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This paper investigates dynamic anomaly detection in resource-constrained environments by leveraging
Robust Random Cut Forests (RRCF). Anomaly detection is crucial for maintaining the integrity and se-
curity of data streams in Internet of Things (IoT) environments, where data is continuously generated and
often subject to noise and fluctuations. We begin with a comprehensive exploration of resilient random
cut data structures tailored for analyzing incoming data streams, highlighting their effectiveness in adapt-
ing to the dynamic nature of IoT.Our methodology encompasses extensive experimentation with diverse
datasets, including real-time Arduino data and benchmark datasets such as IoT-23 and CIC-IoT. Through
this approach, we assess the performance of the RRCF algorithm under various scenarios, focusing on
its capability to accurately identify trends and anomalies over time. Notably, we achieve significant per-
formance improvements, with an average Area Under the Curve (AUC) of 95.6 and an F1 score of 0.86,
demonstrating RRCF’s effectiveness in real-time anomaly detection.To further enhance detection accuracy,
we introduce dynamic thresholds that adapt to changing data characteristics, allowing our model to main-
tain robust performance even in the presence of noise. Detailed evaluations reveal that our approach
consistently outperforms existing state-of-the-art methods, particularly in terms of handling noisy data
and ensuring computational efficiency under resource constraints.The findings underscore the potential of
RRCF as a powerful tool for real-time applications within IoT systems, providing a solid theoretical foun-
dation for future advancements in dynamic anomaly detection. By investigating non-parametric anomalies
and analyzing the influence of external factors on data integrity, we uncover hidden patterns amidst dy-
namic fluctuations. This research emphasizes the need for adaptive strategies in evolving data landscapes,
laying the groundwork for enhanced resilience and accuracy in anomaly detection methodologies. In sum-
mary, this study presents a novel approach that integrates theoretical insights, updating strategies, and
empirical experimentation, making a valuable contribution to the field of anomaly detection in resource-
constrained environments. The implications of our work extend beyond theoretical foundations, offering
practical solutions for real-time monitoring and anomaly detection in complex, dynamic systems.

Povzetek: V prispevku je predstavljen algoritem Robust Random Cut Forest (RRCF) za dinamično zazna-
vanje anomalij v IoT okoljih z omejenimi viri, ki izboljša natančnost in učinkovitost detekcije.

1 Introduction
Recent advancements in the Internet of Things (IoT) have
transformed urban management and environmental moni-
toring. For example, Bourougaa-Tria et al. (2021)[13] de-
veloped the SPubBin, a smart waste management solution
that employs deep learning for efficient waste sorting, ad-
dressing urban waste challenges. Similarly, Ali (2021)[14]
proposed an IoT-based framework for real-time air quality
monitoring in smart cities. These innovations highlight the
need for adaptive technologies, such as Robust RandomCut
Forests, to effectively detect anomalies and support sustain-
able urban environments. Anomaly detection presents a
significant challenge in data mining, particularly with the
proliferation of data generated by sensors and the Internet
of Things (IoT). Unlike traditional datasets, data streams in
IoT environments are inherently dynamic, complicating the

identification of consistent patterns. This raises two funda-
mental questions: how do we identify anomalies, and what
methodologies are most effective for analyzing such data?

To identify outliers, we must assess the complexity of
the data. An outlier is defined as an observation that con-
tributes disproportionately to the complexity of the dataset.
We must also consider the phenomenon of ”outlier mask-
ing,” whereby the presence of duplicate observations ob-
scures the detection of true outliers. Rapid identification
methods are critical for managing continuously evolving
data streams.

Additionally, we evaluate a methodology proposed by
Liu et al. [2], which has been noted for its effectiveness
by Emmott et al. [3]. Although this approach is relatively
novel in the context of anomaly detection, randomization
techniques are already well-established in various forms of
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machine learning. However, Liu et al.’s method exhibits
limitations, particularly in its ability to detect significant
anomalies amidst high dimensionality. Consequently, al-
ternative strategies, such as those advanced by Tan et al.
[4], have also demonstrated shortcomings in effectively
handling streaming data.
The inherently variable nature of data streams compli-

cates anomaly detection efforts, underscoring the necessity
of developing robust methodologies that can adapt to these
changes. Traditional analytical approaches often fail to per-
form adequately in this context. While Liu et al.’s method
shows potential, its limitations—especially regarding high
dimensionality—must be addressed. Previous approaches,
such as those proposed by Tan et al., have similarly strug-
gled with identifying anomalies in dynamic datasets.
Real-time anomaly detection necessitates efficient mech-

anisms for assessing the complexity of data as it evolves.
This implies that any effective methodology must be ca-
pable of accommodating updates and changes with agility.
The success of an anomaly detection system is contingent
upon its ability to keep pace with incoming data. Explo-
ration of supplementary domains, such as data simplifica-
tion and unsupervised pattern recognition, may yield ad-
vancements in anomaly detection methodologies.
Furthermore, it is important to explore the applicabil-

ity of these techniques across various sectors, including fi-
nance, healthcare, and cybersecurity. Anomaly detection
frameworks must be tailored to meet the specific require-
ments of each industry.
Therefore, the detection of anomalies in dynamic

datasets is a formidable challenge that necessitates the de-
velopment of innovative approaches. We require method-
ologies that can swiftly adapt to evolving data while main-
taining effectiveness in anomaly detection. Although ran-
domized techniques appear promising, further research is
essential to enhance their applicability to streaming data.
Drawing insights from other fields and addressing real-
world challenges will contribute to the advancement of
anomaly detection systems in the future.

2 Background and related work

An essential aspect of many applications is anomaly de-
tection, which requires sophisticated algorithms capable of
handling the complexities inherent in dynamic and intri-
cate datasets. In this literature review, we delve into the
development of anomaly detection algorithms, with a pri-
mary focus on understanding the fundamentals of Isolation
Forest (iForest)[1], Random Cut Forest (RCF)[6], and their
relevance to anomaly detection endeavors [5].The Isola-
tion Forest method, pioneered by Liu, Ting, and Zhou in
2008[7], presents a groundbreaking approach to anomaly
identification distinguished by its simplicity and efficacy.
Central to this method is the concept that anomalies are
typically ”few and different” from the majority of typical
cases within a dataset. The innovation lies in the use of iso-

lation trees (iTrees), binary tree structures efficiently isolat-
ing anomalies.
Isolation trees are constructed in such a way that anoma-

lies, being scarce and distinct, tend to be isolated closer to
the tree’s root. This is achieved through random selection of
features and thresholds followed by recursive splitting un-
til each data point is isolated in a leaf node. The method’s
departure from traditional distance or density-based ap-
proaches contributes to its computational efficiency, par-
ticularly suited for high-dimensional datasets.
The Isolation Forest laid the foundation for subsequent

advancements in anomaly detection, notably the Recursive
Random Cut Forest (RRCF), which enhances the origi-
nal approach’s resilience and adaptability through ensem-
ble learning and randomization, beneficial for noisy or dy-
namic data.

2.1 Random cut forest (RCF)
Random Cut Forest, developed by Amazon Web Services
(AWS)[8], is designed for anomaly detection in high-
dimensional datasets. It leverages recursive partitioning,
akin to Isolation Forest, efficiently isolating anomalies
by recursively splitting data based on randomly selected
features and thresholds. RCF excels in managing high-
dimensional datasets where traditional approaches may fal-
ter due to the ”curse of dimensionality,” offering flexibility
in anomaly detection methods beyond density or distance-
based techniques.
RCF’s effectiveness in handling anomalies in high-

dimensional settings and its versatility in employing ran-
dom partitioning make it a noteworthy addition to anomaly
detectionmethodologies. Moreover, it lays the groundwork
for advancements such as Recursive Random Cut Forest
(RRCF), which builds upon RCF’s principles through en-
semble learning and randomization, enhancing its adapt-
ability to noisy or dynamic data scenarios.
Therefore, the Isolation Forest, and Random Cut For-

est methods contribute significantly to the landscape of
anomaly detection, offering diverse methodologies capa-
ble of handling complex and dynamic datasets. These ap-
proaches pave the way for further advancements such as
RRCF, enabling more robust anomaly detection in real-
world applications.
Exploring the practical uses and case studies of Isolation

Forest (iForest) and Random Cut Forest (RCF) in anomaly
detection reveals their broad applicability across different
fields. iForest, for instance, proves highly effective in net-
work security by swiftly identifying unusual patterns in net-
work traffic, aiding in spotting advanced cyber threats like
insider attacks and zero-day vulnerabilities. In industrial
settings, iForest helps monitor equipment health and de-
tect anomalies in sensor data, supporting preventive main-
tenance efforts. Its ability to spot anomalies in transac-
tion data[10] also makes it valuable in finance, assisting in
detecting fraudulent activities such as unauthorized credit
card usage and money laundering, and adapting to chang-
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ing financial patterns. IForest, designed for constrained
computing environments, optimizes memory use and han-
dles streaming data effectively, aiding in anomaly detec-
tion while coping with limited resources. Its efficiency in
handling real-time streaming data makes it useful for In-
ternet of Things (IoT) applications, adapting to dynamic
data patterns[9]. RCF, proficient in identifying anomalies
in high-dimensional datasets, finds applications in image
analysis and cybersecurity, helping uncover new threats
while scaling well for large datasets in big data analytics.
The choice between these algorithms depends on the spe-
cific needs of each application domain. Table 1 shows sum-
mary of related works.

3 Methodology
In this section, we outline the key terminologies and
methodology steps utilized in the Random Cut Forest
(RCF) algorithm. These terms elucidate the fundamental
components and processes involved in anomaly detection
using Robust Random Cut Forest.
Terminologies
Isolation Tree: This refers to a binary tree structure gen-

erated from randomly selected subsets of data, serving as a
foundational element in RCF. Isolation trees are pivotal for
effectively isolating anomalies by constructing simple trees
with shallow depths, emphasizing the separation of irregu-
larities.

Path Length: Path length represents the number of nodes
or branches traversed in an isolation tree to reach a specific
data point. Shorter path lengths indicate greater isolation
within the tree, with anomalies typically exhibiting signifi-
cantly shorter path lengths.

Average Path Length: This metric denotes the average
distance traveled by a data point across all isolation trees in
the forest, serving as a measure of deviation from the norm.
Shorter average path lengths suggest a higher likelihood of
a data point being anomalous.

Anomaly Score: Anomaly score is a numerical represen-
tation of the degree to which a data point deviates from the
norm. Higher scores indicate a greater probability of a data
point being an outlier, calculated based on the typical path
length.

Z-score Normalization: This statistical approach trans-
forms anomaly scores into standard scores (Z-scores) with a
mean of 0 and a standard deviation of 1. Z-score normaliza-
tion provides a standardized scale for comparing anomaly
scores consistently.

Ensemble of Trees: It refers to a collection of isolated
trees forming the Random Cut Forest. This ensemble tech-
nique amalgamates judgments from multiple trees, enhanc-
ing the resilience and accuracy of anomaly identification.

Consensus Choice: This is the final decision made by
the ensemble based on the collective agreement of individ-
ual trees. Consensus choice strengthens anomaly detection
by identifying data points as abnormal consistently across

multiple trees.
Dynamic Thresholds: Dynamic adjustment of anomaly

detection thresholds in response to changing circumstances
or requirements. Dynamic thresholds enable the model to
adapt to evolving data properties, enhancing flexibility in
anomaly identification.

Robust Random Cut Forest (RRCF): An extension of
RCF designed to handle noisy data and outliers more ef-
fectively, enhancing the resilience of the anomaly detection
process.
The methodology for implementing the Robust Random

Cut Forest (RRCF) algorithm involves several key steps,
each contributing to the effective detection of anomalies in
data. Below, we delineate these steps in a systematic man-
ner, emphasizing their significance and practical applica-
tion.
Initialization of the RRCF Model
by initializing the RRCFmodel with user-defined param-

eters, setting the stage for subsequent operations.
Construction of Isolation Trees
Randomly select subsets of the dataset to construct iso-

lation trees, employing recursive binary splitting to create
binary tree structures. Continue splitting nodes until reach-
ing a predefined maximum tree depth or isolating all data
points in leaf nodes, ensuring anomalies have shorter path-
ways through the trees.
Creation of an Ensemble of Trees
Construct multiple isolation trees independently, each

trained on a distinct subset of random data, to form an en-
semble. Utilize parallelization for efficient ensemble cre-
ation, enhancing the model’s capacity to identify anomalies
through diverse perspectives.
Calculation of Anomaly Scores
For each data point, calculate the route length within

each isolation tree, representing its isolation within the tree.
Compute the average path length across all trees to assign
anomaly scores to data points based on their deviation from
the norm.
Z-score Normalization
Normalize anomaly scores using Z-score normalization,

transforming them into standardized scores with a mean of
0 and a standard deviation of 1. This standardization fa-
cilitates interpretation and comparison of anomaly scores
across the dataset.
Determination of Anomaly Detection Threshold
Set an anomaly detection threshold on the Z-score scale

to classify data points as either abnormal or typical. Ad-
just the threshold based on domain knowledge, statistical
methods, or dynamic modifications to balance sensitivity
and specificity in anomaly detection.
Consensus Decision Making
Evaluate each data point’s Z-score against the threshold

to identify anomalies. Reach a consensus decision based on
widespread agreement among the ensemble, bolstering the
detection of irregularities.
Dynamic Threshold Adjustment
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Table 1: Summary table of related work
Reference Technique Employed Datasets Used Results

Liu et al. (2010) [7] Isolation Forest, KNN Hbk and Wood iForest AUC = 1.00

Hariri et al. (2021)
[5]

Standard and extended Isolation
Forest, random cut forest

Benchmark Dataset AUC ROC: iForest =
0.919, EIF = 0.999;
AUC PRC: iForest =
0.800, EIF = 0.999

Optionally employ dynamic thresholding to adapt the
anomaly detection threshold to changing data patterns over
time. This dynamic adjustment enhances the model’s re-
silience to evolving data properties.
Interpretation of Results
Analyze detected anomalies and associated scores, con-

sidering the ensemble’s consensus decision for a compre-
hensive understanding of anomalous status. Evaluate the
impact of threshold decisions on false positives and false
negatives to refine anomaly detection accuracy.
Model Evaluation, Tuning, Deployment, and Moni-

toring
Evaluate model performance using metrics such as pre-

cision, recall, F1 score, and ROC-AUC, and tune hyper-
parameters using techniques like grid search and cross-
validation. Deploy the trained RRCF model in produc-
tion settings for real-time anomaly detection, implementing
monitoring systems to adapt to evolving data patterns. Con-
tinuous monitoring ensures the model’s continued accuracy
amidst changing data distributions.
Algorithm: Tree Node Deletion
Input: Root of the Tree (root), key to be deleted (key)

1. Is the root NULL?

2. If yes, return NULL (tree is empty)

3. If no, proceed:

(a) Is the key less than the root’s key?
(b) If yes, set the root’s left to the result of deleting

the key from the left subtree.
(c) Else, is the key greater than the root’s key?
(d) If yes, set the root’s right to the result of deleting

the key from the right subtree.
(e) Else, the root is the node to be deleted.
(f) If the root has only one child:

i. Set temp to the root.
ii. Set the root to the non-empty child or null.
iii. Free the memory of temp.

(g) If the root has two children:
i. Set the root’s key to the smallest key in the
right subtree.

ii. Set the root’s right to the result of deleting
the smallest key from the right subtree.

iii. Update the tree after deletion.

4. End.

Bounding Box Update
Algorithm: Bounding Box Update
Input: Existing Bounding Box (originalBox), New

Point (newPoint)

1. For each dimension i:

(a) Adjust the min value: mini =
min(originalBox.mini, newPointi)

(b) Adjust the max value: maxi =
max(originalBox.maxi, newPointi)

2. Output the adjusted bounding box.

3. End.

Bounding Cut Generation
Algorithm: Bounding Cut Generation
Input: Adjusted Bounding Box

1. Generate a random number r in the range [0, Sum of
adjusted box range].

2. Determine the dimension j based on r.

3. Output the randomly chosen dimension j.

4. End.

Node Insertion
Algorithm: Node Insertion

1. Is the tree empty? (root is null)

2. If yes:

(a) Create a new node with the new point.
(b) Return the new node.

3. If no:

(a) Calculate the bounding box for existing points.
(b) Adjust the bounding box based on the new point.
(c) Choose a random number within a specified

range.
(d) Determine the cut position using the random

number.
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(e) Evaluate the cut and update the tree.

4. Does the cut separate the existing points and the new
points?

5. If yes:

(a) Create a node with one side as the new point and
the other side as the existing tree.

(b) Return the updated tree.

6. If no:

(a) Use the same dimension and cut values as the
existing tree in T(S ∪ p).

(b) Recursively insert the new point into the appro-
priate subtree.

(c) Return the updated tree.

7. End.

Cut Position Determination
Algorithm: Cut Position Determination
Input: Adjusted Bounding Box (adjust box), Random

number r

1. Initialize cumulative range sum to 0:
cumulative sum = 0

2. For each dimension i:

(a) Update cumulative sum: cumulative sum =
cumulative sum+ adjust box.rangei

(b) If cumulative sum ≥ r, then determine the cut
position in dimension i.

3. End.

Evaluate Cut and Update Tree
Algorithm: Evaluate Cut and Update Tree
Input: Existing Tree (root), New Point (newPoint), Cut

Point (cutpoint)

1. If the cut position separates existing points and new
points:

(a) Create a node with one side as the new point and
the other side as the existing tree.

(b) Output: Updated Tree.

2. If the cut position does not separate existing points and
new points:

(a) Use the same dimension and cut value as the ex-
isting tree in T(S ∪ p).

(b) Recursively insert the new point into the appro-
priate subtree.

(c) Output: Updated Tree.

3. End.

Algorithmic evaluation in Robust Random Cut Forest
(RRCF)
In the Robust Random Cut Forest (RRCF) algorithm,

several key procedures are employed to construct and ma-
nipulate the underlying tree structure for effective anomaly
detection. The Tree Node Deletion algorithm facilitates
the removal of specific nodes from the tree while preserv-
ing its integrity and connectivity. This is crucial for main-
taining the accuracy of anomaly detection in dynamically
changing datasets. The Bounding Box Update algorithm
ensures that the bounding boxes associated with tree nodes
accurately reflect the spatial extent of the data points they
encapsulate. This is essential for optimizing the partition-
ing process and enhancing the efficiency of anomaly detec-
tion. Additionally, the Bounding Cut Generation algo-
rithm plays a pivotal role in randomly selecting dimensions
for tree splits, thereby introducing diversity and random-
ness into the tree construction process. The Node Inser-
tion algorithm governs the addition of new data points to
the tree, ensuring proper placement and adherence to es-
tablished partitioning rules. Furthermore, the Cut Position
Determination algorithm dynamically determines the po-
sition of cuts in the tree based on the distribution of data
points, contributing to the adaptability and robustness of
the RRCF algorithm. Finally, the Evaluate Cut and Up-
date Tree algorithm evaluates the impact of cuts on the tree
structure and updates it accordingly tomaintain balance and
efficiency. Together, these algorithms form the backbone
of the RRCF algorithm, enabling it to effectively identify
anomalies in complex and evolving datasets.

4 Results and evaluation

In the context of Robust Random Cut Forest (RRCF),
CoDisp (Conditional Dispersion) values play a pivotal
role as a metric for identifying anomalies within a dataset.
As CoDisp values increase, they signify a higher level of
dissimilarity or unpredictability in the behavior of corre-
sponding data points. This escalation in CoDisp values di-
rectly correlates with an increased probability of those data
points being categorized as anomalies. The graph visu-
ally represents this relationship, serving as a potent tool for
anomaly detection. Peaks in the graph denote specific re-
gions within the dataset where anomalies are more likely to
be present. These peaks act as distinctive markers, draw-
ing attention to areas of the data that significantly deviate
from expected patterns. In summary, the CoDisp graph
generated by RRCF provides an intuitive representation of
the dataset’s anomaly likelihood. By identifying peaks in
the graph, analysts and data scientists can efficiently pin-
point potential anomalies, facilitating the interpretation and
decision-making process in anomaly detection tasks.
The presented graphs illustrate the behavior of

Conditional Dispersion (CoDisp) values and their
log-transformed counterparts within the context of
anomaly detection using Robust Random Cut Forest
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Figure 1: Log(Codisp) and Codisp values vs index on RealTime Dataset

Figure 2: Log(Codisp) values vs index on IoT-23 Dataset

(RRCF). Key observations indicate that peaks or abrupt
changes in the Log(CoDisp) values signify regions where
anomalies are likely to occur. The red dashed line de-
notes the 90th percentile threshold of the original CoDisp
values, which serves as a critical reference for identifying
potential anomalies. The blue line represents the original
CoDisp values for each data point, with those exceeding
the 90th percentile threshold (highlighted in red) identified
as potential anomalies. These visualizations effectively fa-
cilitate the detection of anomalies within the dataset, with
the log transformation enhancing sensitivity to subtle vari-
ations in CoDisp values. The identification of peaks and
points where the threshold is crossed assists in pinpointing
areas of interest for further investigation.

Moreover, the graph depicting average CoDisp val-
ues provides a visual representation of the distribution
of anomaly scores across the dataset. Peaks in this graph
draw attention to data points exhibiting significantly el-
evated CoDisp values, which may indicate the presence
of anomalies. Analysts can utilize this graph to estab-

lish a cutoff point for identifying locations that deviate
from expected dispersion patterns. Data points falling out-
side this established range are regarded as potential anoma-
lies, reflecting abnormal behavior. The index of each data
point along the x-axis allows for a detailed analysis of the
dataset. Generally, higher average CoDisp levels are asso-
ciated with an increased likelihood of abnormalities. Con-
sequently, this graph serves as a valuable tool for visually
identifying potential outliers and deviations from the norm,
thereby facilitating rapid anomaly detection and subsequent
analysis.

Utilizing Robust Random Cut Forest (RRCF) for
anomaly identification across diverse processes, we con-
ducted a comprehensive analysis to assess the algorithm’s
performance in detecting anomalies within various datasets.
The findings, presented through a series of graphs, of-
fer valuable insights into the flexibility and anomaly de-
tection capabilities of RRCF. In constructing the anomaly
scores for individual data points, RRCF forests were estab-
lished, and average CoDisp values were determined. These
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Figure 3: Codisp values vs index on IoT-23 Dataset

CoDisp values were then juxtaposed with the results of
other established anomaly detection techniques, such as Lo-
cal Outlier Factor and Isolation Forest, enabling a thorough
examination and comparison of the outcomes.
The depicted anomaly detection process across multiple

processes underscores RRCF’s robust performance in un-
covering unique patterns and anomalies. Notably, RRCF
exhibits a proactive approach in identifying irregularities,
evident from the early peaks in the CoDisp values. This
characteristic aligns with the algorithm’s ability to detect
anomalies as they emerge, rendering it an invaluable tool
for applications requiring swift anomaly detection and re-
sponse.
Moreover, comparing RRCF’s performance with that of

other anomaly detection algorithms provides a comprehen-
sive perspective on its efficacy. The distinct colors repre-
senting algorithmically labeled outliers in the scatter plots
facilitate visual assessment of each algorithm’s anomaly
identification process.
The concluding subplot, dedicated solely to RRCF, em-

phasizes the algorithm’s unique contribution. Here, a dy-
namic threshold set at the 85th percentile of average CoDisp
values distinguishes irregular data points from regular ones,
enhancing the interpretability of findings and aiding in the
localization of significant anomalies within the dataset.
In summary, the visualizations underscore RRCF’s

adaptability and reliability in identifying anomalies across
diverse processes. With its capacity for early warnings and
adaptability to varied data features, RRCF emerges as a
potent solution for real-time anomaly detection, ensuring
swift and accurate identification across a range of applica-
tions.

5 Experimental evaluation
In this experimental evaluation of the Robust Random
Cut Forest (RRCF) approach, we assessed its performance
across three distinct datasets: IoT-23,CIC-IoT dataset, and
a real-time dataset generated by Arduino. The objec-
tive was to analyze the algorithm’s efficacy in identify-
ing anomalies across varied data sources and environmental
constraints. The investigation yielded several key insights
into RRCF’s functionality and adaptability.

5.1 Dataset description and selection
rationale

In this section, we provide a detailed description of the
datasets used in our experiments and explain the rationale
behind their selection for evaluating the proposed anomaly
detection method.

5.1.1 IoT-23 dataset

The IoT-23 dataset simulates a realistic Internet of Things
(IoT) environment, encompassing 23 distinct types of cy-
berattacks, including network intrusions and malicious ac-
tivities. This dataset offers a rich resource for testing
anomaly detection algorithms due to its diversity in attack
types. Key characteristics of the dataset include:

– Data Volume: The dataset consists of a substantial
amount of network traffic, captured over several days,
which includes numerous attributes such as source and
destination IP addresses, port numbers, and communi-
cation protocols.
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Figure 4: Codisp values vs index on CIC-IoT Dataset

– Challenges: Real-world IoT environments often ex-
hibit noise and variability in traffic patterns, making
the detection of anomalous behavior more challeng-
ing. These characteristics render the IoT-23 dataset an
ideal candidate for assessing the robustness of our pro-
posed approach under such conditions.

5.1.2 CIC-IoT dataset

The CIC-IoT dataset was specifically designed to assess se-
curity solutions in IoT networks. It contains both normal
traffic and malicious traffic that simulates a wide range of
IoT security threats. Noteworthy characteristics include:

– Data Composition: The dataset records detailed net-
work flows, with attributes such as timestamps, packet
sizes, and flow durations, capturing both benign and
malicious activities across IoT devices.

– Challenges: The presence of overlapping characteris-
tics between different attack types, such as Distributed

Denial of Service (DDoS) and botnet attacks, requires
sophisticated anomaly detection mechanisms to accu-
rately differentiate between normal and malicious be-
haviors.

5.1.3 Rationale for dataset selection

The IoT-23 and CIC-IoT datasets were selected based on
their alignment with the core objectives of this study, which
focuses on resource-constrained anomaly detection in IoT
environments. Key reasons for this selection include:

– Real-World Relevance: Both datasets replicate real-
world IoT network conditions, including the chal-
lenges of handling diverse data under resource limita-
tions. This provides a practical testing ground for the
proposed Robust RandomCut Forest (RRCF) method,
which aims to achieve high detection accuracy with
minimal computational overhead.

– Diversity of Attack Scenarios: These datasets en-
compass a wide variety of attack types, ensuring
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that the proposed method is evaluated across multiple
threat scenarios, providing comprehensive insight into
its performance.

– Benchmarking for Resource Constraints: By using
datasets that simulate large-scale, noisy IoT environ-
ments, we can benchmark the efficacy of the RRCF in
real-time anomaly detection, especially in situations
where computational resources are constrained.

By leveraging the IoT-23 and CIC-IoT datasets, this
study provides a thorough evaluation of the proposed
anomaly detection approach, ensuring that it is robust,
adaptable, and capable of handling the complexities of real-
world IoT networks.
RRCF demonstrated remarkable capabilities in detect-

ing anomalies across diverse datasets, exhibiting reliability
and robustness in its performance. Particularly notewor-
thy was its exceptional performance when applied to the
real-time dataset generated by Arduino under constrained
conditions. Despite the limited data availability and rapid
data point generation characteristic of this dataset, RRCF
outperformed its counterparts, showcasing heightened sen-
sitivity to anomalies within the real-time stream. This im-
pressive performance underscores RRCF’s ability to excel
in challenging scenarios and highlights its potential as a
leading anomaly detection solution for applications requir-
ing real-time monitoring.
Comparative analysis of RRCF’s performance against

other anomaly detection algorithms provided a compre-
hensive understanding of its effectiveness. The visualiza-
tions, including scatter plots depicting algorithmically la-
beled outliers, facilitated a detailed assessment of each al-
gorithm’s anomaly identification process.
In conclusion, the results of this investigation underscore

the adaptability and reliability of RRCF, particularly in sce-
narios with real-time constraints. As such, RRCF emerges
as a promising option for applications where accurate and
prompt anomaly detection is paramount.

5.2 Detailed discussion of evaluation metrics
In this section, we discuss the key evaluation metrics used
to assess the performance of the proposed anomaly detec-
tion method, along with the strategies for setting detection
thresholds and ensuring statistical robustness.

5.2.1 Precision, recall, F1 score, and AUC

The following metrics were employed to comprehensively
evaluate the efficacy of the proposed approach:

– Precision: Precision measures the proportion of true
positives relative to the total predicted positives. It is
particularly important in anomaly detection, where a
high precision indicates fewer false positives, thus re-
ducing unnecessary alerts or the misallocation of re-
sources.

– Recall: Also known as sensitivity, recall represents
the proportion of actual positives correctly identified
by the model. In security-sensitive applications, high
recall ensures that genuine threats are not missed,
making it a critical metric for evaluating the model’s
detection capability.

– F1 Score: The F1 score is the harmonic mean of
precision and recall, providing a balanced metric of
the model’s performance. This measure is particu-
larly useful in imbalanced class distributions, as of-
ten encountered in anomaly detection scenarios, where
the number of normal instances vastly outnumbers
anomalies.

– Area Under the Curve (AUC): AUC evaluates the
performance of the classifier across all possible thresh-
olds. A higher AUC value indicates a better ability of
the model to differentiate between normal and anoma-
lous instances, providing a comprehensive measure of
classification effectiveness.

5.2.2 Setting thresholds for anomaly detection

The choice of detection thresholds plays a pivotal role in
balancing precision and recall, directly impacting the sensi-
tivity and specificity of the model. We adopted a systematic
approach to threshold setting based on the characteristics of
the datasets and the anomalies they contain.
Initial analyses were conducted to determine the opti-

mal threshold values that maximized the F1 score. Experi-
ments were performed using different threshold values, and
their impact on precision and recall was carefully evaluated.
By analyzing these results, we identified a threshold that
minimizes false positives while maintaining high detection
rates, ensuring an effective balance between sensitivity and
specificity.

5.2.3 Statistical robustness of metrics

To ensure the reliability and validity of our evaluation
metrics, multiple runs of the RRCF algorithm were con-
ducted across various random seed values. For each dataset,
five experimental runs were executed, and the perfor-
mance metrics—precision, recall, F1 score, and AUC—
were recorded for each run.
The metrics were then averaged across these runs to ob-

tain robust estimates of the model’s performance, minimiz-
ing the effects of randomness in the data. This averaging
process provides a more stable and generalizable measure
of the algorithm’s effectiveness. Additionally, paired t-tests
were employed to assess the statistical significance of dif-
ferences observed in performance across different configu-
rations, further reinforcing the credibility of our findings.
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5.2.4 Summary of performance metrics across
thresholds

To summarize, Table 2 presents the performance metrics—
Precision, Recall, F1 Score, and AUC—across different
detection thresholds. These metrics were averaged across
multiple runs to ensure robustness.

Table 2: Simple Performance Metrics
Threshold Precision Recall F1 Score AUC

0.1 0.75 0.60 0.67 0.85
0.2 0.80 0.70 0.75 0.88
0.3 0.85 0.80 0.82 0.90

As shown in the table, the F1 score, which balances pre-
cision and recall, increases as the threshold rises, reflect-
ing improved detection accuracy with higher thresholds.
AUC values also show consistent improvement, indicat-
ing stronger model performance in distinguishing between
classes as the threshold is adjusted.

6 Comparative performance
evaluation

In anomaly detection or classification tasks, several metrics
are used to evaluate the performance of machine learning
models. Precision, which measures the accuracy of posi-
tive predictions, indicates the proportion of correctly pre-
dicted positive instances among all instances predicted as
positive. A high precision suggests that the model’s posi-
tive predictions are mostly correct, minimizing false pos-
itives. Recall, on the other hand, assesses the ability of
the model to capture all positive instances in the dataset.
It represents the proportion of correctly predicted positive
instances among all actual positive instances. A high recall
indicates that the model can effectively identify most pos-
itive instances, minimizing false negatives. The F1 score
combines precision and recall into a single metric, provid-
ing a balance between the two. It is the harmonic mean of
precision and recall and is useful when there is an uneven
class distribution. Additionally, the AUC(Area Under the
ROC curve) score, which represents the area under the re-
ceiver operating characteristic (ROC) curve, measures the
model’s ability to distinguish between positive and negative
instances across various discrimination thresholds. A high
AUC score indicates good overall performance in classifi-
cation tasks, with higher scores indicating better discrimi-
nation ability. These metrics collectively provide insights
into the model’s performance, helping to assess its effec-
tiveness in identifying anomalies or classifying instances
accurately.
Dataset for Performance Evaluation The IoT-23

dataset[12] serves as a benchmark dataset in the field of
cybersecurity, specifically tailored for evaluating anomaly
detection algorithms in Internet of Things (IoT) networks.
It comprises network traffic data collected from 23 distinct

IoT devices across various scenarios, encompassing nor-
mal operational behavior as well as different types of cy-
ber attacks such as Mirai botnet, DoS, and DDoS attacks.
With its diverse range of network traffic patterns, the IoT-
23 dataset enables researchers to assess the efficacy and re-
silience of anomaly detection techniques in identifying both
known and unknown threats within IoT environments.
In contrast, the CIC-IoT dataset[11] is designed as a com-

prehensive dataset for evaluating intrusion detection sys-
tems (IDS) within IoT settings. It is derived from a real-
istic IoT network setup featuring multiple IoT devices and
captures network traffic under various conditions, includ-
ing normal operation and a variety of attacks such as DoS,
DDoS, and brute-force attacks. The dataset offers detailed
insights into IoT network traffic characteristics, including
packet headers, payloads, and metadata, facilitating thor-
ough analysis and evaluation of IDS algorithms. With its
realistic and diverse nature, the CIC-IoT dataset serves as a
valuable resource for researchers and practitioners seeking
to develop and assess intrusion detection solutions tailored
for IoT environments.
The performance of anomaly detection algorithms,RRCF

and Isolation Forest, was evaluated on IoT-23 and CIC-
IoT 2023 datasets. Table 4 presents the anomaly detection
performance comparison on the real-time dataset generated
by Arduino. RRCF exhibited superior precision, recall, F1
score, and AUC score compared to its counterparts. Similar
comparisons were made on the IoT-23 and CIC-IoT 2023
datasets, as depicted in Tables 5 and 6, respectively.
Additionally, Figure 5 illustrates the final results ob-

tained from the experimental evaluation. The graph pro-
vides a visual representation of the performance metrics
across different algorithms and datasets, further highlight-
ing RRCF’s effectiveness in anomaly detection.
Overall, these results affirm RRCF’s reliability and effi-

cacy in identifying anomalies across various datasets and
environmental constraints, positioning it as a promising so-
lution for real-time anomaly detection applications.

7 Real-world prototypical
implementation

In pursuit of real-world applications for anomaly detec-
tion, a prototypical implementation was conducted using an
Arduino-based system equipped with four distinct sensors.
The objective was to gather data encompassing various
environmental parameters, ultimately generating a dataset
comprising 8,500 data points. Subsequently, the dataset
underwent anomaly detection utilizing the Robust Random
Cut Forest (RRCF) algorithm.
The selection of Arduino as the platform for this proto-

type implementation ensured a solution that is both practi-
cal and cost-effective for real-world scenarios. The incor-
poration of four sensors into the system provided insights
into a diverse array of environmental characteristics, en-
riching the dataset with comprehensive information.
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Table 3: Comparison of IoT-23 and CIC-IoT Datasets
Dataset Purpose Features Total Data Points

IoT-23 Anomaly Detection Packet headers, payloads, metadata 10 million
Various scenarios: normal and cyber attacks

Diverse range of traffic patterns

CIC-IoT Intrusion Detection Packet headers, payloads, metadata 16 million
Realistic IoT network setup

Includes normal operation and various attacks

Table 4: Anomaly detection performance comparison on the real-time dataset generated by Arduino.
Algorithm Precision Recall F1 Score AUC Score

RRCF 0.85 0.90 0.87 0.99
Isolation Forest 0.76 0.78 0.71 0.83

Technical details of arduino-based
implementation
Below, we provide a comprehensive overview of the hard-
ware setup and the technical details regarding the imple-
mentation of the real-time RRCF anomaly detection sys-
tem using an Arduino-based platform, sensor types, data
collection intervals, and the processing constraints associ-
ated with the prototype. This additional information aims
to improve the replicability of our case study for other re-
searchers and practitioners.

Hardware and sensors used

The prototypical implementation utilized an Arduino Uno
microcontroller, a widely used open-source platform that
is both affordable and easy to integrate with various sen-
sors. Four distinct sensors were interfaced with the Arduino
to capture a wide range of environmental parameters, con-
tributing to the creation of a diverse and informative dataset
for anomaly detection.

Data collection and processing details

The data collection intervals for each sensor were chosen to
balance real-time responsiveness with the Arduino Uno’s
processing and memory limitations. The sensors output
data at intervals ranging from 2 to 10 seconds, depending on
the type of environmental parameter being monitored. This
resulted in a dataset containing 8,500 data points, which
were recorded over multiple hours of continuous operation.
Given the constraints of the Arduino Uno, such as its

limited 2 KB SRAM and 16 MHz ATmega328P microcon-
troller, we designed the system to process data in real time
and transmit it via serial communication to an external com-
puter for analysis. The external machine, equipped with
sufficient computational power, handled the execution of
the RRCF algorithm. This architecture was chosen to over-
come the inherent limitations of Arduino in running com-

plex machine learning models like RRCF directly on the
board.

Handling processing power limitations

As mentioned, the Arduino Uno’s processing capabilities
are insufficient for running the RRCF algorithm natively.
Instead, the system was designed to function as a real-time
data collection device, while the actual anomaly detection
was performed on an external computational system. This
architecture is a practical compromise, enabling real-time
data monitoring and transmission for anomaly detection
without being constrained by the Arduino’s hardware limi-
tations.
To ensure efficient data transmission, we used a baud rate

of 9600, which provided a reliable communication rate be-
tween the Arduino and the external system without over-
whelming the serial buffer.
The effectiveness of the RRCF algorithm in detecting

anomalies amidst the complex and dynamic nature of real-
world sensor data was demonstrated through its application
to the gathered dataset. The algorithm’s ability to discern
anomalous patterns within the dataset highlights both its re-
silience and suitability for real-world application.

Figure 6: Real-Time Data Points Collection From Arduino
Board Sensors Under Anomaly Conditions
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Algorithm Precision Recall F1 Score AUC Score

RRCF 0.81 0.85 0.84 0.96
Isolation Forest 0.67 0.71 0.73 0.79

Table 5: Anomaly detection performance comparison on the IoT-23 dataset.

Figure 5: Anomaly Detection- Performance Comparison

Figure 7: Real-Time Data Points Collection From Arduino
Board Sensors Under Normal Conditions

This real-world prototypical implementation not only
serves as a testament to the adaptability of the RRCF al-
gorithm but also showcases the potential of such systems

across various disciplines, including environmental moni-
toring and industrial automation. The insights gleaned from
this implementation offer valuable perspectives on the prac-
ticality and reliability of applying anomaly detection in both
prototypical and real-world contexts.
Figure 6 depicts the real-time collection of data points

from Arduino board sensors under anomaly conditions,
while Figure 7 illustrates the collection of data points under
normal conditions.

8 Discussion
Justification for the Superiority of RRCF: Existing
anomaly detection methods, particularly those utilizing
techniques like Isolation Forests and traditional Random
Cut Forests, often fall short in adapting to the dynamic na-
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Table 6: Anomaly detection performance comparison on the CIC-IoT 2023 dataset.
Algorithm Precision Recall F1 Score AUC Score

RRCF 0.85 0.90 0.87 0.92
Isolation Forest 0.66 0.70 0.72 0.77

Table 7: Sensor Types and Data Collection Specifications
Sensor Type Parameter Monitored Data Collection Interval Data Range/Resolution
DHT22 Temperature, Humidity 5 seconds Temp: -40°C to 80°C, Humidity: 0-100% RH
MQ-2 Gas (Smoke, LPG, CO) 2 seconds 200-10,000 ppm sensitivity

BMP180 Atmospheric Pressure 10 seconds 300-1100 hPa (±1 hPa)
YL-69 Soil Moisture 5 seconds 0-1023 (Analog Range)

ture of resource-constrained environments. A significant
limitation is their reliance on static datasets and historical
data rather than real-time streaming data, which is essen-
tial for accurately identifying anomalies in rapidly changing
conditions typical of Internet of Things (IoT) applications.
Our approach, utilizing Robust Random Cut Forests

(RRCF), addresses these shortcomings by incorporating
real-time streaming data and contemporary datasets, such
as IoT-23 and CIC-IoT. These datasets reflect the complex-
ities and variabilities of actual IoT environments, including
varying levels of noise, fluctuating data patterns, and the
diverse nature of incoming data streams.
Key advantages of RRCF over state-of-the-art methods

include:

1. Adaptability to Dynamic Environments: RRCF is
designed to efficiently handle continuous data streams.
By leveraging robust random partitioning, it can adapt
to new data points in real time, ensuring timely de-
tection of anomalies without the need for retrain-
ing the entire model. This adaptability is crucial in
resource-constrained environments where computa-
tional resources and time are limited.

2. Enhanced Performance Metrics: Our experiments
demonstrate that RRCF consistently outperforms ex-
isting methods, achieving an average Area Under the
Curve (AUC) of 95.6 and an F1 score of 0.86. These
performance metrics illustrate RRCF’s effectiveness
in accurately identifying anomalies while maintaining
computational efficiency, especially in the presence of
noise.

3. Dynamic Thresholding: RRCF incorporates dy-
namic thresholds that adjust based on the evolving
characteristics of the incoming data. This feature
enhances detection accuracy, allowing the model to
maintain high performance despite fluctuations in data
quality and volume—an aspect often overlooked by
traditional methods.

4. Robustness Against Noise: Traditional methods of-
ten struggle with noisy data, leading to higher false
positive rates. RRCF, through its design, effectively

mitigates the impact of noise, ensuring that the identi-
fication of anomalies is reliable even under challeng-
ing conditions.

5. Real-World Applicability: By using datasets that
are representative of real-world IoT scenarios, our ap-
proach provides practical solutions that can be directly
applied in monitoring and securing IoT systems. This
relevance underscores the value of RRCF in advanc-
ing the field of anomaly detection, making it a vital
tool for real-time applications.

Conclusion

This study presents a pioneering approach to anomaly de-
tection in resource-constrained environments using robust
random cut forests. Through a detailed exploration of re-
silient random cut data structures, the research successfully
demonstrates the capability of these structures to handle dy-
namic data streams in Internet of Things environments. The
empirical evaluation, leveraging diverse datasets including
real-time Arduino data and publicly available sources, vali-
dates the effectiveness of the proposed methodology across
various scenarios. The theoretical contributions underscore
the necessity of adaptive techniques in ever-evolving data
landscapes, providing a strong foundation for future ad-
vancements. This work not only addresses the inherent
challenges of continuous data streams but also ensures ac-
curate identification of trends and anomalies over time. The
integration of theoretical insights, updating strategies, and
rigorous experimentation paves the way for further innova-
tions in dynamic anomaly detection, ultimately enhancing
data integrity in resource-constrained settings.
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