pp
547–557

[28] Vissers CA, Scollo G, Sinderen Mv: Specification
styles in distributed systems design and verification.
Theoretical Computer Science 89:179–206 (1991)

[29] Yasumoto K, Higashino T, Taniguchi K: A compiler
to implement LOTOS specifications in distributed
environments. Computer Networks 36(2–3):291–310
(2001)

Informatica27 (2003) 75–80 75

Embedding Complete Binary Trees into Faulty Flexible Hypercubes with
Unbounded Expansion

Jen-Chih Lin and Steven K.C. Lo
Department of Information Management
Jin-Wen Institute of Technology,
No. 99, An-Chung Rd., Hsin-Tien City,
Taipei, Taiwan, R.O.C.
E-mail: yachih@ms13.hinet.net
Department of Computer Science and Information Engineering,
Tamkang University, Tamsui, Taiwan, R.O.C.
Email: kclo@cs.tku.edu.tw

Keywords: Flexible Hypercube, hypercube, embedding, complete binary tree

Received:July 1, 2002

We develop novel algorithms to facilitate the embedding job when the Flexible Hypercube contains faulty
nodes. We present strategies for reconfiguring a complete binary tree into a flexible hypercube withn-
expansion. These embedding algorithms show a complete binary tree can be embedded into a faulty
flexible hypercube with load1, congestion1 and dilation4 such thatO(n2 −m2) faults can be tolerated,
where(n − 1) is the dimension of a Flexible Hypercube and(m − 1) is the height of a complete binary
tree. These methodologies are proven and these algorithms are present to save them.

1 Introduction

In the study of parallel computing, networks of processors
are often organized into various configuration such as trees,
rings, linear arrays, meshes and hypercubes. These config-
urations can be represented as graphs. If the properties and
structures of underlying graph used effectively, the compu-
tation and communication speeds can often removed.

Among the various interconnection networks that have
been studied and built, hypercube networks have received
much attention. This attention is mainly due to the hyper-
cube advantages of rich interconnection, routing simplicity,
and embedding capabilities. However, due to the power-of-
2 size and logarithmic degree, hypercubes suffer two major
disadvantages, namely, high cost extensibility and large in-
ternal fragmentation in partitioning. In order to conquer
the difficulties associated with hypercubes and these gen-
eralizations of the hypercubes, the Flexible Hypercube[5]
has been proposed during past years. The Flexible Hyper-
cube unlike both the supercube[14] and the hypercube, may
be expanded (or designed) in a number of possible config-
urations while guaranteeing the same basic fault-tolerant
properties and without a change in the communication. The
existence of hypercube subgraphs in the Flexible Hyper-
cube ensures that hypercube embedding algorithms devel-
oped for the hypercube may also be utilized in the Flexible
Hypercube. The flexibility in node placement may possibly
be utilized to aid in supporting a specific embedding. The
Flexible Hypercube, while maintaining the fault-tolerance
of the other topologies and the ease of communication, al-
lows the placement of new nodes at any currently unused

addresses in the system.
Graph embedding problems have applications in a wide

variety of computational situations. For example, the flow
of information in a parallel algorithm defines a program
graph, and embedding this into a network tells us how to
organize the computation on the network. Other problems
that can be formulated as graph embedding problems are
laying out circuits on chips, representing data structures in
computer memory, and finding efficient program control
structures.

The power of a message-passing parallel computer de-
pends on the topology chosen for underlying interconnec-
tion network, which can be modeled as undirected graph.
Different graphs have been proposed as static interconnec-
tion topology for multiprocessors. They include linear ar-
rays, rings, meshes, complete binary trees mesh of trees,
de Bruijn networks, and so on. Therefore, we model both
the parallel algorithm and the parallel machine as graphs.
Given two graphs,G(V, E) andG′(V ′, E′), embedding[9]
the guest graphG into the host graphG′ maps each ver-
tex in the setV into a vertex (or a set of vertices) in the
setV ′ and each edge in the setE into an edge (or a set
of edges) in the setE′. Let these nodes in a graph corre-
spond to processors and edges to communication links in
an interconnection network. Embedding one graph into an-
other is important because an algorithm may have been de-
signed for a specific interconnection network, and it may
be necessary to adapt it to another network. Four costs
associated with graph embedding are dilation, expansion,
load and congestion. The maximum amount that we must
stretch any edge to achieve an embedding is called the di-

76 Informatica27 (2003) 75–80 J.-C. Lin et al.

lation of the embedding. By expansion, we mean the ratio
of the number of nodes in the host graph to the number of
nodes in the graph that is being embedded. The conges-
tion of an embedding is the maximum number of edges of
the guest graph that are embedded using any single edge
of the host graph. The load of an embedding is the maxi-
mum number of nodes of the guest graph that are embed-
ded in any single node of the host graph. An efficient sim-
ulation of one network on another network requires that
these four costs be as small as possible. However, for most
embedding problems, it is impossible to obtain an embed-
ding that minimizes these costs simultaneously. Therefore,
some tradeoffs among these costs must be made.

One approach to achieve faulty-tolerance in hypercubes
is to introduce spare nodes or links[4, 12], so that hy-
percube structure can still be maintained when nodes fail.
This approach can be expensive and it is difficult to make
hardware modifications on those machines already in the
market place. Another approach exploits the inherent
redundant nodes or links in hypercube to achieve fault
tolerance[6, 15]; that is no extra nodes or links are added to
alter the structure of hypercube, but instead use the unused
nodes as spares. In this dissertation, we consider only the
second type of fault-tolerance design in faulty hypercube-
derived computers.

In a multiprocessor system, we follow two fault models
defined in [6] and [11]. The first model assumes that, in a
faulty node, the computational function of the node is lost
while the communication function remains intact; this is
thepartial faulty model. The second model assumes that,
in a faulty node, the communication function is lost too;
this is thetotal faultymodel. In this dissertation, our model
is the partial faulty model. That is, when the computation
nodes are faulty, the communication links are well and only
the faulty nodes are remapped.

The paper presents novel algorithms to facilitate the em-
bedding job when the Flexible Hypercube contains faulty
nodes. Of particular concern are the network structures
of the Flexible Hypercube that balance the load before as
well as after faults start to degrade the performance of the
Flexible Hypercube. To obtain replaceable nodes of faulty
nodes,2-expansion is permitted such that up to(n − 2)
faults can be tolerated with congestion1, dilation 4 and
load1, where(n − 1) is the dimension of a Flexible Hy-
percube. Results presented herein demonstrate that em-
bedding methods are optimized. Furthermore, we present
strategies for reconfiguring a complete binary tree into a
Flexible Hypercube withn-expansion. These embedding
algorithms show a complete binary tree can be embedded
into a faulty flexible hypercube with load1, congestion1
and dilation4 such thatO(n2−m2) faults can be tolerated,
where(n− 1) is the dimension of a flexible hypercube and
(m− 1) is the height of a complete binary tree.

The remainder of this paper is organized as follows. In
the next section, some notations and definitions will be in-
troduced. At the same time, we describe how to embed
a complete binary tree into a Flexible Hypercube with2-

expansion. In section 3, we embed a complete binary tree
into a Flexible Hypercube withn-expansion under partial
faulty model. Finally, we conclude this paper.

2 Preliminary

The Flexible Hypercube is constructed by any number
of nodes and based on a hypercube. A Flexible Hy-
percube, denoted byFHN , is defined as an undirected
graphFHN = (V, E), whereV is the set of processors
(called nodes) andE is the set of bidirectional commu-
nication links between the processors (called edges). In
ann-dimensional Flexible Hypercube withN nodes where
2n ≤ N < 2n+1 (n is a positive integer), each node can
be expressed by an(n + 1)-bit binary stringin...i0 where
ip ∈ {0, 1} and0 ≤ p ≤ n .

Definition 1 [8] A (2n − t)-node Flexible Hypercube is
a lack of t nodes, which are referred to herein as virtual
nodes. For any virtual nodey, denoted asI(x) wherex
is any node of the Flexible Hypercube, if the functionI(x)
exists, thenxn−1 = yn−1, andxi = yi for 0 ≤ i ≤ n− 2.

Definition 2 [8] The Hamming distance of two nodesx
and y, denoted byHD(x, y), is the number of1’s in the
bit set of resulting sequence of the bitwiseXOR of x and
y.

Definition 3 [8] For any two nodesx andy in a supercube,
let x = xn−1 . . . x0, y = yn−1 . . . y0, thenDim(x, y) ={
i in (0 . . . n− 1) | xi 6= yi}.

Definition 4 [5] SupposeFHN = (V, E) is an (n − 1)-
dimensional Flexible Hypercube, then the node setsH1,
H2, V1, V2, V3 are defined as follows

1. H1 = {x | x ∈ V andxn−1 = 0},

2. H2 = {x | x ∈ V and(xn−1 = 1 or (I(x) /∈ V)},

3. V1 = H1 −H2

4. V2 = H1 ∩H2

5. V3 = H2 −H1

Definition 5 [5] SupposeFHN = (V, E) is an (n − 1)-
dimensional Flexible Hypercube, then the edge setE is the
union ofE1, E2, E3 andE4, where

1. E1 = {(x, y) | x, y ∈ H1 andHD(x, y) = 1},

2. E2 = {(x, y) | x, y ∈ V3 andHD(x, y) = 1},

3. E3 = {(x, y) | x ∈ V3, y ∈ V1 andHD(x, y) = 1},

4. E4 = {(x, y) | x ∈ V3, y ∈ V2 andHD(x, y) = 2}.

EMBEDDING COMPLETE BINARY TREES INTO. . . Informatica27 (2003) 75–80 77

Figure 1: A Flexible Hypercube contains14-node

Addresses of nodes in a Flexible Hypercube are con-
structed as follows. As discussed above, addresses con-
sist of binary strings ofn-bits. The first2n−1 addresses
correspond to nodes inH1 and must be the binary repre-
sentations of0 through2n−1 − 1. Each of the remaining
nodes (up to2n−1 − 1 nodes) in the setV3 = H2 − H1

may be placed adjacent to any nodex in H1 and is given
the addressI(x). Any node inH1 is a Hamming distance
of 1 from at most one node inV3. This method of node
addressing effectively relaxes the constraint that all nodes
in the network must be numbered consecutively. This is
unique among the hypercube topologies mentioned above.
Notably, supercubes and hypercubes are both special cases
of Flexible Hypercubes. In addition to expanding the Flex-
ible Hypercube incrementally, it can also be expanded flex-
ibly with respect to the placement of new nodes in the sys-
tem while maintaining fault-tolerance. When a new node is
added to a Flexible Hypercube system,n new connections
should be added and at most(n − 1) existing edges must
be removed.

An inevitable consequence of the flexibility of construc-
tion and the fault tolerance of the Flexible Hypercube is
an uneven distribution of the utilized communication ports
over system nodes. Although the Flexible Hypercube loses
its property of regularity, more links help obtain the re-
placement nodes of the faulty nodes of the Flexible Hy-
percube. The Flexible Hypercube with14-node is shown
in Figure 1. In the Figure 1,H1 = {0, 1, 2, 3, 4, 5, 6, 7},
H2 = {1, 3, 8, 10, 12, 13, 14, 15}, V1 = {0, 2, 4, 5, 6, 7},
V2 = {1, 3} andV3 = {8, 10, 12, 13, 14, 15}.

Lemma 1 [1] A double-rooted complete binary tree can
be contained in a hypercube with dilation2, congestion1,
expansion1 and load1.

Lemma 2 There exists an embedding of a complete binary
treeTh in a (2h+1 − 2)-node Flexible Hypercube.

Proof. The total number of nodes of a complete binary tree
Th is 2h−1. The nodes set ofH1 of the Flexible Hypercube
is a hypercube and it has2h nodes. We infer the method of

the embedding by lemma 1. There exists an embedding of
DTh in a 2h-node hypercube. The expansion is(2h+1 −
2)/(2h − 1) = 2. Therefore, theTh can be embedded
into a(2h+1−2)-node Flexible Hypercube with dilation2,
congestion1, load1 and expansion2.

Lemma 3 [10]A (2h+1−2)-node Flexible Hypercube con-
tains an embedding ofTh.

Proof. The total number of nodes in a complete binary tree
DTh is 2h. Because the node set ofH1 of the Flexible
Hypercube is a hypercube, it has2h nodes. We can infer
that the embedding method is from lemma 1. There exists
an embedding ofDTh in a 2h-node hypercube. The ex-
pansion is(2h+1 − 2)/2h − 1 = 2. Therefore,Th can be
embedded into a(2h+1−2)-node Flexible Hypercube with
dilation2, congestion1, load1 and expansion2.

Lemma 4 [10]There exists an embedding ofTh in a
(2h+1 − 2)-node Flexible Hypercube with dilation4, con-
gestion1, expansion2, load1 andO(n) faults.

Lemma 5 [10]The embedding methods in the Flexible Hy-
percube are optimized mainly for balancing the processor
and communication link loads.

3 N -Expansion Embedding

Now, we extend the result from2-expansion ton-
expansion. In other words, we eliminate the limitation of
expansion. We assume the total number of nodes of Flexi-
ble HypercubeFHN is N , 2n−1 ≤ N < 2n and the total
number of nodes of a complete binary treeTm of height
(m− 1) is 2m − 1.

Lemma 6 A complete binary tree of height(m−1) can be
embedded into a(2n − t)-node Flexible Hypercube(0 ≤
t ≤ 2n−1, m < n) with dilation2 and load1.

Proof. The result is trivial from lemma 1.
We present these algorithms as follows:
Algorithm replacing −method :

1. if the rootr is faulty then
1.1 search the other root noder′

1.2 if the other root noder′ is faulty then
1.2.1 return the rootr
1.2.2 replacing − rule(r)

1.3 else
1.3.1 noder is replaced by noder′.
1.3.2 exit the algorithm replacing −

method
2 if the other nodex is faulty then

2.1 replacing − rule(x)
Algorithm Replacing − rule(x)
1 i = 0; j = 0
2 while i ≤ (n−m + 1) do

2.1 we can search the node$

78 Informatica27 (2003) 75–80 J.-C. Lin et al.

/* $ ∈ V , HD(x, $) = 1, Dim(x, $) =
m + i*/.

2.2 if node$ is not a virtual node and it is free then
2.2.1 nodex is replaced by node$
2.2.2 remove all of nodes in a queue
2.2.3 exit thewhile-loop

2.3 put($, i + m− 1) in a queue
2.4 i = i + 1; j = j + 1
2.5 end;

3 while the queue is not emptydo
3.1 remove the first pair(α, β) from the queue
3.2 if α ∈ V1 then

3.2.1 i = 0
3.2.2 while i ≤ (β + 1) do

3.2.2.1 we can search the nodeλ
/* λ ∈ V , HD(α, λ) = 1,

Dim(α, λ) = i*/.
3.2.2.2 if nodeλ is not a virtual node and

it is free then
3.2.2.2.1 node x is replaced by

nodeλ
3.2.2.2.2 exit thewhile-loop

3.2.2.3 i = i + 1; j = j + 1
3.2.2.4 end;

3.3 elsev − replacing − rule(α, β)
3.4 end;

4 if j = [(n−m)(n + m + 1)/2] then
4.1 declare the replaceable node of searching is

faulty.
4.2 exit thereplacing − rule(x)

Algorithm v − replacing − rule(α,β)
1 i = 0
2 while i ≤ (β + 1) do

2.1 we can search the nodek
/* k ∈ V3, HD(α, k) = 2, Dim(α, k) = (β−

1, i), E(α, k) ∈ E3*/.
2.2 if nodek is not a virtual node and it is freethen

2.2.1 noder is replaced by nodek
2.2.2 exit thewhile-loop

2.3 i = i + 1; j = j + 1
2.4 end;

The searching path of the replacing node of a Flexible
Hypercube is shown as follows.

node 0 = 0Xn−2Xn−3...Xm+1XmXm−1...X1X0

node 1 = 0Xn−2Xn−3...Xm+1X
′
mXm−1...X1X0

node 2 = 0Xn−2Xn−3 · · ·X ′
m+1XmXm−1 · · ·X1X0

...
node (n − m − 1) =

0X ′
n−2Xn−3...Xm+1XmXm−1...X1X0

node (n − m) =
1Xn−2Xn−3...Xm+1XmXm−1...X1X0

node (n−m + 1) = 0Xn−2Xn−3...X
′
mXm−1...X1X

′
0

node (n−m + 2) = 0Xn−2Xn−1...X
′
mXm−1...X

′
1X0

...
node (n−m+m) = 0Xn−2Xn−1...X

′
mX ′

m−1...X1X0

Figure 2: Embed aT2 into aFH14

Figure 3: The root node0 is faulty

node (n − m + m + 1) =
0Xn−2Xn−1...X

′
m+1XmXm−1...X1X

′
0

...
node [(n − m)(n + m + 1)/2] =

1X ′
n−2Xn−1...XmXm−1...X1X0

We illustratetwo examples of finding a replaceable node
as shown in Figure 2 to Figure 4.

Theorem 7 The ending of searching path includes at least
{[(n−m)(n + m + 1)]/2− t} nodes.

Proof. By lemma 3, we can embed a complete binary tree
into a Flexible Hypercube from node0 to node(2m − 1),
which can be expressed by am-bit binary stringim−1...i0
whereip ∈ {0, 1}. First, we can change a bit in a sequence
from bit m to bit (n − 1) and push the node in the queue.
We can get(n − m) different nodes. Second, we pop the
node from the queue. From the first node we can change a
bit in a sequence from bit0 to bit (m− 1), and we can get
m different nodes. Then, we can change a bit in a sequence
from bit 0 to bit m from the second node and we can get
(m + 1) different nodes. Until the queue is empty we can
get the sum of searching of nodes is[m+(m+1)+...+(n−
1)]. The ending of searching path includes(n−m)+ [m+
(m+1)+...+(n−1)] = (n−m)+[(n−m)(n+m−1)]/2 =
[(n−m)(n+m+1)]/2 nodes. We assume we havet virtual

EMBEDDING COMPLETE BINARY TREES INTO. . . Informatica27 (2003) 75–80 79

Figure 4: The other node2 is faulty

nodes. Therefore, in the worst case we can search at least
{[(n −m)(n + m + 1)]/2 − t} nodes. By [13] and [14],
we infer the edges of the replacing-method exist and none
of node has a duplicate searching.

Theorem 8 If the root of the tree is faulty and the number
of faulty nodes is less than{[(n−m)(n+m+1)]/2+1−t}
, we can find the replaceable node of node in{[(n−m)(n+
m + 1)]/2 + 1} iterations.

Proof. We assume that we can not find the replaceable node
of the faulty node. That is, all of nodes on the searching
path are already used or fault. So, at least we can search
the other root noder′ and{[(n − m)(n + m + 1)]/2 −
t} nodes. In the worst case, the searching path includest
virtual nodes. Therefore, we can search{[(n − m)(n +
m + 1)]/2 + 1− t} nodes in[(n−m)(n + m + 1)]/2 + 1]
iterations. Because the number of faulty nodes is less than
{[(n−m)(n+m+1)]/2+1−t}, we can find the replaceable
node. The originally assumption is wrong. We can find the
replaceable node of the rootr in {[(n−m)(n+m+1)]/2+
1} iterations.

Theorem 9 If a node of a subtree is faulty and the number
of faulty nodes is less than{[(n−m)(n + m + 1)]/2− t},
we can find the replaceable node of faulty node in{[(n −
m)(n + m + 1)]/2} iterations.

Proof. We assume that we can not find the replaceable node
of the faulty node. That is, all of nodes on the searching
path are already used or fault. So, at least we can search
the {[(n − m)(n + m + 1)]/2 − t} nodes. In the worst
case the searching path is includingt virtual nodes at most.
Therefore, we can search{[(n −m)(n + m + 1)]/2 − t}
nodes in[(n − m)(n + m + 1)]/2] iterations. Because
the number of faulty nodes is less than{[(n−m)(n+m+
1)]/2−t}, we can find the replaceable node. The originally
assumption is wrong. We can find the replaceable node of
the other nodex in {[(n−m)(n+m+1)]/2} iterations.

Theorem 10 O(n2 −m2) faults can be tolerated.

Proof. By theorem 8, there are{[(n−m)(n+m+1)]/2+
1 − t} faults can be tolerated. By theorem 9, there are
{[(n−m)(n + m + 1)]/2− t} faults can be tolerance. To
sum up, we can show that there existO(n2 − m2) faults
can be tolerated.

Theorem 11 These results hold dilation4, congestion1
and load1.

Proof. We show that we can embed a complete binary tree
of heightm into a(2n− t)-node Flexible Hypercube using
nodes ofV1 ∪ V2 with dilation2.

Case 1. First, If a nodex of a subtree is faulty, we can
search the node$, HD(x,$) = 1 by thereplacing −
rule(x). Second, If the node$ is used or fault, we
can search the other nodes$, HD($,λ) = 1 by the
replacing − rule(x). At last, we can get the dilation2
in the worst case.

Case 2. First, if the root noder is faulty, we can
search the other root noder′. If the other root noder′

is faulty, we can search the node$, HD(x,$) = 1 by
the replacing − rule(x). If the node$ is used or fault,
we can search the other nodes$, H.D.($, λ) = 1 by the
replacing − rule(x). At last, we can get the dilation2 in
the worst case.

Because every replaceable path is only one path by the
algorithm replacing −method, we can get congestion1
and load1. Therefore, when the root node and spacer node
are faulty, it is a worst case the dilation= 2+2 = 4. How-
ever, the dilation is= 1 + 2 = 3 in others condition. The
other costs associated with graph mapping are congestion
1 and load1.

4 Conclusion

In this paper, we develop new algorithms to facilitate the
embedding complete binary tree. We infern-expansion
from 2-expansion. Our results demonstrate thatO(n2 −
m2) faults can be tolerated. Also, the methodology is
proven and an algorithm is presented to solve them. These
existent parallel algorithms on complete binary tree archi-
tectures to be easily transformed to or implemented on
Flexible Hypercube architectures with load1, congestion
1 and dilation4.

After any arbitrarily complete binary tree structures can
be reconfiguring in a Flexible Hypercube with faulty nodes,
we are also interested in the mapping of an arbitrary binary
tree and multi-dimensional meshes into a Flexible Hyper-
cube with faulty nodes. In addition, several variations of
the hypercube structure have been proposed and investi-
gated in recent years to overcome the shortcomings of the
topology of the hypercube. In the future, we will develop
these algorithms to facilitate the embedding job in other
hypercube-derived computers.

80 Informatica27 (2003) 75–80 J.-C. Lin et al.

References

[1] D. P. Bertsekas and J. N. Tsitsiklis,Parallel and Dis-
tributed Computation: numerical methods, Prentice
Hall, Englewood Ciffs, New Jersey, 1989.

[2] L. N. Bhuyan and D. P. Agrawal, “Generalized Hy-
percube and Hypercube Structure for a Computer
Networks,”IEEE Trans. Comput., Vol. C-33, pp. 323-
333, 1984.

[3] V. Chaudhary and J. K. Aggarwal, “Generalized Map-
ping of Parallel Algorithms onto Parallel Architec-
tures,”Proc. International Conf. on Parallel Process-
ing, pp. 137-141, 1990.

[4] S. Dutt, and J. P. Hayes, “An automorphism approach
to the design of fault-tolerance Multiprocessor,”Proc.
19 th International Symp. on Fault-Tolerant Comput-
ing, 1989.

[5] T. Hameenanttila, X.-L. Guan, J. D. Carothers and
J.-X. Chen, “The Flexible Hypercube: A New Fault-
Tolerant Architecture for Parallel Computing,”J. Par-
allel and Distributed Comput., Vol. 37, pp. 213-220,
1996.

[6] J. Hastad, T. Leighton, and M. Newman, “Reconfig-
uring a Hypercube in the Presence of Faults,”ACM
Theory of Computing, pp. 274-284, 1987.

[7] H. P. Katseff, “Incomplete Hypercube,”IEEE Trans.
Comput., Vol. C-37, pp. 604-607, 1988.

[8] H.-C. Keh and J.-C. Lin, “On fault-tolerant embed-
ding of Hamiltonian cycles, linear arrays and rings in
a Flexible Hypercube,”Parallel Computing,pp. 769-
781, Vol. 26, 2000.

[9] J.-C. Lin and H.-C. Keh, “Reconfiguration of Com-
plete Binary Trees in Full IEH Graphs and Faulty Hy-
percube,”International Journal of High performance
Computing Applications, Vol. 15, No. 1, pp. 55-63,
2001.

[10] J.-C. Lin, T.-H. Chi, H.-C. Keh and A.-H. A.
Liou, “Embedding of Complete Binary Tree with 2-
expansion in a Faulty Flexible Hypercube,”Journal
of Systems Architecture, Vol. 47, No. 6, pp.543-548,
2001.

[11] F. J. Provost and R. Melhem, “A Distributed Algo-
rithm for Embedding Trees in Hypercubes with Mod-
ifications for Run-Time Fault Tolerance,”J. Parallel
Distributed Comput.,Vol. 14, pp. 85-89, 1992.

[12] D. A. Rennels, “On implementing Fault-tolerance in
binary hypercubes,”Proc. 16 th International Symp.
on Fault-tolerant Computing, pp. 344-349, 1986.

[13] Y. Saad and M. H. Schultz, “Topological Properties
of Hypercube,”IEEE Trans. Comput., Vol. 37, No. 7,
pp. 867-872, 1988.

[14] A. Sen, “Supercube: An Optimally Fault Tolerant
Network Architecture,”Acta Informatica, Vol. 26, pp.
741-748, 1989.

[15] S. B. Tien, C. S. Raghavendra, and M. A. Sridhar,
“Generalized Hypercubes and Hyperbus structure for
a computer network,”Hawaii International Conf. on
System Science, pp. 91-100, 1990.

 Informatica 27 (2003) 81–88 81

Supporting the Development of Time-Triggered Co-Operatively
Scheduled (TTCS) Embedded Software Using Design Patterns
Michael J. Pont
Embedded Systems Laboratory, Department of Engineering,
University of Leicester, University Road, LEICESTER, LE1 7RH, United Kingdom.
M.Pont@le.ac.uk

Keywords: Pattern, Design Pattern, Embedded System, Co-operative, Time-Triggered, Microcontroller

Received: July 16, 2002

We are concerned in this paper with the use of “design patterns” to facilitate the development of
software for embedded systems. The particular focus is on embedded software with a time-triggered
architecture, using co-operative task scheduling. Such “TTCS” software is known to have very
predictable behaviour: such a characteristic is highly desirable in many applications, including (but not
restricted to) those with safety-related or safety-critical functions. In practice, TTCS archi-tectures are
less widely employed than might be expected, not least because care must be taken during the design
and implementation of such systems if the theoretically-predicted behaviour is to be obtained. In this
paper, we seek to demonstrate that the use of appropriate patterns can greatly simplify the process of
creating effective TTCS software.

1. Introduction
As the title suggests, we are concerned in this paper with
the development of software for embedded systems.
Typical application areas for this type of software range
from passenger cars and aircraft through to common
domestic equipment, such as washing machines and
microwave ovens.

The particular focus of the work discussed here is on the
use of “patterns” to design and implement software for
embedded systems. Current work on patterns was
originally inspired by the publications of Christopher
Alexander and his colleagues (e.g. Alexander et al.,
1977; Alexander, 1979). Alexander is an architect who
described what he called “a pattern language” relating
various architectural problems (in buildings) to good
design solutions. He defines patterns as “a three-part
rule, which expresses a relation between a certain
context, a problem, and a solution” (Alexander, 1979,
p.247).

Alexander’s concept of descriptive problem-solution
mappings was adopted by Ward Cunningham and Kent
Beck who used this approach as the basis for a small
pattern language intended to provide guidance to novice
Smalltalk programmers (Cunningham and Beck, 1987).
This work was in turn built upon by Erich Gamma and
colleagues who, in 1995, published an influential book
on general-purpose object-oriented software patterns
(Gamma et al., 1995). Since the mid 1990s, the
development of pattern-based design techniques has
become an important area of research in the software-
engineering community. Gradually, the focus has shifted
from the use, assessment and refinement of individual

patterns, to the creation of complete pattern languages, in
areas including telecommunications systems (Rising,
2001), and systems with hardware constraints (Noble and
Weir, 2001).

Despite the fact that pattern-based (software) design
techniques were initially developed to match the needs of
the developers of desktop systems, we argue in this paper
that pattern-based design has the potential to become an
particularly useful adjunct to existing techniques for
developing embedded systems. To support this
argument, we employ a realistic case study to illustrate
how patterns can be applied in a typical embedded
project.

We begin the main part of the paper by considering some
of the important characteristics of embedded software in
greater detail.

2. Designing “co-operative” software
Embedded software is often described in terms of
communicating tasks (e.g. Nissanke, 1997; Shaw, 2001).
The various possible system architectures may then be
characterised in terms of these tasks: for example, if the
tasks are invoked by aperiodic events (typically
implemented as hardware interrupts) the system may be
described as ‘event triggered’ (Nissanke, 1997).
Alternatively, if all the tasks are invoked periodically
(say every 10 ms), under the control of a timer, then the
system may be described as ‘time triggered’ (Kopetz,
1997). The nature of the tasks themselves is also
significant. If the tasks, once invoked, can pre-empt (or
interrupt) other tasks, then the system is said to be ‘pre-
emptive’; if tasks cannot be interrupted, the system is
said to be co-operative.

82 Informatica 27 (2003) 81–88 M.J. Pont

Various studies have demonstrated that, compared to
pre-emptive schedulers, co-operative schedulers have a
number of desirable features, particularly for use in
safety-related systems (Allworth, 1981; Ward, 1991;
Nissanke, 1997; Bate, 2000). Set against this is the fact
that the creation of TTCS architectures requires careful
design and implementation if the theoretically-predicted
improvements in system reliability are to be realised in
practice (e.g. Pont, 2001).

The main concern expressed about the use of co-
operative scheduling is that long tasks will have an
impact on the responsiveness of the system. This issue is
succinctly summarised by Allworth: “[The] main
drawback with this [co-operative] approach is that while
the current process is running, the system is not
responsive to changes in the environment. Therefore,
system processes must be extremely brief if the real-time
response [of the] system is not to be impaired.”
(Allworth, 1981).

Concerns of this nature are justified: any co-operative
system that has been designed without considering issues
of task duration is likely to prove extremely unreliable.
However, there are a number of different techniques that
may be employed in order to ameliorate such problems.
For example, there are some basic ‘brute force’
solutions:

• By using a faster processor, or a faster system
oscillator, we can reduce the duration of ‘long’ tasks.

Other alternatives include:

• Splitting up ‘long tasks’ (triggered infrequently) into
shorter ‘multi-stage’ tasks (triggered frequently), so
that the processor activity can be more evenly
distributed.

• Using ‘time out’ mechanisms to ensure that tasks
always complete within their alloted time.

• Employing a ‘hybrid’ scheduler, thereby retaining
most of the desirable features of the (pure) co-
operative scheduler, while allowing a single long
(pre-emptible) task to be executed.

• Making use of an additional processor, and a ‘shared-
clock’ scheduler, to obtain a true multi-tasking
capability.

In the right circumstances, each of these ideas can prove
effective. However, such observations do not, on their
own, make it very much easier for developers to deploy
TTCS architectures. Instead, what is needed is a means
of what we might call ‘recycling design experience’:
specifically, we would like to find a way of allowing less
experienced software engineers to incorporate successful
solutions from previous TTCS designs in their own
systems.

This is - of course - precisely the type of problem which
pattern-based design is intended to address (e.g. Gamma
et al., 1995).

3. Patterns for embedded systems
In 1996 we began to assemble a collection of patterns to
support the development of TTCS embedded systems.
We have now described more than seventy patterns (see
Pont, 1998; Pont et al., 1999; Pont, 2001; Pont and
Banner, in press; Pont and Ong, in press), which we will
refer to here as the ‘PTTES collection’.

To illustrate what is involved in pattern-based design, we
have reproduced one of the components from the PTTES
collection in an appendix to this paper. The pattern we
have chosen is MULTI-STATE TASK. Please note that to
meet the size constraints of this paper, the pattern has
been edited slightly: however, the key features have been
retained.

As you examine this pattern, please note the following:

• The core of the pattern is a link between a particular
problem (in a given context), and a solution to this
problem, as originally laid out by Alexander (1979).
Note that the solution is not necessarily unique, and
many patterns (with different names) may share the
same context and problem statements.

• It is sometimes assumed that a (software) pattern is
simply a code library. It should be clear from MULTI-
STATE TASK that this is not the case. Of course, some
code is included: however, the pattern also includes a
broad discussion of the problem area, a presentation
of a solution, and a discussion of the consequences of
applying this solution.

• Like most of the PTTES patterns, MULTI-STATE TASK
has links to ‘related patterns and alternative
solutions’. This is one way of helping the user of the
patterns to complete a complex design, and / or to
help highlight alternative design solutions.

• While the basic pattern structure used will be familiar
to users of “desktop” patterns (e.g. see Gamma et al.,
1995), sections of particular relevance to embedded
developers are also included. For example, hardware
resource implications, and safety implications, are
explicitly addressed.

In practice, while MULTI-STATE TASK is useful in its own
right, it is rare to use only a single pattern to develop any
system; indeed, even where a single pattern is
implemented, various other patterns may be considered
as different design options are reviewed.

SUPPORTING THE DEVELOPMENT OF... Informatica 27 (2003) 81–88 83

For example, as we noted earlier in this paper, TTCS
systems that are designed without due consideration
being given to task durations are likely to prove
extremely unreliable. The following patterns directly
address such issues:

• The processor patterns (STANDARD 8051, SMALL 8051,
EXTENDED 8051) allow selection of a processor with
performance levels appropriate for the application.

• The oscillator patterns (CRYSTAL OSCILLATOR and
CERAMIC RESONATOR) allow an appropriate choice of
oscillator type and oscillator frequency to be made,
taking into account system performance (and, hence,
task duration), power-supply requirements, and other
relevant factors.

• The various Shared-Clock schedulers (SCC
SCHEDULER, SCI SCHEDULER (DATA), SCI SCHEDULER
(TICK), SCU SCHEDULER (LOCAL), SCU SCHEDULER
(RS-232), SCU SCHEDULER (RS-485)) describe how to
schedule tasks on multiple processors, which still
maintaining a time-triggered system architecture.

• Using one of the Shared-Clock schedulers as a
foundation, the pattern LONG TASK describes how to
migrate longer tasks onto another processor without
compromising the basic time-triggered architecture.

• LOOP TIMEOUT and HARDWARE TIMEOUT describe the
design of timeout mechanisms which may be used to
ensure that tasks complete within their alloted time.

• MULTI-STAGE TASK discusses how to split up a long,
infrequently-triggered task into a short task, which
will be called more frequently. PC LINK (RS232) and
LCD CHARACTER PANEL both implement this
architecture.

• HYBRID SCHEDULER describes a scheduler that has
most of the desirable features of the (pure) co-
operative scheduler, but allows a single long (pre-
emptible) task to be executed.

4. Applying the patterns
In order to illustrate why we believe that patterns are
likely to prove particularly beneficial to developers of
embedded systems, we will consider the design of an
“embedded” cruise-control system (CCS) for a passenger
car.

4.1 System requirements
A CCS is often used to illustrate the use of real-time
software design methodologies (for example, see Hatley
and Pirbhai, 1987; Awad et al., 1996). Such a system is
usually assumed to be required to take over the task of
maintaining the vehicle at a constant speed even while
negotiating a varying terrain, involving, for example,
hills or corners in the road. Subject to certain conditions
(typically that the vehicle is in top gear and exceeding a
preset minimum speed), the cruise control is further
assumed to be engaged by the driver via ‘cruise button’

adjacent to the steering wheel, and disengaged by
touching the brake pedal.

More specifically, we will assume that the CCS
(illustrated in Figure 1) is required to operate as follows:

• When the key is turned in the car ignition, the CCS
will be activated. When initially activated, the CCS
is in ‘Idle’ state.

• In Idle state, no changes to the throttle setting will be
made. The system remains in this state until the user
presses the ‘Cruise’ switch adjacent to the steering
wheel: the system then emits one brief ‘beep’, and
enters ‘Initialization’ state.

• In Initialization state, the CCS will determine the
current vehicle speed and gear setting. If the vehicle
is [a] exceeding MINIMUM_SPEED by at least 5
mph; [b] is no more than 5 mph less than
MAXIMUM_SPEED; [c] is in top gear; and [d] the
brake pedal is not depressed, the system will emit two
brief ‘beeps’ and enter ‘Cruising’ state. If these
conditions are not met, the system will emit one
sustained ‘beep’ and return to ‘Idle’ state.

• On entry to Cruising state, the system will measure
the current speed: this represents the speed at which
the user wishes to travel (referred to here as
DESIRED_SPEED). The CCS will attempt to adjust
the throttle setting in order to maintain the vehicle
within +/- 2 mph of DESIRED SPEED at all times.
If at any time [1] the speed of the vehicle exceeds
MAXIMUM_SPEED, or [2] the speed of the vehicle
drops below MINIMUM_SPEED, or [3] the Cruise
switch is pressed, or [4] the brake pedal is pressed,
then the CCS will emit two sustained ‘beeps’ and
then return to Idle state.

• Like many automotive systems, the application will
be used in range of vehicles using the Controller
Area Network (CAN) bus (see Lawrenz, 1997, for
details of CAN). Appropriate use of this bus should
be considered as part of the design process.

Cruise-Control
System

Beeper

Throttle

Speed
Sensor

Cruise
Switch

Brake
Pedal

Gear
Sensor

Figure 1: A Context diagram representing the CCS we

will explore in this example.

Overall, while our system is somewhat simplified, it will
be adequate for our purposes here.

84 Informatica 27 (2003) 81–88 M.J. Pont

4.2 Start with one node (or less)
As the cost of microcontroller hardware continues to fall,
the use of more than processor is becoming increasingly
common. For example, a typical automotive
environment now contains more than 40 embedded
processors (Leen et al., 1999).

In this case, as we noted in the initial specification, it is
highly likely that the CCS would be implemented as a
multi-processor design, linked over the CAN bus.
While, as we will discuss later in this example, the
PTTES collection includes support for CAN, we
generally advocate an incremental approach to the
development of multi-processor systems. Specifically,
we usually begin construction of systems using a single-
processor prototype; in some circumstances (where the
processing required is particularly complex) we may use
a desktop PC for some of the prototyping (Pont, in
preparation).

Informally, we can say that the aim of this approach is
“to get a basic system running as quickly as possible, and
then - gradually - refine it”. It should be noted that this
type of incremental development approach has an
important role in recent “extreme programming”
methodologies (Beck, 2000). As we will demonstrate,
one consequence of the use of a consistent pattern
language is that the conversion from single-processor
designs to multi-processor designs is greatly simplified.

In this case, we will begin the system development using
a single (embedded) processor.

4.3 Work in from the outside
The software ‘glue’ used to link embedded processors
with external components (ranging from switch,
keypads, LEDs and high-power AC or DC loads) is a
key part of all software designs. Identifying and applying
patterns that can match these requirements will, in most
applications, constitute a large part of the design effort.

We will consider the interface software, and hardware,
required to match the design in this section.
Switch interfaces
In the case of the CCS, we need to link the processor to
three switches: one for the Cruise request (to indicate
that the use wishes to engage or disengage the CCS), one
for the brake sensor (to disengage the CCS), and one
from the gearbox (to determine whether the vehicle is in
top gear).

From developers without experience in embedded
systems, the design of a switch interface can seem rather
trivial. However, issues such as switch bounce and the
need to consider the impact of electrostatic discharge
(ESD) can make the design of reliable switch interface
rather more involved. There are therefore four different
patterns in the PTTES collection to support the design of

switch interfaces. Inspection of the various switch
patterns will reveal that, of these, SWITCH INTERFACE
(HARDWARE) will probably prove most appropriate in
these circumstances.
Buzzer interface
We need to control a small buzzer, which - according to
the specification - will be sounded to indicate the state of
the system.

For these purposes, a small piezo-electric buzzer will be
appropriate: these generate a high-volume output at low
voltages (3V - 5V), and low currents (around 10 mA).
Reviewing the various DC load patterns in the PTTES
collection, it is clear that the port pins on a typical
microcontroller can be set at values of either 0V or 5V
under software control. Each pin can typically sink (or
source) a current of around 10 mA. With care, the port
may be used to directly drive low-power DC loads, such
as the buzzer we require here: NAKED LOAD describes
how to achieve this safely.

Note that NAKED LOAD is concerned only with the
hardware aspects of the LED Interface: however, the
‘Related Patterns’ section of NAKED LOAD emphasises the
link to the pattern PORT I/O, where the relevant software
issues are considered.
Throttle interface
To design the throttle interface, we will assume that the
throttle will be controlled by a solenoid, and that the
throttle position will be varied by means of the DC drive
voltage.

To generate the variable DC voltage required, the pattern
HARDWARE PWM can be used to support the design of a
pulse-width modulated output.

In this case (unlike the ‘beeper’), the current and voltage
requirements will far exceed the very limited capability
of most microcontroller port pins: some form of driver
circuit will therefore be required. Seven different
patterns for controlling DC loads are presented in the
PTTES collection: of these, MOSFET DRIVER will
probably be the most appropriate for use here.
Measuring the speed of the vehicle
As the final part of the interface design, we need to find
a means of measuring the current speed of the vehicle.
As the basis of this, we will assume the presence of a
standard pulse transducer on one or more wheels of the
vehicle: this transducer will be assumed to generate a
sequence of square-wave pulses, with a frequency (or
pulse rate) proportional to the vehicle speed.

Two patterns are provided in the PTTES collection
which will directly support the processing of signals
from such a transducer: HARDWARE PULSE COUNT and
SOFTWARE PULSE COUNT. Either pattern could form the
basis of a successful design in this case.

SUPPORTING THE DEVELOPMENT OF... Informatica 27 (2003) 81–88 85

4.4 The control algorithm
When the user presses the cruise switch, the CCS much
check to see that the speed and gear conditions are met.
If they are not, then the system will remain under manual
speed control.

If the pre-conditions are met, the job of the CCS is to
record the current vehicle speed and make appropriate
adjustments to the current throttle setting, in order to
ensure that - as far as possible - this speed is maintained.

Implicit in the specification is that the driver will -
reasonably - expect the system to operate as follows:

• If the vehicle encounters a disturbance (for example,
the car drives up a steep hill) the vehicle will -
inevitably - slow down. The CCS must not take “a
long time” (more than a few seconds) to return the
vehicle to the required speed.

• The specification says that, in “steady state”
conditions (for example, on a flat, straight, road), the
CCS must maintain precisely the required speed (+/-
2 mph). In addition, we assume that the speed must
not “oscillate” (for example, change repeatedly from
1 mph too fast to 1 mph too slow, etc).

To meet these requirements, we need to consider the
control algorithm that will be used to keep the speed at
the required level while the vehicle is in the Cruise state.

Of the various possible control algorithms we could
employ, Proportional Integral Differential control is the
most widely used: an inspection of the pattern PID
CONTROLLER suggests that this algorithm will be
appropriate in this application. It also provides
implementation details for a suitable controller, and
guidance on the setting of the P, I and D parameters.

4.5 The software architecture
At this stage, having reviewed the relevant interface and
control patterns, we are in a position to identify the basic
tasks that will be performed by the CCS:

• The various switches (cruise, brake, gear) will be
polled regularly (typically every 50 ms, or so).

• The buzzer will be sounded (as required).
• The vehicle speed will be measured (every 100ms

will probably be sufficient; tests on a prototype are
the only reliable way of confirming this).

• The new throttle setting will be calculated, once
every 100 ms (see above), using the PID control
algorithm (when the vehicle is cruising).

• The throttle sending will be varied, again every
100 ms (when the vehicle is cruising).

As with most of the (single-processor) designs created
using the PTTES collection, the pattern CO-OPERATIVE

SCHEDULER (described in detail in Pont, 2001) will
provide the core of the system architecture for the CCS.
Briefly, this pattern describes how to schedule tasks to
run periodically, at pre-defined times. The “operating
system” that results is created entirely in the C
programming language, and is highly portable.

Please note that we assume that the CCS will be
initialised every time the car is used, and will remain
inactive until the Cruise switch is pressed. The result
will be a three-state design, which may well benefit from
the use of the architecture described in MULTI-STATE TASK
(see Appendix).

4.6 Moving to a multi-processor design
After appropriate prototyping and testing has been
conducted using the single-processor prototype, then a
multi-processor prototype will be constructed.

If we review the various multi-processor patterns in the
PTTES collection, SCC SCHEDULER seems to be the basis
of the most appropriate design. This pattern describes
how multiple processors can be linked using a Controller
Area Network (CAN) protocol, as required by the CCS
specification.

Various possible multi-processor designs could be
considered for this system. For example, the sensing of
vehicle speed could take place on one node, with the
control algorithm implemented on a second node, and
throttle control carried out by a third node. This might
prove to be a particularly flexible arrangement because -
in some vehicles in a range - it may well be that it is
possible to obtain data about the vehicle speed from an
existing sensor (over the CAN bus), and / or that the
throttle actuator is already in use as part of the (manual)
vehicle speed control. The different nodes (Speed Node,
Control Node, Throttle Node) may therefore not be all
required on all vehicles.

Whatever final design is chosen, the common (TTCS)
nature of all the patterns in the collection mean that it is
generally very easy to move tasks between nodes as
different designs are investigated.

5. Conclusion
At the start of this paper, we suggested that that pattern-
based design has the potential to become an particularly
useful adjunct to existing techniques for developing
embedded systems. Having sought to illustrate how
patterns can be used to support the development of an
embedded CCS, we return to consider this issue.

Existing design techniques for all forms of software-rich
systems include “structured” approaches (e.g. DeMarco,
1978; Hatley and Pirbhai, 1987) and the “Unified
Modelling Language” (UML; Fowler and Scott, 2000).
Such techniques provide effective, standard, notations

86 Informatica 27 (2003) 81–88 M.J. Pont

for recording design decisions: however, they do not
provide any means of substituting for the lack of
experience on the part of a particular designer. The
consequence is not difficult to predict, and is summarised
succinctly in this quotation from an experienced
developer of embedded systems: “It’s ludicrous the way
we software people reinvent the wheel with every
project” (Ganssle, 1992).

At the most basic level, patterns allow us to address such
problems by promoting the re-use of good designs
decisions.

The effect of patterns-based design is - we would argue -
likely to be particularly evident in the embedded sector,
for reasons that are illustrated in the CCS example
consider earlier in the paper. Like many embedded
applications, the successful development of the CCS
system (without any patterns) requires knowledge and /
or experience in many different areas, including
programming, electronics, the CAN bus, mathematics,
basic signal processing and control systems. The wide
range of fields required to complete this development is,
while not unknown, certainly much less common in the
“desktop” sector. Pattern-based design allows us to
present the information required to develop such multi-
disciplinary systems in a very effective way.

To conclude, we should emphasise that software patterns
should not be seen as an attempt to produce a panacea or
what Brooks (1986) calls a ‘silver bullet’ for the
problems of embedded software design or
implementation. Patterns may assist in the rapid
development and testing of appropriate designs, but it is
not feasible to provide all software engineers or their
managers, irrespective of background or training, with
sufficient knowledge of relevant fields to ensure that
they can, for example, create appropriate designs for
aircraft flight control systems or fault diagnosis systems
based on sliding-mode observers. However, what we
may be able to achieve is to make software managers,
and the teams they manage, better able to recognise
projects in which it would be advisable to appoint (say)
an artificial intelligence, signal processing or control
expert from within the company on the project team, or
to employ an outside consultant to fulfil such a rôle.

Acknowledgement
The author is grateful to the anonymous reviewers for
their constructive comments on the first draft of this
paper.

References
Alexander, C. (1979) “The Timeless Way of Building”,

Oxford University Press, NY.
Alexander, C., Ishikawa, S., Silverstein, M. with

Jacobson, M. Fisksdahl-King, I., Angel, S. (1977) “A
pattern language”, Oxford University Press, NY.

Allworth, S.T. (1981) “An Introduction to Real-Time
Software Design”, Macmillan, London.

Awad, M., Kuusela, J. and Ziegler, J. (1996) “Object-
oriented technology for real-time systems”, Prentice-
Hall, New Jersey, USA.

Bate, I. (2000) “Introduction to scheduling and timing
analysis”, in “The Use of Ada in Real-Time System” (6
April, 2000). IEE Conference Publication 00/034.

Beck, K. (2000) “Extreme Programming Explained”,
Addison Wesley.

Brooks, F.P. (1986) “No silver bullet - essence and
accidents of software engineering,” in H.J. Kugler
(Ed.) Information Processing 86, Elsevier Science,
Amsterdam. Pp.1069-1076.

Cunningham, W. and Beck, K. (1987) “Using pattern
languages for object-oriented programs”, Proceedings
of OOPSLA’87, Orlando, Florida.

DeMarco, T. (1978) “Structured analysis and system
specification”, Prentice Hall, New Jersey.

Fowler, M. and Scott, K. (2000) “UML Distilled” (2nd
Edition), Addison-Wesley, Reading, MA.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J.
(1995) “Design patterns: Elements of reusable object-
oriented software”, Addison-Wesley, Reading, MA.

Ganssle, J. (1992) “The art of programming embedded
systems”, Academic Press, San Diego, USA.

Hatley, D.J. and Pirbhai, I.A. (1987) “Strategies for real-
time system specification”, Dorset House.

Hatley, D.J. and Pirbhai, I.A. (1987) “Strategies for real-
time system specification”, Dorset House.

Lawrenz, W. (1997) “CAN System Engineering”,
Springer.

Leen, G., Heffernan, D. and Dunne, A. (1999) “Digital
networks in the automotive vehicle”, Computing and
Control, 10(6): 257-266.

Nissanke, N. (1997) “Realtime Systems”, Prentice-Hall.
Noble, J. and Weir, C. “Small Memory Software”,

Addison Wesley, 2001.
Pont, M.J. (1998) “Control system design using real-time

design patterns”, Proceedings of Control ’98
(Swansea, UK), September 1998, pp.1078-1083.

Pont, M.J. (2001) “Patterns for time-triggered embedded
systems: Building reliable applications with the 8051
family of microcontrollers”, ACM Press / Addison-
Wesley, UK

Pont, M.J. (in preparation) “Supporting Extreme
Embedded Programming (XEP) using patterns”, to be
submitted to EuroPLoP 2003.

Pont, M.J. and Banner, M.P. (in press) “Designing
embedded systems using patterns”, to appear in
Journal of Systems and Software.

Pont, M.J. and Ong, H.L.R. (in press) “Using watchdog
timers to improve the reliability of TTCS embedded
systems: Seven new patterns and a case study”, to

SUPPORTING THE DEVELOPMENT OF... Informatica 27 (2003) 81–88 87

appear in the proceedings of VikingPLOP 2002,
Denmark, September 2002.

Pont, M.J., Li, Y., Parikh, C.R. and Wong, C.P. (1999)
“The design of embedded systems using software
patterns”, Proceedings of Condition Monitoring 1999
[Swansea, UK, April 12-15, 1999] pp.221-236.

Rising, L., [Ed.] (2001) “Design Patterns in
Communications Software”, Oxford University Press.

Shaw, A.C. (2001) “Real-Time Systems and Software”,
John Wiley & Sons, New York.

Ward, N. J. (1991) “The static analysis of a safety-
critical avionics control system”, in Corbyn, D.E. and
Bray, N. P. (Eds.) “Air Transport Safety: Proceedings
of the Safety and Reliability Society Spring
Conference, 1991” Published by SaRS, Ltd.

Appendix
We present an abbreviated version of the pattern MULTI-
STATE TASK (from Pont, 2001) in this appendix.

MULTI-STATE TASK

Context
• You are developing software for an embedded

application.
• The application has a time-triggered architecture,

constructed using a scheduler.

Problem
How do you replace multiple tasks in an application with a
single task that performs different activities depending on
the current state of the system (and why is it - sometimes - a
good ideas to do so)?

Background
[Some “background” material is included in the full version
of this pattern. It is omitted here.]

Solution
MULTI-STAGE TASK encapsulates a system architecture that is
apparent in many well-designed embedded applications.

To understand the need for this architecture, consider a
simple washing-machine control system (Figure MST-1).

Washing
Machine

Controller

Water
Valve

Start
Switch

Selector
Dial

Drum
Motor

Door
lock

LED
indicators

Water
Level
Sensor

Temperature
Sensor

Detergent
Release

Water
Heater

Water
Pump

Door
sensor

Hatch
sensor

Figure MST-1: Outline design.

Here is a brief description of the way in which we expect the
system to operate:

1. The user selects a wash program (e.g. ‘Wool’,
‘Cotton’) on the selector dial.

2. The user presses the ‘Start’ switch.
3. The door lock is engaged.
4. The water valve is opened to allow water into the wash

drum.
5. If the wash program involves detergent, the detergent

hatch is opened. When the detergent has been released,
the detergent hatch is closed.

6. When the ‘full water level’ is sensed, the water valve is
closed.

7. If the wash program involves warm water, the water
heater is switched on. When the water reaches the
correct temperature, the water heater is switched off.

8. The washer motor is turned on to rotate the drum. The
motor then goes through a series of movements, both
forward and reverse (at various speeds) to wash the
clothes. (The precise set of movements carried out
depends on the wash program that the user has
selected.) At the end of the wash cycle, the motor is
stopped.

9. The pump is switched on to drain the drum. When the
drum is empty, the pump is switched off.

The description is simplified for the purposes of this
example, but it will be adequate for our purposes here.

Based on the above description we will try to identify some
of the functions that will be required to implement this
system. A provisional list might be as follows:
• Read_Selector_Dial()
• Read_Start_Switch()
• Read_Water_Level()
• Read_Water_Temperature()
• Control_Detergent_Hatch()
• Control_Door_Lock()
• Control_Motor()
• Control_Pump()
• Control_Water_Heater()
• Control_Water_Valve()

Now, suppose we wish to identify the tasks to be scheduled
(co-operatively) in order to implement this application.
Based on the above list, it may be tempting to conclude that
each of the functions listed above should become a task in
the system. However, while it would be possible to work in
this way, this would be likely to lead to a complex and
cumbersome system implementation.

To see why this is so, take one example: the function
Control_Water_Heater(). We want to heat the water
only at particular times during the wash cycle. Therefore, if
we want to treat this as a task and schedule it - say every
100 ms - we need to creation an implementation something
like the following:

void TASK_Control_Water_Heater(void)
 {
 if (Switch_on_water_heater_G == 1)
 {
 Water_heater = ON;

88 Informatica 27 (2003) 81–88 M.J. Pont

 return;
 }

 // Switch off heater
 Water_pin = OFF;
 }

What this task does when it is executed is to check a flag: if
it is necessary to heat the water, it starts to do so: otherwise,
it stops the heating process.

There are two problems with creating the program in this
way:
• We are going to end up with large numbers of tasks

(very large numbers in a more substantial application),
most of which - like this task - actually do very little. In
applications without external memory this is a particular
problem, because each task will consume some of the
limited memory (RAM) resources.

• It is not at all clear which, if any, of these tasks will
actually set the flag (Switch_on_water_heater_G),
or the other similar flags that will be required in the
other tasks in this application.

In practice, what we require in this and many similar
applications is a single ‘System Update’ task: this, as we
will see is a task that will be regularly scheduled and will,
where necessary, call functions - like
Control_Water_Heater() as and when required.

In the washing machine, this system update task will look
something like the code in the Listing MST-1.

void Update(void)
 {
 static tWord Time_in_state;

 switch (System_state_G)
 {
 case START:
 {
 // Lock the door
 Control_Door_Lock(ON);

 // Start filling the drum
 Control_Water_Valve(ON);

 // Release the detergent (if any)
 if (Detergent_G[Program_G] == 1)
 {
 Control_Detergent_Hatch(ON);
 }

 // Ready to go to next state
 System_state_G = FILL_DRUM;
 Time_in_state_G = 0;

 break;
 }

 case FILL_DRUM:
 {
 // Remain in state until drum is full
 // NOTE: Timeout facility included
 if (++Time_in_state_G >= MAX_FILL_TIME)
 {
 // Drum should be fully by now...
 System_state_G = ERROR;
 }

 // Check the water level
 if (Read_Water_Level() == DRUM_FILLED)
 {
 // Does we require hot water?

 if (Hot_Water_G[Program_G] == 1)
 {
 Control_Water_Heater(ON);

 // Ready to go to next state
 System_state_G = HEAT_WATER;
 Time_in_state_G = 0;
 }
 else
 {
 // Using cold water only
 // Ready to go to next state
 System_state_G = WASH_01;
 Time_in_state_G = 0;
 }
 }
 break;
 }
 ...
 }

Listing MST-1: Part of a possible implementation of the single task
used to implement a washing-machine control system.

Listing MST-1 is a representative example of a MULTI-STAGE
TASK.

We can describe the simplest form of this architecture as
follows:

• The system involves the use of a number of different
functions

• The functions are always called in the same sequence.
• The functions are called from a single task, as

required.

Note that variations on this theme are also common: for
example, the functions may not always be called in the same
sequence: the precise sequence followed (and the particular
set of functions called) will frequently depend on user
preferences, or on some other system inputs.

Hardware resource implications
This architecture makes very efficient use of system
resources.

Reliability and safety implications
There are no specific reliability or safety implications.

Portability
This high-level pattern is highly portable.

Overall strengths and weaknesses
☺ MULTI-STAGE TASK encapsulates a simple architecture that

matches the needs of many embedded applications

Related patterns and alternative solutions
MULTI-STAGE TASK combined with ONE-TASK SCHEDULER
[Pont, 2001, p.749] - and / or with ONE-YEAR SCHEDULER
[Pont, 2001, p.755] provides a very simple and efficient
system architecture with minimal CPU, memory and power
requirements.

Example: Traffic Lights
[A detailed example is included in the full version of this
pattern. It is omitted here.]

Informatica27 (2003) 89–103 89

The GAT Approach to Specifying Mixed Systems

Jean-Claude Royer
Département d’Informatique de l’Ecole des Mines de Nantes,
4, rue Alfred Kastler. B.P. 20722 F-44307 NANTES Cedex 3
Phone:+33 2 51 85 82 05, Fax:+33 2 51 85 82 49
E-mail: Jean-Claude.Royer@emn.fr

Keywords: Dynamic Behaviour, Algebraic Data Type, Symbolic Transition System, Synchronous Product, Concurrency,
Communication, Formal Specification, Mixed System.

Received:March 10, 2002

This paper outlines a practical use of algebraic specifications for the development of heterogeneous soft-
ware systems. This kind of systems mixes several viewpoints,e.g.static, functional and dynamic aspects.
Writing, from scratch, an algebraic specification for such systems is quite difficult, so we developed the
concept of Graphic Abstract Data Type (GAT). In this paper we present a method to build an algebraic
specification of a sequential systemvia a symbolic transition system (STS). The STS models both the dy-
namic aspects and the static aspects of the system. The STS is also the basis of an algorithm that computes
the functional aspects of the system (an algebraic specification). Computing the specification is partly
automatic, this improves the compatibility between the aspects. This approach is extended to concurrent
and communicating systems by the use of a synchronous product of STSs. We proved that the STS is an
abstract interpretation of the generated specification. We demonstrate that the set of axiom may be trans-
formed into a terminating term rewriting system. Then from the generation method of the specification the
properties of consistency and completeness are got and this ensures the existence of a partial initial algebra.
We showed that the synchronous product of GATs preserves the state predicates, the preconditions and the
definedness predicate of the components. We also give sufficient conditions to get the GAT determinism
and the GAT compactness of the product of two GATs.

1 Introduction

Modelling heterogeneous, or mixed, software systems
requires the integration of several paradigms. These
paradigms relate, at least, to three of the main aspects of
systems: the static, the functional and the dynamic aspects.
Static aspects deal with the signatures, the types and the re-
lations between types. Functional aspects describe the se-
mantics for operations or explicit some conditions and in-
variants. Dynamic aspects focus on the so-called dynamic
behaviour of systems. It is related to concurrency, syn-
chronizations and communications. The main issues with
mixed systems are to ensure the consistency between the
different aspects and to provide assistance for specifying
systems and proving properties.

Algebraic specifications of abstract data types [BWP84,
Wir90] are suited for the specification of both static and
functional aspects of a system. Algebraic specifications
are modular (a collection of data types) and abstract (the
properties are set by axioms). Numerous tools and tech-
niques can help proving the specification properties. The
algebraic techniques are less straight applicable to dynamic
systems because data types evolve, communicate and act
concurrently [ABR99]. In this area, we suggested [AR00]
the Graphic Abstract Data Type (GAT) model: a symbolic
transition system that helps one to build algebraic speci-

fications of components. This model is quite operational
and fully integrated into conventional algebraic specifica-
tions. As in process algebra two kinds of components are
distinguished: sequential components and concurrent com-
ponents. For each component two views are considered:
the dynamic view and the functional view. The dynamic
view describes the static and dynamic aspects of the com-
ponent, it uses a notion ofFinite and Symbolic Transition
System(STS). The functional view is an algebraic specifi-
cation of a partial abstract data type [BWP84, Wir90]. We
define a notion of compatibility between a STS and an alge-
braic specification to express the consistency between the
two views. The STS defines a partial equivalence relation
over the data type.

One problem with such an approach is to prove dynamic
properties. We address this in [Roy01a], our solution is
based on algebraic temporal operators and techniques (pos-
sibly automatic) to prove such properties with a general
theorem prover.

This paper describes a survey of the GAT approach prin-
ciples and properties. The notions introduced in this pa-
per have been used for several case studies [AR98, AR99,
AR00, Roy01a]. It also has inspired theKORRIGAN model
and methods forLOTOS and SDL [PCR99, CPR99].
Last, some of these concepts have been used to improve
object-oriented methods like OMT [ABR95] and UML

90 Informatica27 (2003) 89–103 J-C. Royer

[PRR02, Roy02].

Section 2 presents a middle size case study: a vending
machine. Then, in Section 3, we describe partial abstract
data types, our notion of STS and the links between these
concepts in the GAT approach. Section 4 details the ex-
traction of the formal specification of our vending machine
case study. In Section 5 we justify several properties about
our specifications: the STS interpretation, the termination
of the term rewriting system, the hierarchical consistency
and completeness of the specification and some properties
about the product of two GATs. The Section 6 is dedi-
cated to related works, last we conclude and point out fu-
ture work.

2 The Vending Machine Case Study

In order to specify a system, a (formal) language is required
but also an adequate method. We consider that a prelimi-
nary analysis was done and produced a system architec-
ture. This decomposition can be obtained using some al-
ready known methods. For instance, methods forLOTOS
[Tur93, PCR99] are relevant here.

We deal with a vending machine (a French one) which
accepts coins, gets out change and delivers a drink. To sim-
plify, it only accepts coins of one, two or five Francs and
gets out only coins of one Franc. The user gives coins, one
at a time, and when the sum is sufficient enough he may
choose a drink. If this drink is in the stock then the user gets
it, else he has to do another choice. The vending machine
cannot allow choices if it does not have enough money to
get out change to the user. The price of the different kinds
of drink are not supposed to be the same but the maximum
cost of one drink is assumed to be of five Francs.

We consider the architecture depicted in the Figure 1.
The vending machine has two concurrent and communi-
cating parts: a cash changer (theCCbox) and a drink dis-
tributer (theDDbox). Each part is a component specialized
in a set of activities. TheCCandDDcomponents are se-
quential and theVMoverall machine is concurrent. The
meanings of the gates for communications are explained
below. TheGIVE gate receives coins from the user (one at
a time). TheGETgate is for getting out coins. There are
three different cases. It may either get out all the money af-
ter a cancellation, or get out the overflow when the user
gives too much than required, or get out the change for
the difference between the given sum and the price of the
drink. CANCELis used to interrupt the transaction, and is
a ternary synchronization.OKdenotes that the sum is suf-
ficient to choose a drink.CHOOSEallows one to choose
a drink. GETOUTmeans that theDDcomponent returns
the cost of the chosen drink to theCCcomponent.DRINK
delivers the chosen drink to the user.

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �

� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �

CANCEL

VM

CC

O
K

User

GET ? X : ListCoinGET !aListOfCoin

GIVE ? X : Coin GIVE !aCoin

DD

DRINK ! theDrink DRINK ? X : Drink

CHOOSE ? X : Name CHOOSE ! aName

G
E

T
O

U
T

C
A

N
C

E
L

CANCEL

Figure 1: TheVending Machine Architecture

3 GAT Principles

This Section introduces the concepts ofSymbolic Tran-
sition System(STS) andGraphical Abstract Data Type
(GAT).

A GAT for a component is a STS with some static infor-
mations and an algebraic specification of a data type. We
distinguish two kinds of GAT components: sequential com-
ponents and concurrent components. For each GAT com-
ponent we consider two views: the dynamic view and the
functional view. The dynamic view is a STS: a finite set of
states and a finite set of labelled transitions. Classic finite
transition systems, or Labelled Transition Systems (LTSs)
have labels which are closed terms. Unlike LTS, our STS
labels are operation calls with variables and guards. This
concept is related to machines where states and transitions
are not necessarily unique objects. A state may represent a
set of either finite or infinite objects and a transition collects
several state changes. This kind of state machine avoids the
state and transition explosion problems and makes dynamic
behaviours more readable. The functional view is an alge-
braic specification of a partial abstract data type [BWP84].

In the GAT process specification we suggest to start from
the dynamic view of the components since it is the most
abstract view. First, the specifier declares the operations,
the conditions and the states of the component. These in-
formations are represented graphically using a STS. Sec-
ond, the semantics of the operations are provided (in the
functional view) by an algebraic specification. Instead of
writing this algebraic specification from scratch, we pro-
pose a guideline. The core of our extracting method is the
AG-derivation algorithm [AR99], which guides the axiom
generation using the STS. It provides an operational spec-
ification style where axioms may be transformed into left-
to-right conditional rewriting rules. In case of concurrent
and communicating components, the synchronous product
of STSs is used before generating the axioms. Figure 2 de-

THE GAT APPROACH TO. . . Informatica27 (2003) 89–103 91

Algebraic Specification

Symbolic Transition System

Partial Abstract Data Type

Abstract Interpretation

partial equivalence relation

semantics

semantics

extracting method

Figure 2: The GAT Semantics

scribes an overview of the GAT process and its semantics.
An algebraic specification is extracted from a STS and its
semantics is a partial abstract data type. The STS repre-
sents a graphic view of a partial equivalence relation over
the data type.

3.1 Partial Abstract Data Type

We consider partial abstract data types, because our STSs
need partial operations. We consider initial semantics due
to its close relation with proofs and deduction. To gain ex-
pressiveness we consider hierarchical presentations of al-
gebraic specifications, with constructors, hidden symbols
and definedness predicates. The notations below come
from [Wir90, BWP84]. Some of our hypothesis may be
relaxed but this is beyond the scope of this paper.

A signatureΣ = (So, F) is a tuple whereSo is a set of
sorts andF aSo-indexed family of function symbols such
thatF is equipped with a mappingtype : F → So∗ × So.
When there is no ambiguity, we identifyf and type(f).
As usual, arity, argument types and range type are defined
uponf .

Definition 3.1 A hierarchical presentation for a typeTI,
called the Type of Interest, is aSpecTI tuple

<ΣTI , HΣTI , ETI , ΓTI , DefTI , SpecP >

where:

– ΣTI is the visible (public) signature
(<{TI}, FTI >), where eachf ∈ FTI has at
least one occurrence ofTI.

– HΣTI is the set of hidden symbols (sorts and func-
tions<HSTI , HFTI >), f ∈ HFTI has at least one
occurrence ofTI.

– ETI is a set of conditional axioms, each axioms has
at least one occurrence of an operation fromFTI or
HFTI .

– ΓTI the set of constructors, we require that construc-
tors of visible sorts are visible functions (ΓTI ⊆ FTI).

– DefTI is the set of definedness formulas, they denote
when the result of an operation on a term built from
sortTI is defined.

– SpecP the primitive presentation part (a hierarchical
presentation or an empty one).

This definition allows several layers with only one new de-
fined sort, it may easily extend to several new sorts in the
same layer. We assume thatSpecTI is always an enrich-
ment of boolean.

An internal operationhasTI as resulting type. Anexter-
nal operation(or observer) does not haveTI as resulting
type. A basisinternal operation has not any parameter of
typeTI. We also distinguishconstructoror generatoras
the subset of the internal operations sufficient to generate
all the value of the data type.

As in [Wir90], we associate toSpecTI a hierarchical
specification

SP =<Σ, HΣ, E, Cons, D, P >

with respectively signature, hidden signature, axioms, con-
structors, definedness predicate and primitive part. The
primitive part P is the specification associated to the
primitive presentation partSpecP . We define Σ =⋃

s Σs,HΣ = Σ ∪ ⋃
s HΣs, E =

⋃
s Es, Cons =⋃

s Γs, D =
⋃

s Defs where
⋃

s is done for every sort
s ∈ So. The set of sortSo is the set of all the sorts defined
in the hierarchical presentation.

For every sorts ∈ So, T (Σ, X)s is the set of terms with
variables of sorts. The set of terms without variables or
ground termsof sorts is T (Σ)s. Givens ∈ SP , SP is the
set of primitive sort, the termt ∈ T (Σ, X)s is said to be
of primitive sortif t ∈ T (ΣP , X)s. We noteHΣCons =<
HS, Cons> the constructor signature.

A model of the specification is a partial algebraA satis-
fying the axioms, and we notetA the interpretation of the
symbolt in A. As usualAs is the carrier set of values of
sorts.

A HΣ-algebraA is reachablew.r.t Cons if for eachs ∈
HS and each carrier elementa ∈ As, ∃t ∈ T (HΣCons) ∧
a = tA. GenCons(HΣ) is the set of reachableHΣ-
algebras andGenCons(HΣ, E) is the set of reachableHΣ-
algebras which are models of<HΣ, E >. LetΣ ⊆ Σ′ and
A aΣ′-algebra,A|Σ is theΣ-restriction ofA.

Partial algebras are algebras where the functions may
be partial. Functions are assumed to be strict. Apar-
tial algebra A is a total algebra such that the interpreta-
tion of any termt, of sort s, in A is defined if and only
if A satisfies a definedness formulaDs(t). The = sym-
bol stands for strong equality (i.e. the two values are
both defined and equal or they are both undefined) and
e= stands for existential equality (i.e. the two values are
both defined and equal). The use of definedness predi-
cates implies that such partial algebras satisfyD(true) ∧
D(false) ∧ true 6= false. All the equations occurring
in the GAT axioms are restricted to existential ones (

e=).
Notions of homomorphisms and valuations may be de-
fined, note that variable quantifications range over defined
values (Ds(X)). We consider totalΣ-homomorphism,
i.e. a So-family of partial functionsh : A −→ B
such that∀f : s1, ..., sn −→ s and ∀ai ∈ Asi then
D(fA(a1, ..., an)) => D(fB(hs1(a1), ..., hsn(an)))

92 Informatica27 (2003) 89–103 J-C. Royer

andh(fA(a1, ..., an)) =
fB(hs1(a1), ..., hsn

(an)).
Formula(Σ, X) is the set of formulas built overΣ and

a set of variablesX. It containsΣ-equations, boolean con-
structions and first-order quantifiers.

Φ, Ψ ::= t = t′ | ¬Φ | Φ ∧Ψ | Φ ∨Ψ | Φ => Ψ
| (∀x : s.Φ) | (∃x : s.Φ)

Let v : X −→ A a total valuation, the satisfaction of a for-
mulaf ∈ Formula(Σ, X) is notedA, v |= f . Dropping
the valuation,A |= f means that the satisfaction is true for
all total valuations. We restrict to positive conditional ax-
ioms:

∧
1≤ i≤ l ui

e= vi =⇒ C, whereC has the form
t = t′ or D(t). Deduction will be notedE ` t = u.

Mod(SP) (the models ofSP) is the class of reachable
and partialΣ-algebras which are restriction of a partial
HΣ-algebra satisfyingE and such that the restriction to
primitive signature is a model of the primitive specification
part.

Mod(SP) = {A ∈ Gen(Σ)
| ∃B ∈ GenCons(HΣ, E),

B|Σ = A ∧ A|ΣP
∈ Mod(P)}

The chosen semantics of such a specification is initial.

I(SP) = {I ∈ Mod(SP) | I is initial in Mod(SP)}

A partial algebraI is initial in a class of algebras if and
only if there exists a unique total homomorphism fromI to
every algebra in the class.

3.2 Consistency and Completeness

The two following definitions are constraints on hierarchi-
cal specifications.

Definition 3.2 A specification is hierarchically consistent
if and only if

– E ` true 6= false,

– ∀tP ∈ T (ΣP)s, E ` D(tP) => EP ` D(tP),
and

– ∀tP , t′P ∈ T (ΣP)s, E ` tP = t′P => EP `
tP = t′P .

Definition 3.3 A specification is sufficiently complete if
∀t ∈ T (Σ)s, s ∈ SP , E ` D(t) => ∃tP ∈
T (ΣP)s such thatE ` t = tP .

These two properties ensure, in case of positive conditional
axioms, the initial algebra existence [BWP84].

3.3 Deduction System

We are interested in sensible signatures [HO80]:∀s ∈
So, T (HΣCons)s 6= ∅, i.e. each sort contains at least one
ground constructor term. It is a sufficient condition to en-
sure the existence of a reachable algebra. In this context
sound and complete deduction systems exist for equational
or conditional deduction. Conditional calculus for the par-
tial framework may be found in [BWP84, AC95, CR97].
The` conditional borrows from [CMR99]. LetΦ a set of
positive conditional axioms,φ, ψ, ε with possible subscript
are positive conditional axioms. The rules are described in
Figure 3. By adding infinite induction to the conditional

Φ ` φ
if φ ∈ Φ

Φ ` x
e= y => y

e= x

Φ ` t1
e= t2

Φ ` D(t)
∀ t subtem oft1 andt2

Φ ` φ

Φ ` (
∧

x∈Xs
x

e= Θ(x)) => φ[Θ]
for θ : X →|TΣ(Y) | with D(φ[Θ])

Φ1 ` φ1 ∧ ... ∧ φn => ψi

Φ2 ` ψ1 ∧ ... ∧ ψk => ε

Φ1 ∪ Φ2 ` (
ψ1 ∧ ... ∧ ψi−1∧

φ1 ∧ ...φn∧
ψi+1 ∧ ... ∧ ψk

) => ε

Φ ` ∀Y.φ

Φ ` (
∧

y∈Ys,s∈S D(y)) => φ

Φ ` φ

Φ[Θ] ` φ[Θ]
for θ : X →|TΣ(Y) |

with D(φ[Θ]) andD(Φ[Θ])

Figure 3: The Conditional Deduction System

deduction system we get the inductive theory, the calculus
will be noted`i [Wir90]. We rather use a presentation with
generators as in [GG88],structural inductionfor TI is de-
fined as follows. Assumex is a variable,b1, ..., bn are basis
generators andg1, ..., gm are recursive generators with only
one argument of sortTI (this restriction is easily removed).
c : TI is a fresh constant not occurring inα, gk(c) is a call
of gk with c : TI and fresh variables for other arguments.

Φ `i φ[bk/x] 1 ≤ k ≤ n
Φ ∪ {φ[c/x]} `i φ[gk(c)/x] 1 ≤ k ≤ m

Φ `i φ

THE GAT APPROACH TO. . . Informatica27 (2003) 89–103 93

[G(self, v1, ..., vn)] f(self, v1, ..., vn)

si sj

Figure 4: Edge of the STS

3.4 Symbolic Transition System

The finite state machine formalism is well-known by prac-
titioners. It is well-suited to the description of interactions
and controls. One problem with such a formalism is the
great number of states and transitions. For instance, one
can combine states into super-states or aggregate states as
in [Har87]. However when the system has not a finite or
bounded number of state one must use more powerful con-
cepts. It often happens if one has a mixed system with
both control and data types. We define the notion of fi-
nite and symbolic transition system. This notion arises also
from the need of a full semantics for language likeLOTOS
[STB97] and in the AltaRica formalism [APGR00]. See
Figure 5 page 95 for an example. Our STSs also provide
super-states (see [AR99]).

Let St = {si 1 ≤ i ≤ n} a set of identifiers called
the set of states. A symbolic transition systems is a finite
set of statesSt and a finite set of labelled transitionsTr.
The Figure 4 illustrates the graphical presentation of such
a transition,G is the guard andf(self, v1, ..., vn) the term
label. self in this figure denotes a variable associated to
TI, andvi : Ri are variables. Note also that we allow re-
ceipt variables both in guard and in term labels. Variables
occurring in the guard and in the term label are not neces-
sarily the same, but to simplify we consider the same set
of variables in both terms. Symbols and terms occurring in
the STS must be interpreted in the context of the algebraic
specification. The notationATI ∩DA

TI denotes the subset
of the defined values of the carrier set. We explicitly uses
the definedness predicate forTI even if it is not required,
however, to simplify notations we assumeDs(t) for every
primitive term.

Definition 3.4 Given a SpecTI specification andA a
model of it; we define an associated symbolic transition
system as a couple(St, Tr):

1. the states areSt = {si, 1 ≤ i ≤ n}, eachsi denotes
a subset ofATI andATI ∩DA

TI =
⊕

1≤i≤n si;

2. the set of initial states is a subset ofSt;

3. the set of transitionTr is a subset ofSt× St.

4. the transitionsTr of the STS must verify the follow-
ing interpretation formulas: an edge, from statesi

to statesj , is labelled by[G(self, X1, ...,
Xn)] f(self, X1, ..., Xn) if and only if

∀v ∈ ATI ∩ DA
TI , ∀ui ∈ ARi , if v ∈ si ∧

GA(v, u1, ..., un) then fA(v, u1, ..., un) ∈ sj

The transitions correspond to internal operations of TI with
an interpretation formula based on state predicates. The
term f can be any algebraic term, the equality of terms
needs typing information since we have operator overload-
ing. Our notion is more general than the symbolic transi-
tion graph defined in [HL95]. We have more general states
(not only tuples of conditions) and we have no restriction
on variables occurring on transitions.

Definition 3.5 A STS has maximal transitions if and only
if for every term labelf it exists at most only one transition
(s, t) ∈ Tr labelled byf .

From now on we consider STS with maximal transitions.
This does not decrease the expressiveness because any STS
may be transformed into a STS with maximal transitions
by collecting guards of the transitions with the same label
from s to t.

3.5 GAT Definition

A Graphic Abstract data Type description is an abstract
specification of a data type using a STS (STSTI), a hi-
erarchical presentation as in Section 3.1 (SpecTI) and an
associated equivalence relation.

GATTI = (STSTI , ≈TI , SpecTI)

Definition 3.6 We define the≈TI partial equivalence re-
lation as:

∀v, v′ ∈ ATI ∩DA
TI , v ≈TI v′ ⇔

(∃!si ∈ St, v ∈ si ∧ v′ ∈ si)

Let {Psi}1≤i≤n a finite set of boolean functions called
state predicates. These functions are interpreted as the
characteristic functions of the subsetssi (PA

si
(v) ⇔ v ∈

si). EachPA
si

is the characteristic function of an equiva-
lence class of values ofATI ∩DA

TI for any partial algebra
model ofSpecTI .

Lemma 3.7 {Psi}1≤i≤n verifies the following properties:

exclusivity:
∀si, sj , si 6= sj => ¬(Psi ∧ Psj)

(1)

complementarity:DTI =
∨

1≤i≤n

Psi (2)

and conversely, if{Psi}1≤i≤n is a set of state predicate
which verifies the two above properties then it defines a
partial equivalence relation:

if DTI(v) ∧ DTIf (v′) then
v ≈TI v′ <=> ∃si Psi(v) ∧ Psi(v

′)

94 Informatica27 (2003) 89–103 J-C. Royer

3.6 Notations and Hypotheses

In the sequel we use the following notations:self : TI
denotes a variable of typeTI, DTI is the definedness pred-
icate forTI, Psi

are the state predicates,precondop is the
precondition of theop operation,G will be a guard,∗ is
a tuple of variables,opB (respectivelyopR) denotes a ba-
sis internal operation labelling an initial transition (respec-
tively a recursive one labelling a non initial transition). A
transition from a source state to a target state will be noted

[G(self,∗)]opR(self,∗)
source −→ target

Note that some of the following definitions are higher-order
definitions since sometimes they are defined relatively to a
state name or a function name. But they are assumed to be
expanded into a finite set of first-order formulas.

We consider aGAT determinismproperty; it means that
if there are two transitions starting from a given state and
with the same label then their guards are exclusive.

Definition 3.8 A GAT is determinism if and only if for ev-
ery couple of transitions labelled by the same term either
their source states are distinct or their guards are exclusive.

We also need finitely generated values,i.e every val-
ues can be denoted by a finite sequence of generators
[Wir90]. Then an important hypothesis is aboutthe genera-
tor choice, here we assume that eachTI internal operation
is a generator1. The reason is that a generator will denote a
temporal logic instant, which is assumed distinct from an-
other one. From a practical and operational point of view it
does not complicate or grow too much the specification.

The notion of reachability may be adapted for GAT
in the following way. A s state will be strict if it
contains at least one finitely generated value (∃self :
T (Σcons)TI , DTI(self) ∧ Ps(self)).

Definition 3.9 A GAT is compact if and only if∀s ∈ S s is
strict, whereS is the set of states of the STS.

The previous property states that each state represents at
least one finitely generated value. One static and necessary
condition to ensure compactness is:every states may be
reached from an initial state. In the presence of guards,
the strictness property is generally undecidable. But this is
not a hard requirement because the specifier may ensure it
using a similar technique as in [Roy01a].

3.7 GAT Auxiliary Operations

We present in this Section a summary of operations gener-
ated by the GAT method. The formulas are the same for
sequential or concurrent components. All these formulas
may be generated automatically from the STS description.

1This hypothesis is not required by the GAT extracting method but it
comes from the aim to express temporal properties associated with transi-
tions of the STS.

We consider them as total boolean functions inductively de-
fined on the STS.

The definedness predicate is inductively defined by:

DTI(opB(∗)) =̂ precondopB
(∗)

DTI(opR(self, ∗)) =̂
precondopR(self, ∗) ∧ DTI(self)

This predicate denotes if a given term represents or not a
value of the partial algebra.

The operation preconditions have the from:

precondopB
(∗) =̂

∨

[G(∗)]opB(∗)−−−−−−→ target

G(∗)

precondopR
(self, ∗) =̂∨

[G(self,∗)]opR(self,∗)
source→target

Psource(self) ∧G(self, ∗)

The precondition for an observer are defined with the same
formulas than in the case of a recursive generator.

The last family is thestate predicates:

Ptarget(opB(∗)) =̂
∨

[G(∗)]opB(∗)−−−−−−→target

G(∗)

Ptarget(opR(self, ∗)) =̂∨

[G(self,∗)]opR(self,∗)
source→target

Psource(self) ∧ G(self, ∗)

These definitions cope with the need of operation strict-
ness.

3.8 Hierarchical Presentation of a GAT

The hierarchical presentation associated to a GAT is de-
fined as follows.

SpecTI =
< ΣTI , HΣTI , ETI , ΓTI , DefTI , SpecP >

where

– ΣTI =<{TI}, FTI >. The set of functionFTI con-
tains: proper operations of the STS, the preconditions,
the state predicates and the guards.

– HΣTI =<HSTI , HFTI >: sometimes hidden oper-
ations are useful for example in the case of data type
Changer to compute thetoGet result.

– ETI is compound from the definitions of the precon-
ditions, the state predicates and the guards; in addition
it contains the axioms computed by the AG-derivation
algorithm.

– ΓTI is the set of generator.

– DefTI contains the definition of the definedness
predicateDTI and definition formulas for the ob-
servers. These definition formulas are computed
by D(obs(self, ∗)) = precondobs(self, ∗) ∧
DTI(self).

– SpecP is the context of theTI definition.

THE GAT APPROACH TO. . . Informatica27 (2003) 89–103 95

4 Formal Specification of the
Vending Machine

In this Section we describe the formal specification of
the different components either sequential or concurrent.
A comprehensive specification of the case study may be
found in [Roy01b].

4.1 The Cash Changer Component

The graphic presentation of the STS for theCC compo-
nent is described in Figure 5. This is basically a guarded
finite state machine with some notations to represent op-
eration signature. A transition labelled by an operation
name represents the effect of an event occurring on the
component. The data type associated to theCC compo-
nent is namedChanger . Its algebraic specification has
a signature and positive conditional axioms. The STS de-
scribes the signature following the notations explained be-
low. Solid arrows denote internal operations (give , ok ,
getOut , newChanger , cancel). A basis internal op-
eration is depicted with a dashed arrow (newChanger).
An observer is drawn with a dotted arrow (toGet).

The data type must contain all the operations defined
in Section 3.7 related to the definedness and the abstract
implementation of the state machine. It also contains
the operations described in the STS, and additionally we
have in the signature of theChanger type observers re-
quired for guards and communications. We also add the

cancel(ch)

delivered

get(ch)

get(ch)

[sufficient(ch) /\ money(ch)]

ok(ch)

onChange

canceledtooMuch

give(ch, c)

give(ch, c)
[sufficient(ch)]

get(ch)

getOut(ch, j)

cancel(ch)

toGet(ch)

[~sufficient(ch)]
give(ch, c)

newChanger(i)

Figure 5: TheCCSTS

getAll , getChange , and getOverflow total (hid-
den) observers to define the three functionalities of the
toGet observer.

The axioms for the definedness, preconditions, and state
predicates are automatically computed with the formulas
of Section 3.7. We use the extracting AG-derivation princi-

ples to produce an algebraic specification of the other op-
erations. The general form of the axioms is a positive con-
ditional equation:

condition => f(self, v 1 ... v n)
e= rt

wheref is an operation name,v1 ... v n is a tuple of
variable, andself a variable of typeChanger . To ex-
tract axioms we use the AG-derivation principles which
computes automatically the condition and the left-hand
side conclusion term. User interactions are required to get
the rt right-hand side term. If the user cannot give this
term, this means that the value ofrt depends on theself
history, i.e. the sequences of generator reaching the cur-
rent state. An AG-derivation ofself is a substitution of
self by a generator term in the axiom off . Below are
the steps to build the specification of thetoGet observer.
This operation is partial, hence only the statestoomuch,
canceled , anddelivered must be analysed. For ex-
ample

% tooMuch state
tooMuch(self) => toGet(self) = ?

For each state we try to give a right-hand side conclusion
term. For example in this case we write:

% the tooMuch state
tooMuch(self) =>

toGet(self) = getOverflow(self)

% the canceled state
canceled(self) =>

toGet(self) = getAll(self)

If it is not possible to give an answer the algorithm re-
places theself variable by the operation calls reaching
this state. The conditional part changes according to this
replacement and the specifier must provide either the right-
hand side terms or the process continue. The derivation
process stops either with a non recursive call or in a state
already visited. For example with thedelivered state
we have only one total transition reaching this state.

% the delivered state
delivered(self) => toGet(self) = ?

% one level of AG-derivation
onChange(self) => toGet(getOut(self, j))

= getChange(self, j)

More details about the AG-derivation algorithm may be
found in [AR99]. We assume that this algorithm ensures
the following properties. Iff(t, ∗) ∈ T (Σ)P andDTI(t)
then it exists at least one axiom which may rewrite the term
f(t, ∗). A term t built by the GAT method is defined as
soon as variables occurring in it are defined (∀r, D(r) =>
D(t[r/x])).

96 Informatica27 (2003) 89–103 J-C. Royer

4.2 TheDDComponent

The same process is achieved for the other sequential com-
ponent. We have the STS of Figure 6 and we get an alge-
braic specification for the associatedDistributer data
type.

on

cancel(db)

theDrink(db) price(db)

ok(db)

do

choose(db, k)

here

cancel(db)
drink(db)

[isThereDrink(db)]
getOut(db)

there

newDistributer(ld)
cancel(db)

[~isThereDrink(db)]
choose(db, k)

Figure 6: TheDDSTS

4.3 Concurrent and Communicating GATs

In this Section we describe the composition scheme for
components in order to handle concurrency and commu-
nications. For example, theVMmachine in Figure 1 is
composed of aCCand aDDparts. We herein consider a
binary product and we also restrict our presentation to one
emission and one receipt, however, our constructions ex-
tend to nary product and to several communications. The
synchronization list denotes the actions which are required
to synchronize in each component. Here, there are syn-
chronizations on theok, cancel andgetOut actions.
The semantics of synchronization is obtained from the syn-
chronous product of STSs in a similar way than for the syn-
chronous product of automata [Arn94]. Firstly, we built
the free product of the two STSs. Secondly we get out the
pair of transitions which are not allowed by the list of syn-
chronizations. Last, the synchronizations are enriched by
communications. An algebraic specification is eventually
built from the computed STS. Thus both synchronization
and communication are integrated in an algebraic style.

4.3.1 Synchronization and Communications

Let Top = (St, St
0, T t) and Down = (Sd, Sd

0 , T d)
be two STSs. A synchronization listV gives the pairs of
synchronous actions. The actions not in this list are asyn-
chronous. In our example, the synchronization list isV =
[(ok, ok), (cancel, cancel), (getOut,
getOut]) . The synchronous vector is the complete list
of actions of the product:{(ok, ok), (cancel,

cancel), (getOut, getOut), (give, ε),
(get, ε), (ε, drink), (ε, choose)} . ε de-
notes no action on the corresponding component. This rule
is similar to theLOTOSone, other rules may be possible,
for example the CCS rule.

During a synchronization, some values may be emit-
ted or received. Communications may occur during syn-
chronizations in the way depicted in Figure 7. We use
? to denote a receipt and! for an emission. The terms
top(self) and down(self) are algebraic terms de-
noting the corresponding component processes. It also
represents the statess1 and s2 of the STSs. actT (re-
spectivelyactD) is an operation of the top (respectively
down) component, and are synchronous actions. A value

emit(top(self))

receipt : a parameter

emit : an observer [Gt(top(self), v1, ..., vn)] (top(self), v1, ..., vn)

[Gd(down(self), u1, ..., um)]

s1

s2 s2’

s1’

(down(self), u1, ..., um)actD

?u1 !emit(top(self))

actT

Figure 7: Implementation of Communications

is emitted by an observer and received by the mean of a
variable. In the Figure 7 example, the emitted value is
emit(top(self)) and receipt is done with theu1 vari-
able. A transition of the product is a couple of transitions
and the associated guard is the conjunction of the compo-
nent guards. Thus we get the following condition for the
transition expression from (s1, s2) to (s′1, s′2):

[Gt(top(self), v 1, ..., v n) ∧
Gd(down(self), emit(top(self)),

u2, ..., u m)

4.3.2 Synchronous Product of STSs

A table of the legal transitions is built from the synchro-
nization rules (Fig. 8). A transition expression belongs to
the table if it is consistent with the synchronization rule.
The resultingSTS for the product is(S, S0, T) where
S0 = St

0 × Sd
0 and S ⊆ St × Sd, S is the subset of

states of the free product reachable fromS0 using only the
legal transitions. We compute a table of the transitions of
the product using a simple algorithm. This table has four

Source
State

(s1, s2) ...

Transition
(actT(top(self), v 1...v n),

actD(down(self),
emit(top(self)), u 1...u m))

...

Target
State

(s′1, s′2) ...

Guard
[Gt(top(self), v 1...v n)
∧ Gd(down(self), u 1...u m)

...

Figure 8: The Transition Table

THE GAT APPROACH TO. . . Informatica27 (2003) 89–103 97

lines and each column represents a source state, a possi-
ble transition, the target state and the guard to trigger the
transition. The couples of initial states of the components
are the initial states of the product. To build the table, the
couples of initial states of the product are put in the source
state line. Then, the transition expressions starting from a
source state and consistent with the synchronization rules
are added. The target state and the condition of this transi-
tion are also set in the corresponding lines.

4.3.3 The Associated Algebraic Specification

The construction of the corresponding algebraic specifica-
tion is done in two steps. The first step is automatic and
computes a reduced algebraic specification. The resulting
specification is sometimes too simple for specifying more
complex systems, but we can extend it. It is possible to de-
fine other operations (internal or external) in a functional
style over the current specification. A second step com-
pletes the specification, it requires user-interactions. The
STS associated to the product and the AG-derivation is also
useful in this case.

Contrary to the approach described in [AR00] the prod-
uct type is built using a bit different way. This way is more
abstract and natural, it is also simpler and more suited to
dynamic checking. The most important advantage is that it
is uniform and it easily extends to nary product of GATs.
This seems a bit hard to write by hand but it can be au-
tomatically generated by an extension of the CLAP tools
[CPR01].

The type associated to the product is the product of the
types associated to the components.Product is the sort
associated to the product of theTop sort and theDown
sort. To get a GAT, we associate to each pair of actions in
the synchronous product of STS an operation name. For
example the couple(actT, actD) will be namedact .
The profile of this operation is obtained by merging the two
component operation profiles coping with emissions and
receipts. Because it is a GAT we apply the extracting prin-
ciples to get an algebraic specification for typeProduct.
The definedness predicate, the preconditions and the state
predicates are generated in the same way than for the se-
quential case, see Section 3.7. The rest of the specification
is an observational specification of the selectorstop and
down. The general principle is illustrated on the example
of Figure 7.

top(act(self)) = actT(top(self), v 1...v n)
down(act(self)) = actD(down(self),

emit(top(self)), u 2...u m)

Note that these axioms express synchronization between
actT andactD and communication from thetop part to
thedown part. The above axioms mean that observing the
top component of a system after anact action is anactT
action on thetop component. During thisact action the
DDcomponent executes anactD action. During this syn-
chronization the valueemit(top(self)) is sent to the

down component. The synchronization between two com-
ponents may be formalized as a bijective mapping between
two execution paths, but we do not detail this here.

4.4 TheVMComponent

Once theCCandDDcomponents are specified, we build
the GAT for the wholeVMmachine (Fig. 9). First, we build
the synchronous product of the two previous STSs, this
gives us the global dynamic behaviour of theVMmachine.
The Machine data type associated with theVMcompo-

drink

onchangeon

onchangedo

toomuchon

canceledon

toomuchdo

onchangethere

deliveredthere

toomuchthere

toomuchhere

cancel

drink

get

[~S] give

[S] give

give

give

[~S] give

get

[~S] give

cancel

get
give

cancel

give

get

[S/\M] ok

get

cancel
[S] give

get

[~IS] choose

[S] give
onchangehere

[~S] give

cancel

[IS] getout

[~IS] choose

cancel

drink

[S] give

choose

choose

newMachine

deliveredon
get

Figure 9: TheVMSTS

nent is based on the product of the component data types
Changer andDistributer . The shorthand for guards
in Figure 9 are:S for sufficient(theCC(self)) ,
M for money(theCC(self)) , IS for
isThereDrink(theDD(self)) . Basis constructor
profiles of the component are defined as the merging of
the basis constructor profiles of the components. For
the Machine we have only one basis constructor with
profile newMachine : Natural, List[Drink]
-> Machine . Two selectors, thetheCC and theDD
operations, are defined for theMachine to retrieve the
Changer and Distributer component data types.
Their profiles aretheCC : Machine -> Changer
and theDD : Machine -> Distributer . We
associate an operation name to each pair of action in
the product. For example the(getOut, getOut)
synchronous action is also namedgetout (overloading is
allowed) and has profileMachine -> Machine . Be-
low is the example of thegetout global synchronization
with its communication.

theCC(getout(self)) =
getOut(theCC(self), price(theDD(self)))

theDD(getout(self)) = getOut(theDD(self))

98 Informatica27 (2003) 89–103 J-C. Royer

5 GAT Properties

This Section presents and justifies some properties of the
specifications generated by the GAT principles. The com-
putation of the algebraic specification is partly automatic,
which is an advantage for non expert specifiers. The result-
ing specification has also interesting properties.

5.1 The STS Interpretation

In this section we prove some general properties linking our
generated algebraic specification and the symbolic system.

We must prove that our extracting method builds an alge-
braic specification which satisfies the interpretation formu-
las associated with the transitions (clause C of Definition
3.4).

Fact 5.1 The extracting GAT method ensures that the in-
terpretation formulas associated with the transitions of the
STS are true in the algebraic specification.

In the two cases (sequential or concurrent) the definition
of the state predicate associated to a transition like in Fig-
ure 4 is:Psj (f(self, v1, ..., vn)) = (G(self, v1, ..., vn) ∧
Psi(self)) ∨ ... Then the formulaG(self, v1, ..., vn) ∧
Psi(self) => Psj (f(self, v1, ..., vn)) is true.

Lemma 3.7 defines properties (1 and 2) linking defined-
ness predicates with state predicates. The following theo-
rem proves that our extracting method also ensures that the
STS defines a partial equivalence relation.

Theorem 5.1 The state predicates of a deterministic GAT
are exclusive and complementary, they define a partial
equivalence relation over the values of the data type.

The two proofs may be done by structural induction
on the GAT. Let v = opB(v1, ..., vn) then ∀si 6=
sj , ¬(Psi(opB(v1, ..., vn)) ∧ Psj (opB(v1, ..., vn))) be-
cause of the GAT determinism which implies that guards
are exclusive. The same analysis is also true ifv =
opR(self, v1, ..., vn).

The second property is trivial for theopB case. For
the opR case we haveDTI(opR(self, v1, ..., vn)) =
precondopR(self, v1, ..., vn) ∧DTI(self) =∨

[G]opR
source→target

Psource(self) ∧ G(self, v1, ..., vn) ∧
DTI(self). The other part is equal to∨

1≤i≤n Psi(opR(self, v1, ..., vn)) =∨
1≤i≤n

∨
[G]opR
s→si

Psi(self) ∧ G(self, v1, ..., vn) ∧
DTI(self). The two expressions are equal. Note
that the complementarity property implies that
∀si ∈ S, Psi => DTI . Note also that the below
lemma is a mean to check the GAT determinism property.

Lemma 5.2 If a GAT is compact and its state predicates
are exclusive then it is GAT determinism.

If there is only one state there is not two distinct transi-
tions with the same label then the GAT is deterministic.
Let si 6= sj if the STS is not GAT determinism it exists two

transitions labelled by the same operation, starting from the
same state and with non exclusive guards. Ift andt′ are the
target states of these transitions thent 6= t′ since transitions
are maximal. Thus it exists a termv such thatPt(v)∧Pt′(v)
and this is not possible.

Our experiences with GAT specification show that writ-
ing errors or erroneous definitions of guards arise very of-
ten. The exclusivity and complementarity properties are
always ensured by means of our axiom generation but as-
suming some hypothesis. To prove these properties with a
tool is a first means to check some problems in the alge-
braic specification (for example the GAT determinism of
the STS). Our experimentations reveal that these proofs are
really relevant to detect bad algebraic definitions.

5.2 Termination of the Term Rewriting
System

We may implement the specification, transforming axioms
into left-to-right rewriting rules. Results on modularity
of termination are pertinent here [Der95, FJ95, Rao95,
AG00]. There are many works around termination of
rewriting systems, but only few of them are relevant to
our context, because we have a conditional and hierarchical
system. One successful approach is [FJ95]. The principle
is to define a hierarchy (or definition ordering) for the set
of operation and to use a notion of alien-decreasing sys-
tem. The alien-decreasing property being a bit technical,
we avoid the details here (see [FJ95] and [AR99]). How-
ever several difficulties have to be solved before an appli-
cation in our context:

– To handle mutually recursive definitions and condi-
tional rules is not natural because one has to modify
the original specification. This may greatly disturb a
non specialist.

– The alien-decreasing property is rather strict and it is
easy lost if we add a non alien-decreasing rule.

– Status computation needs an algorithm that is not yet
existing.

We investigate other approaches related to modular termi-
nation. One theorem of [Der95] applies when we have a
non conditional system. Unfortunately there is no theorem
related to the conditional case. A general theorem of Gram-
lich [Gra95] is also important in our context. A rewrite
system isoverlay if every (conditional) critical pairs are
obtained by overlapping left-hand sides of rules at top po-
sition. AG-derivation prohibits a proper subterm to match
a term, thus there is a superposition only if left-hand side
conclusion terms are equal. In case of such conditional
pairs, the GAT determinism property of the STS ensures
that the conditions are exclusive, hence, our system is over-
lay. These critical pairs are not “properly critical”, they are
infeasible2 in the sense of [Gra95]. Gramlich’s theorem

2An infeasible conditional critical pair is obviously joinable.

THE GAT APPROACH TO. . . Informatica27 (2003) 89–103 99

states:Any conditional term rewriting system which is an
innermost terminating overlay system such that all condi-
tional critical pairs are joinable is terminating and con-
fluent. This theorem shows that, to get termination, it is
sufficient to prove innermost termination. K. Rao [Rao95]
defines an approach based on this theorem. He proves a
useful result, which unfortunately does not cope with con-
ditional rules. Arts and Giesl, in [AG00], also propose a
criterion to prove innermost termination.

As one may see, our systems have many properties
(left-linearity, constructor system, conditional and hier-
archical, amongst others). We investigate for a proper
approach. We suggest to useΣdepth which is a de-
creasing order [Klo92] based on the depth of the con-
structor in the term. Each symbol has a weight, for
a constructor it is its depth in the term. A term like
sum(give(ch, c)) has2∗weight(sum) andadd(c,
ch) has weight 1. With this order we can orient an axiom
like: toomuch(ch) => toGet(give(ch, c)) =
overflow(give(ch, c)) . Whenever this fails an-
other level of AG-derivation increases the left conclusion
part but may decrease the right-hand side and the condi-
tion terms. A last problem to solve is about functional ex-
tensions which have no constructor in the left-hand side
conclusion term. For instancemoney(ch) = inf(ch,
stock(ch)) . The solution is to replace, in other rules,
the money call and to consider such operation with the
highest priority than the rest of the rules.

Several experiments, using Larch Prover [GH93], con-
firm that the termination property is true with our specifi-
cations. We experiment with nearly ten systems from 50
to 300 rules with thedsmposordering (a registered sim-
plification ordering). However, this may require some mi-
nor modifications of the specifications. The most often to
change the definition order of rules and to replace calls
of the functional extensions is sufficient. Sometimes an
additional level of AG-derivation is needed or an explicit
change of the operator status for the dsmpos ordering.

5.3 Consistency and Completeness

Because of our generating method, once termination is
ensured we get consistency and sufficient completeness.
The two main reasons are: we get an overlay-confluent
rewriting system since the STS is GAT determinism and
generated axioms respect the principle of sufficient com-
pleteness. These properties and the use of positive condi-
tional axioms ensure the existence of a partial initial alge-
bra [BWP84].

Theorem 5.3 The specification associated with a GAT is
hierarchically consistent and sufficiently complete, then an
initial partial algebra exists.

As seen in the previous Section, if we prove our conditional
system terminating then it is convergent and normal forms
are unique. Consistency is ensured (E ` true 6= false)
since normal forms are unique and this inequation is true

for Boolean. Since we have an enrichment of Boolean,
a predefined term is either defined or undefined withinE
(this is also true withinEP). To proveE ` tP = t′P we
consider two cases: either the two terms are defined inE,
from previous point they are both defined inEP and equal
in EP because of unique normal forms. If the two terms
are not defined inE the same is also true inEP and strong
equality holds between them.

There are two ways to prove the sufficient completeness
property for a specification: using algorithms (for example
[Kou85]) or using an axiom writing method that guaran-
tees sufficient completeness. This later approach is used
in Bidoit’s work ([Bid82]) and reused here. LettP be a
term of a predefined sort, ifE ` D(tP) then we have
EP ` DP (tP) from the hierarchical consistency. It is
then sufficient to show the existence of a rule to rewrite this
term. We consider terms with general formf(t, ∗) where
f ∈ ΣP andt ∈ T (Σ)TI . If t ∈ T (Σ)TI ∧ DTI(t), from
properties 1 and 2, then there exists a (single) states such
thatPs(t). A property of the AG-derivation algorithm is to
produce a rule which rewrites the termf(t, ∗) (see Section
4.1).

5.4 Properties of the Product

We prove several results showing that the auxiliary opera-
tions for the product are naturally split on the components.
To simplify, we only consider two cases one with syn-
chronization and a communication and another one with-
out synchronization. We prove the first theorem about the
definition of the state predicates.

Theorem 5.4 Let the synchronous product of two GAT
components: ift (respectivelyd) is the state of the
top component (respectively the down component) then
P(t,d)(self) = Pt(top(self)) ∧ Pd(down(self)).

The proof of this theorem is done by in-
duction on the generators of the product.
If self is a opB(v1, ..., vn, u1, ..., um) term
then P(t,d)(opB(v1, ..., vn, u1, ..., um)) =∨

[Gt∧Gd](opBt
,opBd

)−−−−−−−−−−−→(t,d)

Gt(opBt(v1, ..., vn)) ∧

Gd(opBd
(u1, ..., um)), and separating top and down

expressions we get:
P(t,d)(opB(v1, ..., vn, u1, ..., um)) =
(

∨

[Gt]opBt−−−−→t

Gt(opBt(v1, ..., vn)))
∧

(
∨

[Gd]opBd−−−−→d

Gd(opBd
(u1, ..., um))) =

Pt(opBt(v1, ..., vn)) ∧ Pd(opBd
(u1, ..., um)).

For the case of anopR with a synchronization and a com-
munication: P(t′,d′)(opR(self, v1, ..., vn, u2, ..., um)) =∨

[G]opR
(t,d)→(t′,d′)

P(t,d)(self)∧G(self, v1, ..., vn, u2, ..., um)

by induction hypothesis we get:

100 Informatica27 (2003) 89–103 J-C. Royer

∨
[G(self)]opR
(t,d)→(t′,d′)

Pt(top(self)) ∧
Pd(down(self))) ∧ Gt(top(self), v1, ..., vn) ∧
Gd(down(self), emit(top(self)), u2, ..., um).
The following expression
P ′t (top(opR(self, v1, ..., vn, u2, ..., um))) ∧
P ′d(down(opR(self, v1, ..., vn, u2, ..., um))) re-
duces to P ′t (opRt(top(self), v1, ..., vn)) ∧
P ′d(opRd

(down(self), emit(top(self)), u2, ..., um)) =
(
∨

[Gt(self)]opRt
t→t′

Pt(top(self)) ∧
Gt(top(self), v1, ..., vn)) ∧
(
∨

[Gd(self)]opRd
d→d′

Pd(down(self)) ∧
Gd(down(self), emit(top(self)), u2, ..., um)) and
the two unions are equal. A simpler decomposition is true
in the case of an asynchronous recursive call.

Theorem 5.5 With the same conditions as in
the previous theorem: if opR is a synchro-
nization with a communication as in Figure 7
then precondopR

(self, v1, ..., vn, u2, ..., um) =
precondopRt

(top(self), v1, ..., vn) ∧
precondopRd

(down(self), emit(top(self)), u2, ..., um);
if opR is an asynchronous call
then precondopR(self, v1, ..., vn) =
precondopRt

(top(self), v1, ..., vn) ∧
DDown(down(self)).

The proof of this theorem is similar to the previous one.
If self is a opB(v1, ..., vn, u1, ..., um) term then we have
precondopB

(v1, ..., vn, u1, ..., um) =
precondopBt

(v1, ..., vn)∧
precondopBd

(u1, ..., um).
DProduct(opB(v1, ..., vn, u1, ..., um)) =
precondopB (v1, ..., vn, u1, ..., um) =
precondopBt

(v1, ..., vn)∧
precondopBd

(u1, ..., um) =
DTop(opBt(v1, ..., vn))∧
DDown(opBd

(u1, ..., um)). For the case of anopR

constructor with synchronization and communication the
same way is successful taking into account the induction
hypothesis.precondopR

(self, v1, ..., vn, u2, ..., um) =∨
[G]opR

(t,d)→(t′,d′)
P(t,d)(self)∧G(self, v1, ..., vn, u2, ..., um)

and a similar decomposition as in the previous
theorem gives the result. IfopR is an asyn-
chronous call precondopR

(self, v1, ..., vn) =∨
[G]opR

(t,d′)→(t′,d′)
P(t,d′)(self) ∧ G(self, v1, ..., vn) =

∨
[G]opR

(t,d′)→(t′,d′)
Pt(top(self)) ∧

Gt(self, v1, ..., vn)) ∧ P ′d(down(self)).
We have precondopRt

(self, v1, ..., vn) =∨
[Gt]opRt

t→t′
Pt(left(self)) ∧ Gt(self, v1, ..., vn))

and DDown(down(self)) =
∨

d′ P
′
d(down(self)) from

property 2. We may verify the equality of the two
expressions.

Theorem 5.6 With the conditions of theorem
5.4, DProduct(self) = DTop(top(self)) ∧

DDown(down(self)).

If self is a opB(v1, ..., vn, u1, ..., um) term then:
DProduct(opB(v1, ..., vn, u1, ..., um)) =
precondopB

(v1, ..., vn, u1, ..., um) =
precondopBt

(v1, ..., vn)∧
precondopBd

(u1, ..., um) =
DTop(opBt

(v1, ..., vn))∧
DDown(opBd

(u1, ..., um)). For the case of an
opR with synchronization and communication:
DProduct(opR(self, v1, ..., vn, u2, ..., um)) =
precondopR

(self, v1, ..., vn, u2, ..., um) ∧
DProduct(self) = precondopRt

(top(self), v1, ..., vn) ∧
precondopRd

(down(self), emit(top(self)), u2, ..., um)∧
DTop(top(self)) ∧ DDown(down(self)) =
DTop(opRt

(top(self), v1, ..., vn)) ∧
DDown(opRd

(down(self), emit(top(self)), u2, ..., um)).
The case of an asynchronous call is similar but simpler.

The three previous results provide a simpler way to gen-
erate the auxiliary operations and it has also some interest
for automated proofs.

Theorem 5.7 The synchronous product of two determinis-
tic GATs is a deterministic GAT.

This result simply comes from the fact that a state of the
product is a product of the component states and a guard of
the product is the conjunction of two component guards. If
we consider two transitions with the same label then each
of them is the aggregation of two component transitions
which are exclusive. The reverse property is not true.

The compactness for a concurrent component does not
follow from the compactness of its parts. One sufficient
condition to ensure compactness is the notion oftransition
compactness. A STS is transition compact if and only if
every transition may be triggered at least once.

Lemma 5.8 Let’s consider two transition compact GATs
with no receipt in guards then their product is a transition
compact GAT.

In the general case we have
G(self, v1, ..., vn, u2, ..., um) =
Gt(top(self), v1, ..., vn) ∧
Gd(down(self), emit(top(self)), u2, ..., um). If there is
no receipt in guards then ifGt andGd can be triggered it
is also true forG. This is an important case which often
arises in practice, for instance with our vending machine.
The reverse way of this lemma is false.

6 Related Works

We give some links to works related to mixed formal spec-
ifications. Our approach is mainly related toLOTOS, LTL
and AD-DT. Complementary informations may be found
in [ABR99].

An important concern, in our approach, is to provide
help to the specifier to write the algebraic specification.

THE GAT APPROACH TO. . . Informatica27 (2003) 89–103 101

We defined guidelines and tools to the specifiers. Our ap-
proach includes several automatic steps in the specification
process, which makes it usable by a non expert specifier.
The user gets several properties (like consistency and com-
pleteness) without many difficulties. Our approach also im-
proves the consistency/compatibility between the different
descriptions. These concerns are neither addressed inLO-
TOSnor in AD-DT.

As in LOTOS, we focus on system with dynamic and
functional parts. The main difference is about the seman-
tics which is uniform with partial abstract data types. How-
ever, standard semantics ofLOTOSdoes not take into ac-
count full data types but only ground expressions. Standard
LOTOS semantics is restricted to finite state machines.
Symbolic semantics for FullLOTOSis a way to overcome
this limitation [KT97]. Dynamic properties are proved on
the STS with the help of an oracle on data types. Proofs
in our context use only one formalism and one environ-
ment. A successful approach is the FULL modal logic for
LOTOSdescribed in [MC01]. It is based on STS and it de-
fines a bisimulation. It is related to our logic but there are
several differences. We have no restriction on data types
and recursion but FULL has. Our temporal logic may be
reduced to first-order one this is not yet the case for FULL.
We think that a complete approach of the semantics ofLO-
TOSis possible with GATs.

Our work on specification is related to LTL and dynamic
data type. Labelled Transition Logic (LTL) [RL97] is a
formalism for specifying concurrent reactive systems. We
agree with the authors on the real application of formal
methods. We also aim at providing guidelines, friendly pre-
sentation and tools for non-academic people. We use STS
and partial algebras, whereas they use labelled transition
systems and first-order structures. Both concurrent seman-
tics are based on an extension of the synchronous product
of automata. A LTL transition is a conditional axiom link-
ing two constructor terms denoting states. Thus the source
state and the target state of a transition in LTL are terms. A
GAT state has generally not a simple term representation.
An important difference, from a methodological point of
view, is that we use a graphic dynamic description,a priori
to help the computation of the algebraic specification. We
also get important properties about our STSs and algebraic
specifications. In the LTL approach the graphic description
is built a posteriorifrom the algebraic specification.

Both our approach and abstract dynamic data types (AD-
DT) [CR97]) use partial abstract data type. In AD-DT the
specification is twofold: algebraic axioms with a ternary
predicate for the transition system. Our approach is sim-
pler because we have only one layer in the algebraic spec-
ification. In [CR97], there is a general algebraic approach
of temporal logic. This is a more ambitious and powerful
approach, this is also has the drawback of a non complete
logic. But a restricted approach to positive conditional dy-
namic formulas is proposed and the deduction system is
proved to be sound and complete. Our approach is based on
first-order logic and temporal algebraic operators. We have

shown that a subset of CTL [Eme90] reduced to our frame-
work. It seems that the two restricted approaches have the
same expressiveness.

7 Future Work and Conclusion

We provide an algebraic approach for mixed system with
an homogeneous semantics based on partial algebra. This
approach may be partly automated and tools have been ex-
perimented [CPR01]. It handles any kinds of data type,
either finite or unbound. It provides abstraction and read-
ability of state-transition systems and a kind of separation
of concerns.

We proved that our method ensure more easily consis-
tency and completeness of the generated specification. The
main difficulty is to prove the rewriting system terminating
and in this case we proposed some successful ways. Our
specifications define automatically operation preconditions
which is a well-known concept in the areas of program-
ming and specification. We proved several natural proper-
ties linking the auxiliary operations of the component prod-
uct to the related operations of components. This addition-
ally provides a simpler way to generate these operations
and advantages for automated proofs.

We added an original approach to writing and proving
temporal logic properties. It is uniform because data and
temporal formulas are first-order formulas. It is related to
classic temporal logic like CTL*, and it allows also past
operator. We have done some experimentations with dead-
locks and strategy to automate some proofs already exist.

Several theoretical questions remain. One area of inter-
est is to study bisimulation over STS and means to prove
them in our context. We think that our approach is right
to provide a full semantics forLOTOS, this is one of our
future goal. For a more practical point of view we plan to
use PVS rather than Larch Prover. The main reasons are: it
supports model checking and a higher-order logic.

References

[ABR95] Pascal André, Franck Barbier, and Jean-Claude
Royer. Introducing Formalism in Object-
Oriented Analysis and Design: an Experi-
mentation. Computer Science and Technique,
14(8):973–1005, 1995. in French, ISSN 0752-
4072.

[ABR99] Egidio Astesiano, Manfred Broy, and Gianna
Reggio.Algebraic Specification of Concurrent
Systems, pages 467–520. IFIP State-of-the-Art
Reports. Springer Verlag, 1999. ISBN 3-540-
63772-9.

[AC95] Egidio Astesiano and Maura Cerioli. Free ob-
jects and equational deduction for partial con-
ditional specifications.Theoretical Computer
Science, 152(1):91–138, 11 December 1995.

102 Informatica27 (2003) 89–103 J-C. Royer

[AG00] Thomas Arts and Jürgen Giesl. Termination of
term rewriting using dependency pairs.Theo-
retical Computer Science, 236(1–2):133–178,
April 2000.

[APGR00] Arnold, Point, Griffault, and Rauzy. The al-
tarica formalism for describing concurrent sys-
tems. FUNDINF: Fundamenta Informatica,
34:109–124, 2000.

[AR98] Pascal André and Jean-Claude Royer. The
Invoicing System: Using GAT. In Michel
Allemand, Christian Attiogbé, and Henri
Habrias, editors,Comparing Systems Spec-
ification Techniques: "What questions are
prompted by ones particular method of spec-
ification?", ISBN 2-906082-29-5, pages 381–
395, Nantes, France, 1998.

[AR99] Pascal André and Jean-Claude Royer. Build-
ing Executable Data Types from Dynamic De-
scriptions. Rapport de recherche, IRIN, 1999.

[AR00] Pascal André and Jean-Claude Royer.
An Algebraic Approach to the Spec-
ification of Heterogeneous Software
Systems. Rapport de recherche,
IRIN, 2000. http://www.sciences.univ-
nantes.fr/irin/Vie/RR/RR-IRIN-007.ps, pre-
sented at WADT’99.

[Arn94] André Arnold. Finite Transition Systems.
International Series in Computer Science.
Prentice-Hall, 1994. ISBN 0-13-092990-5.

[Bid82] Michel Bidoit. Types abstraits algébriques :
spécifications structurées et présentations gra-
cieuses.Colloque de l’AFCET : les mathéma-
tiques de l’informatique Paris, pages 347–357,
1982.

[BWP84] Manfred Broy, Martin Wirsing, and Claude
Pair. A Systematic Study of Models of Ab-
stract Data Types.Theoretical Computer Sci-
ence, 33:139–174, 1984.

[CMR99] M. Cerioli, T. Mossakowski, and H. Reichel.
From Total Equational to Partial Conditional.
In H.J. Kreowski, B. Krieg-Brueckner, and
E. Astesiano, editors,Algebraic Foundation of
Information Systems Specification, chapter 3,
pages 31–104. Springer Verlag, 1999.

[CPR99] Christine Choppy, Pascal Poizat, and Jean-
Claude Royer. From Informal Requirements to
COOP: a Concurrent Automata Approach. In
J.M. Wing and J. Woodcock and J. Davies, edi-
tor, FM’99 - Formal Methods, World Congress
on Formal Methods in the Development of
Computing Systems, volume 1709 ofLecture

Notes in Computer Science, pages 939–962.
Springer-Verlag, 1999.

[CPR01] Christine Choppy, Pascal Poizat, and Jean-
Claude Royer. The Korrigan Environ-
ment.Journal of Universal Computer Science,
7(1):19–36, 2001. Special issue: Tools for
System Design and Verification, ISSN: 0948-
6968.

[CR97] Gerardo Costa and Gianna Reggio. Specifica-
tion of abstract dynamic-data types: A tempo-
ral logic approach.Theoretical Computer Sci-
ence, 173(2):513–554, 1997.

[Der95] Nachum Dershowitz. Hierarchical Termina-
tion. In Fourth International Workshop on
Conditional (and Typed) Rewriting Systems,
volume 968 ofLNCS, pages 89–105, Amster-
dam, 1995. Springer Verlag.

[Eme90] E. Allen Emerson.Temporal and Model Logic,
volume B of Handbook of Theoretical Com-
puter Science, chapter 16, pages 997–1072. El-
sevier, 1990. J. Van Leeuwen, Editor.

[FJ95] Maribel Fernandez and Jean-Pierre Jouannaud.
Modular Termination of Term Rewriting Sys-
tem Revisited. InRecent Trends in Data Type
Specifications, volume 906 ofLecture Notes In
Computer Science, pages 252–272. Springer-
Verlag, 1995.

[GG88] S. J. Garland and J. V. Guttag. Inductive meth-
ods for reasoning about abstract data types. In
ACM, editor, POPL ’88. 15th Proceedings of
the conference on Principles of programming
languages, January 13–15, 1988, San Diego,
CA, pages 219–228, New York, NY, USA,
1988. ACM Press.

[GH93] John V. Guttag and James J. Horning, editors.
Larch: Languages and Tools for Formal Spec-
ification. Texts and Monographs in Computer
Science. Springer Verlag, 1993. With Stephen
J. Garland, Kevin D. Jones, Andrés Modet, and
Jeannette M. Wing.

[Gra95] Bernhard Gramlich. On Termination and Con-
fluence of Rewriting Systems. In N. Der-
showitz and N. Lindenstrauss, editors,Proc.
4th Int Workshop on Conditional and Typed
Rewriting Systems, volume 968 of Lecture
Notes In Computer Science, pages 166–185.
Springer-Verlag, 1995.

[Har87] David Harel. Statecharts: A visual formula-
tion for complex systems.Science of Computer
Programming, 8(3):231–274, June 1987.

THE GAT APPROACH TO. . . Informatica27 (2003) 89–103 103

[HL95] M. Hennessy and H. Lin. Symbolic Bisim-
ulations. Theoretical Computer Science,
138(2):353–389, 1995.

[HO80] Gérard Huet and Derek C. Oppen.Equations
and Rewrite Rules: a Survey, pages 349 –
405. Formal Language Theory: perspectives
and open problems. Academic Press, R. Book,
1980.

[Klo92] J.W. Klop. Term Rewriting Systems, chapter 1,
pages 1–117. Handbook of Logic in Com-
puter Science. Oxford University Press, Ox-
ford, 1992.

[Kou85] Emmanuel Kounalis. Completeness in data
type specifications. InProceedings of Eurocal
Conference, volume 204 ofLecture Notes in
Computer Science, pages 348–362. Springer-
Verlag, 1985.

[KT97] Carron Kirkwood and Muffy Thomas. To-
wards a Symbolic Modal Logic for LOTOS. In
Northern Formal Methods Workshop NFM’96,
eWIC, 1997.

[MC01] C. Shankland M. Calder, S. Maharaj. An Ad-
equate Logic for Full LOTOS. InProceedings
of the FME’2001 Conference, Lecture Notes in
Computer Science. Springer-Verlag, 2001.

[PCR99] Pascal Poizat, Christine Choppy, and Jean-
Claude Royer. Concurrency and Data Types:
a Specification Method. An Example with LO-
TOS. In J. Fiadero, editor,Recent Trends in Al-
gebraic Development Techniques, Selected Pa-
pers of the 13th Workshop on Algebraic Devel-
opment Techniques, WADT’98, volume 1589
of Lecture Notes in Computer Science, pages
276–291. Springer-Verlag, 1999.

[PRR02] Liang Peng, Annya Romanczuk, and Jean-
Claude Royer. A Translation of UML Com-
ponents into Formal Specifications. InTOOLS
East Europe 2002, Theo D’hondt Ed., pages
60–75, Kluwer Academic Publishers, 2003.

[Rao95] M. R. K. Krishna Rao. Modular proofs
for completeness of hierarchical term rewrit-
ing systems. Theoretical Computer Science,
151:487–512, 1995.

[RL97] Gianna Reggio and Mauro Larosa. A graphic
notation for formal specifications of dynamic
systems. In John Fitzgerald, Cliff B. Jones,
and Peter Lucas, editors,FME’97: Indus-
trial Applications and Strengthened Founda-
tions of Formal Methods, volume 1313 ofLec-
ture Notes in Computer Science, pages 40–
61, Graz, Austria, September 1997. Springer-
Verlag. ISBN 3-540-63533-5.

[Roy01a] Jean-Claude Royer. Formal Specification and
Temporal Proof Techniques for Mixed Sys-
tems. InProceedings of the 15th IPDPS 2001
Symposium, FMPPTA, San Francisco, USA,
2001. IEEE Computer Society.

[Roy01b] Jean-Claude Royer. The Vending Machine:
Mixed Formal Specifications and Proofs. Rap-
port de recherche IRIN-01.1, IRIN, 2001.
http://www.sciences.univ-nantes.fr/irin.

[Roy02] Jean-Claude Royer. Temporal Logic Verifica-
tions for UML: the Vending Machine Example.
In Proceedings of the fourth Rigorous Object-
Oriented Methods Workshop, 2002.

[STB97] Carron Shankland, Muffy Thomas, and
Ed Brinksma. Symbolic Bisimulation for
Full LOTOS. In Algebraic Methodology and
Software Technology AMAST’97, volume 1349
of Lecture Notes in Computer Science, pages
479–493. Springer-Verlag, 1997.

[Tur93] Kenneth J. Turner, editor.Using Formal De-
scription Techniques, An introduction to Es-
telle, Lotos and SDL. Wiley, 1993. ISBN 0-
471-93455-0.

[Wir90] Martin Wirsing. Algebraic Specification, vol-
ume B ofHandbook of Theoretical Computer
Science, chapter 13, pages 675–788. Elsevier,
1990. J. Van Leeuwen, Editor.

Informatica27 (2003) 115

JOŽEF STEFAN INSTITUTE

Jožef Stefan (1835-1893) was one of the most prominent
physicists of the 19th century. Born to Slovene parents,
he obtained his Ph.D. at Vienna University, where he was
later Director of the Physics Institute, Vice-President of the
Vienna Academy of Sciences and a member of several sci-
entific institutions in Europe. Stefan explored many areas
in hydrodynamics, optics, acoustics, electricity, magnetism
and the kinetic theory of gases. Among other things, he
originated the law that the total radiation from a black
body is proportional to the 4th power of its absolute tem-
perature, known as the Stefan–Boltzmann law.

The Jožef Stefan Institute (JSI) is the leading indepen-
dent scientific research institution in Slovenia, covering a
broad spectrum of fundamental and applied research in the
fields of physics, chemistry and biochemistry, electronics
and information science, nuclear science technology, en-
ergy research and environmental science.

The Jožef Stefan Institute (JSI) is a research organisation
for pure and applied research in the natural sciences and
technology. Both are closely interconnected in research de-
partments composed of different task teams. Emphasis in
basic research is given to the development and education of
young scientists, while applied research and development
serve for the transfer of advanced knowledge, contributing
to the development of the national economy and society in
general.

At present the Institute, with a total of about 700 staff,
has 500 researchers, about 250 of whom are postgraduates,
over 200 of whom have doctorates (Ph.D.), and around
150 of whom have permanent professorships or temporary
teaching assignments at the Universities.

In view of its activities and status, the JSI plays the role
of a national institute, complementing the role of the uni-
versities and bridging the gap between basic science and
applications.

Research at the JSI includes the following major fields:
physics; chemistry; electronics, informatics and computer
sciences; biochemistry; ecology; reactor technology; ap-
plied mathematics. Most of the activities are more or
less closely connected to information sciences, in particu-
lar computer sciences, artificial intelligence, language and
speech technologies, computer-aided design, computer ar-
chitectures, biocybernetics and robotics, computer automa-
tion and control, professional electronics, digital communi-
cations and networks, and applied mathematics.

The Institute is located in Ljubljana, the capital of the in-
dependent state of Slovenia (or S♥nia). The capital today
is considered a crossroad between East, West and Mediter-

ranean Europe, offering excellent productive capabilities
and solid business opportunities, with strong international
connections. Ljubljana is connected to important centers
such as Prague, Budapest, Vienna, Zagreb, Milan, Rome,
Monaco, Nice, Bern and Munich, all within a radius of 600
km.

In the last year on the site of the Jožef Stefan Institute,
the Technology park “Ljubljana” has been proposed as part
of the national strategy for technological development to
foster synergies between research and industry, to promote
joint ventures between university bodies, research institutes
and innovative industry, to act as an incubator for high-tech
initiatives and to accelerate the development cycle of inno-
vative products.

At the present time, part of the Institute is being reor-
ganized into several high-tech units supported by and con-
nected within the Technology park at the Jožef Stefan In-
stitute, established as the beginning of a regional Technol-
ogy park “Ljubljana”. The project is being developed at
a particularly historical moment, characterized by the pro-
cess of state reorganisation, privatisation and private ini-
tiative. The national Technology Park will take the form
of a shareholding company and will host an independent
venture-capital institution.

The promoters and operational entities of the project are
the Republic of Slovenia, Ministry of Science and Tech-
nology and the Jožef Stefan Institute. The framework of
the operation also includes the University of Ljubljana, the
National Institute of Chemistry, the Institute for Electron-
ics and Vacuum Technology and the Institute for Materials
and Construction Research among others. In addition, the
project is supported by the Ministry of Economic Relations
and Development, the National Chamber of Economy and
the City of Ljubljana.

Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Tel.:+386 1 4773 900, Fax.:+386 1 219 385
Tlx.:31 296 JOSTIN SI
WWW: http://www.ijs.si
E-mail: matjaz.gams@ijs.si
Contact person for the Park: Iztok Lesjak, M.Sc.
Public relations: Natalija Polenec

Informatica27 (2003)

INFORMATICA
AN INTERNATIONAL JOURNAL OF COMPUTING AND INFORMATICS

INVITATION, COOPERATION

Submissions and Refereeing

Please submit three copies of the manuscript with good copies of
the figures and photographs to one of the editors from the Edito-
rial Board or to the Contact Person. At least two referees outside
the author’s country will examine it, and they are invited to make
as many remarks as possible directly on the manuscript, from typ-
ing errors to global philosophical disagreements. The chosen ed-
itor will send the author copies with remarks. If the paper is ac-
cepted, the editor will also send copies to the Contact Person. The
Executive Board will inform the author that the paper has been
accepted, in which case it will be published within one year of
receipt of e-mails with the text in Informatica LATEX format and
figures in.eps format. The original figures can also be sent on
separate sheets. Style and examples of papers can be obtained by
e-mail from the Contact Person or from FTP or WWW (see the
last page of Informatica).

Opinions, news, calls for conferences, calls for papers, etc. should
be sent directly to the Contact Person.

QUESTIONNAIRE

Send Informatica free of charge

Yes, we subscribe

Please, complete the order form and send it to Dr. Drago Torkar,
Informatica, Institut Jožef Stefan, Jamova 39, 1111 Ljubljana,
Slovenia.

ORDER FORM – INFORMATICA

Name: .

Title and Profession (optional): .

. .

Home Address and Telephone (optional): .

. .

Since 1977, Informatica has been a major Slovenian scientific
journal of computing and informatics, including telecommunica-
tions, automation and other related areas. In its 16th year (more
than ten years ago) it became truly international, although it still
remains connected to Central Europe. The basic aim of Infor-
matica is to impose intellectual values (science, engineering) in a
distributed organisation.

Informatica is a journal primarily covering the European com-
puter science and informatics community - scientific and educa-
tional as well as technical, commercial and industrial. Its basic
aim is to enhance communications between different European
structures on the basis of equal rights and international referee-
ing. It publishes scientific papers accepted by at least two ref-
erees outside the author’s country. In addition, it contains in-
formation about conferences, opinions, critical examinations of
existing publications and news. Finally, major practical achieve-
ments and innovations in the computer and information industry
are presented through commercial publications as well as through
independent evaluations.

Editing and refereeing are distributed. Each editor can conduct
the refereeing process by appointing two new referees or referees
from the Board of Referees or Editorial Board. Referees should
not be from the author’s country. If new referees are appointed,
their names will appear in the Refereeing Board.

Informatica is free of charge for major scientific, educational and
governmental institutions. Others should subscribe (see the last
page of Informatica).

Office Address and Telephone (optional): .

. .

E-mail Address (optional): .

Signature and Date: .

Informatica WWW:

http://ai.ijs.si/informatica/
http://orca.st.usm.edu/informatica/

Referees:

Witold Abramowicz, David Abramson, Adel Adi, Kenneth Aizawa, Suad Alagić, Mohamad Alam, Dia Ali, Alan
Aliu, Richard Amoroso, John Anderson, Hans-Jurgen Appelrath, Iván Araujo, Vladimir Bajič, Michel Barbeau,
Grzegorz Bartoszewicz, Catriel Beeri, Daniel Beech, Fevzi Belli, Simon Beloglavec, Sondes Bennasri, Francesco
Bergadano, Istvan Berkeley, Azer Bestavros, Andraž Bežek, Balaji Bharadwaj, Ralph Bisland, Jacek Blazewicz,
Laszlo Boeszoermenyi, Damjan Bojadžijev, Jeff Bone, Ivan Bratko, Pavel Brazdil, Bostjan Brumen, Jerzy
Brzezinski, Marian Bubak, Davide Bugali, Troy Bull, Leslie Burkholder, Frada Burstein, Wojciech Buszkowski,
Rajkumar Bvyya, Netiva Caftori, Particia Carando, Robert Cattral, Jason Ceddia, Ryszard Choras, Wojciech
Cellary, Wojciech Chybowski, Andrzej Ciepielewski, Vic Ciesielski, Mel Ó Cinnéide, David Cliff, Maria Cobb,
Jean-Pierre Corriveau, Travis Craig, Noel Craske, Matthew Crocker, Tadeusz Czachorski, MilanČeška, Honghua
Dai, Bart de Decker, Deborah Dent, Andrej Dobnikar, Sait Dogru, Peter Dolog, Georg Dorfner, Ludoslaw
Drelichowski, Matija Drobnǐc, Maciej Drozdowski, Marek Druzdzel, Marjan Družovec, Jozo Dujmović, Pavol
Ďuriš, Amnon Eden, Johann Eder, Hesham El-Rewini, Darrell Ferguson, Warren Fergusson, David Flater, Pierre
Flener, Wojciech Fliegner, Vladimir A. Fomichov, Terrence Forgarty, Hans Fraaije, Hugo de Garis, Eugeniusz
Gatnar, Grant Gayed, James Geller, Michael Georgiopolus, Michael Gertz, Jan Goliński, Janusz Gorski, Georg
Gottlob, David Green, Herbert Groiss, Jozsef Gyorkos, Marten Haglind, Abdelwahab Hamou-Lhadj, Inman
Harvey, Jaak Henno, Marjan Hericko, Elke Hochmueller, Jack Hodges, Doug Howe, Rod Howell, Tomáš Hruška,
Don Huch, Simone Fischer-Huebner, Alexey Ippa, Hannu Jaakkola, Sushil Jajodia, Ryszard Jakubowski, Piotr
Jedrzejowicz, A. Milton Jenkins, Eric Johnson, Polina Jordanova, Djani Juričič, Marko Juvancic, Sabhash Kak,
Li-Shan Kang, Ivan Kapustøk, Orlando Karam, Roland Kaschek, Jacek Kierzenka, Jan Kniat, Stavros Kokkotos,
Fabio Kon, Kevin Korb, Gilad Koren, Andrej Krajnc, Henryk Krawczyk, Ben Kroese, Zbyszko Krolikowski,
Benjamin Kuipers, Matjaž Kukar, Aarre Laakso, Les Labuschagne, Ivan Lah, Phil Laplante, Bud Lawson, Herbert
Leitold, Ulrike Leopold-Wildburger, Timothy C. Lethbridge, Joseph Y-T. Leung, Barry Levine, Xuefeng Li,
Alexander Linkevich, Raymond Lister, Doug Locke, Peter Lockeman, Matija Lokar, Jason Lowder, Kim Teng
Lua, Ann Macintosh, Bernardo Magnini, Andrzej Małachowski, Peter Marcer, Andrzej Marciniak, Witold
Marciszewski, Vladimir Marik, Jacek Martinek, Tomasz Maruszewski, Florian Matthes, Daniel Memmi, Timothy
Menzies, Dieter Merkl, Zbigniew Michalewicz, Gautam Mitra, Roland Mittermeir, Madhav Moganti, Reinhard
Moller, Tadeusz Morzy, Daniel Mossé, John Mueller, Jari Multisilta, Hari Narayanan, Jerzy Nawrocki, Rance
Necaise, Elzbieta Niedzielska, Marian Niedq’zwiedziński, Jaroslav Nieplocha, Oscar Nierstrasz, Roumen
Nikolov, Mark Nissen, Jerzy Nogieć, Stefano Nolfi, Franc Novak, Antoni Nowakowski, Adam Nowicki, Tadeusz
Nowicki, Daniel Olejar, Hubert Österle, Wojciech Olejniczak, Jerzy Olszewski, Cherry Owen, Mieczyslaw Owoc,
Tadeusz Pankowski, Jens Penberg, William C. Perkins, Warren Persons, Mitja Peruš, Stephen Pike, Niki Pissinou,
Aleksander Pivk, Ullin Place, Gabika Polčicová, Gustav Pomberger, James Pomykalski, Dimithu Prasanna, Gary
Preckshot, Dejan Rakovič, Cveta Razdevšek Pučko, Ke Qiu, Michael Quinn, Gerald Quirchmayer, Vojislav D.
Radonjic, Luc de Raedt, Ewaryst Rafajlowicz, Sita Ramakrishnan, Kai Rannenberg, Wolf Rauch, Peter
Rechenberg, Felix Redmill, James Edward Ries, David Robertson, Marko Robnik, Colette Rolland, Wilhelm
Rossak, Ingrid Russel, A.S.M. Sajeev, Kimmo Salmenjoki, Pierangela Samarati, Bo Sanden, P. G. Sarang, Vivek
Sarin, Iztok Savnik, Ichiro Satoh, Walter Schempp, Wolfgang Schreiner, Guenter Schmidt, Heinz Schmidt, Dennis
Sewer, Zhongzhi Shi, Mária Smolárová, Carine Souveyet, William Spears, Hartmut Stadtler, Olivero Stock, Janusz
Stokłosa, Przemysław Stpiczyński, Andrej Stritar, Maciej Stroinski, Leon Strous, Tomasz Szmuc, Zdzislaw
Szyjewski, Jure Šilc, Metod Škarja, Jiřı Šlechta, Chew Lim Tan, Zahir Tari, Jurij Tasič, Gheorge Tecuci, Piotr
Teczynski, Stephanie Teufel, Ken Tindell, A Min Tjoa, Vladimir Tosic, Wieslaw Traczyk, Roman Trobec, Marek
Tudruj, Andrej Ule, Amjad Umar, Andrzej Urbanski, Marko Uršič, Tadeusz Usowicz, Romana Vajde Horvat,
Elisabeth Valentine, Kanonkluk Vanapipat, Alexander P. Vazhenin, Jan Verschuren, Zygmunt Vetulani, Olivier de
Vel, Valentino Vraníc, Jozef Vyskoc, Eugene Wallingford, Matthew Warren, John Weckert, Michael Weiss,
Tatjana Welzer, Lee White, Gerhard Widmer, Stefan Wrobel, Stanislaw Wrycza, Janusz Zalewski, Damir Zazula,
Yanchun Zhang, Ales Zivkovic, Zonling Zhou, Robert Zorc, Anton P. Železnikar

Informatica
An International Journal of Computing and Informatics

Archive of abstracts may be accessed at USA: http://, Europe: http://ai.ijs.si/informatica, Asia:
http://www.comp.nus.edu.sg/ liuh/Informatica/index.html.

Subscription Information Informatica (ISSN 0350-5596) is published four times a year in Spring, Summer,
Autumn, and Winter (4 issues per year) by the Slovene Society Informatika, Vožarski pot 12, 1000 Ljubljana,
Slovenia.
The subscription rate for 2003 (Volume 27) is
– USD 80 for institutions,
– USD 40 for individuals, and
– USD 20 for students
Claims for missing issues will be honored free of charge within six months after the publication date of the issue.

LATEX Tech. Support: Borut Žnidar, Kranj, Slovenia.
Lectorship: Fergus F. Smith, AMIDAS d.o.o., Cankarjevo nabrežje 11, Ljubljana, Slovenia.
Printed by Biro M, d.o.o., Žibertova 1, 1000 Ljubljana, Slovenia.

Orders for subscription may be placed by telephone or fax using any major credit card. Please call Mr. R. Murn,
Jožef Stefan Institute: Tel (+386) 1 4773 900, Fax (+386) 1 219 385, or send checks or VISA card number or use
the bank account number 900–27620–5159/4 Nova Ljubljanska Banka d.d. Slovenia (LB 50101-678-51841 for
domestic subscribers only).

Informatica is published in cooperation with the following societies (and contact persons):
Robotics Society of Slovenia (Jadran Lenarčič)
Slovene Society for Pattern Recognition (Franjo Pernuš)
Slovenian Artificial Intelligence Society; Cognitive Science Society (Matjaž Gams)
Slovenian Society of Mathematicians, Physicists and Astronomers (Bojan Mohar)
Automatic Control Society of Slovenia (Borut Zupančič)
Slovenian Association of Technical and Natural Sciences / Engineering Academy of Slovenia (Igor Grabec)
ACM Slovenia (Dunja Mladenič)

Informatica is surveyed by: AI and Robotic Abstracts, AI References, ACM Computing Surveys, ACM Digital
Library, Applied Science & Techn. Index, COMPENDEX*PLUS, Computer ASAP, Computer Literature Index,
Cur. Cont. & Comp. & Math. Sear., Current Mathematical Publications, Cybernetica Newsletter, DBLP Computer
Science Bibliography, Engineering Index, INSPEC, Linguistics and Language Behaviour Abstracts, Mathematical
Reviews, MathSci, Sociological Abstracts, Uncover, Zentralblatt für Mathematik

The issuing of the Informatica journal is financially supported by the Ministry of Education, Science and Sport, Trg
OF 13, 1000 Ljubljana, Slovenia.

Volume 27 Number 1 April 2003 ISSN 0350-5596

Introduction 1
A Decentralized Approach to the Integration of Life
Science Web Databases

Z.B. Miled, N. Li, M.
Baumgartner, Y. Liu

3

doMosaic - Analysis of the mosaic-like domain
arrangements in proteins

D.T. Gerrard,
E. Bornberg-Bauer

15

Mining and Validating Gene Expression Patterns: an
Integrated Approach and Applications

S.-M. Tseng, C.-P. Kao 21

Fault detection and isolation using hybrid parameter
estimation and fuzzy logic residual evaluation

B. Athamena,
H.A. Abbassi

29

Practical Construction for Multicast Re-keying
Schemes using R-S Code and A-G Code

C.-Y. Bai,
R. Houston,
G.-L. Feng

39

Building and managing software reuse libraries Z. Houhamdi 49
Deriving self-stabilizing protocols for services
specified in LOTOS

M. Kapus-Kolar 57

Embedding Complete Binary Trees into Faulty
Flexible Hypercubes with Unbounded Expansion

J.-C. Lin
S.K.C. Lo

75

Supporting the development of time-triggered
co-operatively scheduled (TTCS) embedded
software using design patterns

M.J. Pont 81

The GAT Approach to Specifying Mixed Systems J.-C. Royer 89
An Algorithm for Computing the Optimal Cycle
Time of a Printed Circuit Board Assembly Line

D.M. Kodek
M. Krisper

105

	27-1--000-Title.pdf
	27-1--003-14.pdf
	27-1--105-114.pdf
	27-1--15-20.pdf
	27-1--1-Introduction.pdf
	27-1--21-27.pdf
	27-1--29-37.pdf
	27-1--39-47.pdf
	27-1--49-55.pdf
	27-1--57-73.pdf
	27-1--75-80.pdf
	27-1--81-88.pdf
	27-1--89-103.pdf
	27-1--999-Back.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

