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Aiming at the problems of low prediction accuracy and single data type in traditional electric vehicle 

charging station load prediction models, an RF-CNN algorithm based on the combination of random 

forest algorithm and convolutional neural network is proposed to improve the accuracy and efficiency 

of electric vehicle charging station load prediction. The research first takes the state of charge of electric 

vehicles and charging stations as the research object to construct a load prediction model. Then it utilizes 

the designed algorithm to optimize model performance. Finally, different validation indicators are used 

to verify the predictive performance of the prediction model in the load of charging stations. During the 

performance experiment, data from 15 public electric vehicle charging stations in the second quarter of 

2022 were used. The experiment followed the steps of data preprocessing, feature selection, model 

training, and predictive evaluation. The specific results show that the RF-CNN algorithm achieves a 

prediction accuracy of 92.71%, significantly higher than BP's 85.16% and LSTM's 88.09%. The training 

loss is 11.34%, which is lower than the 38.06% of BP and 28.52% of LSTM. The average response speed 

is 42 milliseconds, demonstrating the efficiency of the algorithm. This indicates that the model has higher 

accuracy and robustness in load forecasting of electric vehicle charging stations, and could improve the 

operational efficiency of the power system. It has important application value in load analysis and 

prediction of electric vehicle charging stations. 

Povzetek: Predlagan je nov algoritem RF-CNN, ki združuje lastnosti naključnih gozdov (RF) in 

konvolucijskih nevronskih mrež (CNN) za izboljšanje napovedi obremenitev električnih vozil in s tem 

optimiranje delovanja polnilnih postaj.

1 Introduction 

With the increasingly serious environmental pollution 

problem, Electric Vehicles (EV) are widely promoted and 

used as a clean energy transportation tool. However, load 

analysis and forecasting of EV Charging Stations (CS) 

have become important topics for improving charging 

efficiency, optimizing charging strategies, and reducing 

energy waste. The load analysis and forecasting of EV CSs 

can help CS managers to arrange the use of charging 

facilities reasonably, improve charging efficiency, reduce 

user waiting time, and minimize the load pressure on the 

power grid [1-3]. However, the complexity of EV charging 

behavior and the unpredictability of EV user behavior, 

including factors such as charging time, charging time, and 

charging volume, pose challenges to load forecasting. In 

the related research on load analysis of EV CSs, a large 

number of new technologies have emerged, such as multi-

source data integration methods, which can improve 

prediction accuracy by combining meteorological, traffic 

flow and other data. The reinforcement learning 

optimization strategy technology can learn the optimal 

charging strategy through the interaction between the 

agent and the environment. Deep learning algorithms have 

powerful feature extraction capabilities, which are suitable 

for processing large-scale spatiotemporal data. Although 

various load forecasting methods have been proposed in 

existing research, there are still some limitations, such as 

insufficient handling of uncertainty in EV user behavior 

and insufficient utilization of multi-source data advantages 

in predictive models. In response to these issues, the 

research innovatively combines Random Forest (RF) and 

Convolutional Neural Network (CNN) to design the RF-

CNN algorithm. Compared with Long Short Term 

Memory (LSTM) networks, CNN is generally more 

computationally efficient when processing large amounts 

of data. The convolutional operations of CNNs are highly 

parallel and can be accelerated with modern computing 

hardware. In addition, when sliding across the entire input 

data, the parameters of the CNN convolution kernel are 

shared, which greatly reduces the number of model 

parameters, lowers the complexity of the model, and 

reduces the risk of overfitting. This algorithm combines 
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the characteristics of RFs and the advantages of CNNs to 

effectively process load data of EV CSs, improving 

prediction accuracy and efficiency. RFs can select and 

combine input features, extract important features from 

load data, reduce the impact of noise, and improve 

prediction accuracy. CNNs can automatically learn the 

spatial and temporal features of load data through multi-

layer convolution and pooling operations, further 

improving the accuracy of prediction [4-6]. Predicting the 

load of CSs will help improve their operational efficiency, 

further promote the development and application of EVs, 

and contribute to achieving clean energy transportation. 

The necessity of research lies in the fact that with the 

rapid popularization of EVs, accurately predicting the load 

of CSs has become particularly important. This is crucial 

for optimizing power resource allocation, reducing grid 

pressure, improving charging efficiency, and enhancing 

user experience. However, existing research has 

limitations in dealing with the uncertainty and complexity 

of EV charging behavior, especially in the comprehensive 

utilization of multi-source data and model generalization 

ability. The novelty of the research lies in: (1) processing 

and integrating data from different sources, which 

improves the model's understanding of charging behavior. 

(2) Using RF for feature selection and combination, 

effectively extracting key features from load data. (3) 

Automatically learning the spatial and temporal 

characteristics of load data improves prediction accuracy 

through multi-layer convolution and pooling operations. 

The first part of the study constructs a load 

forecasting model based on the SOC data. The second part 

optimizes the performance of the model using the RF-

CNN algorithm based on the constructed model. The third 

part tests the function of the constructed model for 

comment classification through simulation experiments 

and practical applications. The fourth part summarizes the 

experimental results and analyzes the advantages and 

disadvantages of the research method. 

2 Related works 

With the popularization of EVs and the continuous 

development of power systems, the analysis and 

forecasting of CS loads have become increasingly 

important. Accurate load analysis and forecasting 

contribute to better power dispatch and optimized resource 

allocation in the power system. Recently, many scholars 

have carried out in-depth research in related fields using 

deep learning algorithms. To provide a more stable EV CS 

system, Savari et al. designed a real-time forecasting 

system based on IoT technology collection servers. The 

system took the cost and time of charging as the research 

content and was designed using the PHP programming 

language. The results indicated that the system could 

markedly enhance the system stability and load forecasting 

ability of existing CSs [7]. Zhang et al. effectively 

combined fuzzy control with RBF-NN forecasting model 

to provide accurate load forecasting for EV CSs. The 

online correction and performance improvement of fuzzy 

control were analyzed. The outcomes showcase that the 

forecasting model could markedly enhanced the load 

forecasting accuracy of a single model [8]. Zhu et al. 

proposed a comparison method based on deep learning to 

solve the load fluctuations during the charging process of 

plug-in EVs. This method utilized minute level real data 

from plug-in EV CSs to establish a forecasting model. 

Several other methods were compared to verify their 

predictive performance. The outcomes showcased that this 

method could markedly enhance forecasting performance 

at different time steps under 12 working conditions, with a 

maximum forecasting error reduction of 30% [9]. Li et al. 

proposed an assisted deep learning framework that 

combined short-term and short-term memory method to 

predict the charging power of EVs. The study first used a 

learning framework to capture predictive data, and then 

trained the data using short-term and short-term memory. 

The comparison between this learning framework and real 

charging data showed that it could significantly improve 

the forecasting performance of charging behavior [10]. 

Chung et al. designed an RF-based forecasting 

charging method to predict the charging behavior of EVs. 

This study collected historical charging data and energy 

consumption data. The defined entropy and sparsity ratio 

were used as evaluation indicators. Compared with non-

coordinated charging, the combination of charging 

scheduling and algorithm forecasting could reduce peak 

load by 27%, load changes by 10%, and cost by 4% [11]. 

Wumaier et al. proposed a dynamic short-term Traffic 

Flow (TFL) forecasting method based on RF algorithm to 

solve traditional TFL forecasting. This method removed 

invalid data from the collected data, normalized available 

data, and completed data preprocessing before TFL 

forecasting. The outcomes showcased that the forecasting 

time of this method was relatively short, always less than 

0.5 seconds. The forecasting accuracy was high, reaching 

97% [12]. Huang et al. developed a hybrid model 

combined CNNs and variational modal decomposition to 

enhance effective regulatory capabilities and increase 

returns in power grid systems. This model collected 

historical data and extracted features from it, while 

inputting the data into the model for analysis and 

comparison. The outcomes demonstrated that the MAPE 

and RMSE of the model for the four seasonal averages 

were 0.730% and 0.453, respectively, indicating the 

feasibility and high accuracy of the model in predicting 

short-term electricity prices [13]. To effectively predict the 

electricity consumption in residential areas, Khan et al. 

designed a two-step method to predict the electricity load 

of residential buildings. This model first refined and 

trained the electricity consumption data, and then 

processed and analyzed the data using CNNs and multi-

layer bidirectional gated loop units. The outcomes 

showcased that the model reduced the errors in the 

Individual Household Electricity Consumption Prediction 

dataset (IHEPC), namely RMSE (5%), MSE (4%), and 

MAE (4%), as well as the Power Load Prediction dataset, 
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namely RMSE (2%) and MAE (1%) [14]. 

In summary, the research on load forecasting of EV 

CSs based on RF-CNN is of great significance. The 

combination of RF and CNN can effectively analyze and 

process the load data of CSs, and obtain load forecasting 

results. This study aims to provide stronger support for the 

EVs and enhance the development capacity of the new 

energy industry. The comparative analysis of related work 

and research methods is shown in Table 1. 

 

 
Table 1: Comparison of related work and research methods 

Authors & 

Year 
Main technology Key findings Research method gap 

Savari et al. 

[7] 
IoT-based forecasting system 

Enhanced system stability 

and load forecasting 

Limited generalization due to lack of 

algorithmic details 

Zhang et al. 

[8] 
Fuzzy control with RBF-NN 

Improved load forecasting 

accuracy 

Miss the advantage of deep learning 

in feature extraction 

Zhu et al. 

[9] 

Deep learning comparison 

method 

30% reduction in maximum 

forecasting error 

Need further exploration of 

adaptability to charging patterns 

Li et al. [10] 
Assisted deep learning 

framework 

Significantly improved 

predictive performance 

Require optimization for large-scale 

datasets 

Chung et al. 

[11] 

RF-based predictive charging 

method 
Reduced peak load and cost 

Need further research on 

spatiotemporal dynamics of charging 

Wumaier et 

al. [12] 

Stochastic forest algorithm for 

traffic flow forecasting 

High forecasting accuracy 

and speed 

Need to verify the stability of real-

world traffic flow 

Huang et al. 

[13] 

A hybrid model of CNN and 

variational mode 

decomposition 

Low MAPE and RMSE for 

electricity price forecasting 

Impact of market changes on 

forecasting needs further study 

Khan et al. 

[14] 

Two-step method for residential 

electricity load forecasting 

Reduced prediction errors in 

datasets 

Requires verification and adjustment 

for different building types 

 

In the existing technology, although various methods 

have been proposed for load prediction of EV CSs, they 

still have some limitations. For example, some models 

may perform poorly in dealing with uncertain EV user 

behavior, or fail to fully utilize the advantages of multi-

source data to improve prediction accuracy. In addition, 

existing technologies may lack computational efficiency 

and model generalization ability, which is particularly 

evident in large-scale datasets and dynamically changing 

charging environments. RF-CNN combines strong feature 

selection ability and robustness to noise, and further 

improves prediction accuracy by automatically learning 

spatial and temporal features of load data. Applying it to 

load prediction of EV CSs can effectively improve the 

prediction quality. 

 

3 Load analysis and prediction model 

construction of EV CSs on the 

ground of RF-CNN algorithm 
The load analysis and prediction model for EV CSs based 

on the RF-CNN algorithm is a deep learning algorithm. It 

can learn the characteristics and patterns of load from 

historical load data and used to predict future load 

situations. 

3.1 Data definition of prediction model 
When the load analysis and prediction model of EV CS is 

studied, the data involved in the model include charging 

state data, CS data, power data, time data, and 

environmental data. The charging state data refers to the 

charging state of the EV and reflects the current level of 

charge of the battery. CS data refers to the number of CSs, 

their location, and the status of currently available CSs. 

Power data refer to the charging power of the CS, 

including current power and historical power data. Time 

data refers to the specific time when the charging behavior 

occurs, including time characteristics such as hour, day, 

and week. Environmental data refers to environmental 

factors that may affect charging behavior, such as weather 

conditions, temperature, etc. 

 

3.2 Design of load data processing method of 

electric vehicle charging station 
To conduct load analysis on EV CSs, this study first 

collects and processes load data from the CSs. On this 
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basis, the construction of the load model is completed, 

providing data support for the CS load prediction model. 

The constructed load model for EV CSs first requires first 

calculates the usage time of the charging pile, which can 

determine the operating rules of the CS, analyze the 

charging behavior of EVs, and optimize charging 

strategies. The missing values found in the dataset are 

processed through two main methods. For missing 

charging status data in the time series, linear interpolation 

or the average of the previous and subsequent data points 

is used for estimation. This method is based on the 

continuity of time series data, ensuring the integrity of the 

data and the accuracy of the prediction model. In order to 

eliminate the influence of different dimensions and scales, 

the Z-Score standardization method is used to standardize 

all data in the study. Z-Score standardization is achieved 

by calculating the difference between each data point and 

the mean, and then dividing it by the standard deviation to 

ensure that the mean of the data is 0 and the standard 

deviation is 1. For EV CSs, the charging behavior of EVs 

exhibits significant randomness, and there are also 

differences in charging time and power among different 

EVs. The study utilizes the State of Charge (SOC) to 

indicate the initial charge level of EVs, as this value is 

critical in influencing the charging duration and efficiency 

during the EV's charging session at the CS [15]. 

Meanwhile, the charging process of EVs is a constant 

current constant charge process. The charging duration can 

be expressed by formula (1). 

c cc cvt T T= +            (1) 

In formula (1), ccT  represents the charging time 

during the constant current stage of the charging process. 

cvT  represents the charging time during the constant 

voltage stage of the charging process. The SOC is also 

affected by the charging duration, and the corresponding 

SOC can be represented by formula (2). 

0( ) c

s

ap

It
SOC t SOC

C
= +       (2) 

In formula (2), 0SOC  represents the initial SOC of 

the EV battery. I  represents the charging current value. 

apC  represents the rated charging capacity of the EV 

battery. Numerous analyses have shown that the constant 

voltage charging time of EV batteries is very short 

throughout the entire charging process, accounting for 

only 1% of the total charging time. The processing of CS 

load data is shown in Figure 1. 
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Figure 1: CS load data processing flow chart 

 

Based on Figure 1 and the characteristics of constant 

current charging at CSs, this study only considers the 

constant current charging process of EVs during charging 

at CSs. That is, the study considers the constant current 

charging process as the entire charging time. During the 

data collection phase, some data may be missing for 

various reasons. Based on the adjacent data points of the 

time series, the missing value is estimated by linear 

interpolation or the average value of the data points before 

and after, and the missing data is completed. The 

corresponding charging time can be represented by 

formula (3). 

0( )end ap

c

cc

SOC SOC C
t

I

− 
=       (3) 

In formula (3), endSOC  represents the SOC of the 

battery after charging is completed. For ease of calculation, 

the final SOC is calculated as 100% to obtain the charging 

time of the EV. 

 

 

3.3 Load Model construction of electric 

vehicle charging station 
During the actual operation of the CS, there are different 

numbers of EVs charging simultaneously. Therefore, the 

study describes all charging vehicles in the CS according 

to the Poisson distribution. The charging process of each 

EV is an independent event, and the EVs charged at the CS 

follow an exponential distribution. At this time, the total 

charging vehicles during the total time period can be 

represented by formula (4). 

 1 2 3

int

, , , , ~ ( )

( )

n

total

erval

s s s s P

S t T
n

T




= 
=



   (4) 

In formula (4), ns  represents the sequence values of 

vehicles charged during n  period. n  is a continuous 
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integer used to identify a specific time period, and 

1,2,3n = ， . P  represents the probability of charging. 

  represents the number of vehicles arriving at the CS per 

unit time. int ervalT  represents the unit time of vehicle 

charging. totalT  represents the total charging time. In the 

actual operation of CSs, it may also not require queuing for 

charging. The start time of charging can be represented by 

formula (5). 

int

int

erval

start nm erval

q

T
T q T m

s
− =  +      (5) 

In formula (5), q  represents the time period serial 

number in the CS, which usually refers to a unique number 

used to identify a specific time period in data analysis, time 

series analysis, or any situation where data needs to be 

recorded in chronological order. qs  represents the 

quantity of EVs being charged during the q  th time 

period. m  represents the vehicle signal that reaches the 

CS in the q -th time series. The study obtains the charging 

data of all charging vehicles in the entire CS. Due to the 

large amount and complex types of charge data in the 

entire CS, to ensure the reliability of the data used for 

research, the charging time and charge state are processed 

in the study. The processing is divided into supplementing 

the collected data with missing information, and 

standardizing all data [16-17]. To ensure the integrity of 

the data, the study uses data with the same date and type to 

fill in missing data. The filling rules can be represented by 

formula (6). 

 

1 1 2 2 3 1 4 2

( , )

( , ) ( , ) ( , ) ( , )

x d t

x d t x d t x d t x d t   

=

+ + +
 (6) 

 

In formula (6), ( , )x d t  represents the charging load 

value at time t  on day d  in the CS. 1( , )x d t  and 

2 2( , )x d t  respectively represent the charging load values 

before and after t  on day d  in the CS. 1( , )x d t  and 

4 2( , )x d t  represent the time when the charging charge in 

the power station is the same before day d  and after day 

d .   represents the strengthening coefficient, with a 

value range of [1,2,3,4]. After completing the data filling, 

the data can be standardized, and Z-Score standardization 

is used to standardize the data. This standardization can 

convert data of various magnitudes into a unified Z-Score 

score for comparing. Standardization can be represented 

by formula (7). 

i

i

A
Z





−
=            (7) 

In formula (7), iZ  represents the normalized Z  

value of the i -th sample. iA  represents the i -th sample 

in the dataset.   represents the mean of the total sample. 
  represents the standard deviation of the total sample. 

In summary, the power load of the CS is obtained by 

adding up the charging power of all EVs entering the 

station for charging. Based on the actual operation of 

existing CSs, the losses of the entire CS can be basically 

ignored. Currently, the power batteries of EVs on the 

market are mainly lithium batteries. Therefore, the study 

applies the charging power of lithium batteries to construct 

load models. Due to only considering the constant current 

charging process during the charging, the charging power 

of the lithium battery can be represented by formula (8). 

 

( ) ( )batt battp t U t I=         (8) 

 

In formula (8), ( )battp t  represents the charging 

power. ( )battU t  represents the voltage value at the battery 

end. At this point, the charging power of the corresponding 
n -th charging vehicle can be represented by formula (9). 

 

arg 0

arg 0

( )
( )

0

0,

ch e start ij

in

start ij ch e

P t t t
P k

t t t t

−

−

− +
= 


  + − 

(9) 

In formula (9), argch eP  represents the charging power 

curve value. t  represents the time point. start ijt −  

represents the time point corresponding to the start of 

charging. 0t  represents the time when charging begins. 

argch et  represents the completion time of charging. The 

total power value after superposition can be obtained, 

which can be represented by formula (10). 

 

1

( ) ( )
n

EVstation inP k P k=      (10) 

 

In formula (10), ( )inP k  represents the charging 

power of the n -th charging vehicle. In summary, the 

study utilizes the total charging power of cars charged in 

CSs to obtain the load model of the entire CS. Figure 2 

shows the flowchart for constructing a load model for EV 

CSs. 
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Figure 2: Flow chart for constructing load model of EV CS 

 

3.4 Design of load forecasting model for EV 

CSs based on RF-CNN algorithm 
The preliminary forecasting of data by the constructed CS 

load model indicates that although the model covers the 

required charging load data, its accuracy, evaluation ability, 

and generalization ability are weak. This leads to 

unsatisfactory predicted results. Therefore, this study 

combines RF and CNN to design an RF-CNN algorithm. 

This algorithm combines the characteristics of RF and the 

advantages of CNN to effectively process load data of EV 

CSs, improving prediction accuracy and efficiency. RF can 

select and combine input features, extract load data 

information from each CS, and use these information to 

construct a prediction spatiotemporal matrix, thereby 

improving prediction accuracy. CNN can automatically 

learn the spatial and temporal characteristics of load data 

through multi-layer convolution and pooling operations, 

predicting the CS load. The RF algorithm can use multiple 

decision trees to eliminate data features, which can 

accelerate the speed of the prediction model during the 

training process and improve performance [18-20]. The 

study uses the Gini index to measure the designed decision 

tree. The more branch points a decision tree has, the 

stronger its ability to reduce errors. The research sets the 

load forecasting data as a dataset. The accuracy of the 

dataset can be represented by the Gini index, as shown in 

formula (11). 

2

1

( ) 1
y

k

k

Gini D p
=

= −         (11) 

In formula (11), kp  represents the probability value 

of inconsistency in the k -th sample in the dataset. The 

smaller the Gini index of two randomly selected samples 

in the dataset, the higher the accuracy of the data in the 

dataset. To define the Gini index of a specific data in the 

dataset, the definition can be represented by formula (12). 

1

_ ( , ) ( )

v
V

v

v

D
Gini index D a Gini D

D=

=  (12) 

In formula (12), D  represents the load forecasting 

dataset. a  represents the characteristic value. v  

represents the value of a discrete attribute. The process 

diagram of RF algorithm decision-making is shown in 

Figure 3. 
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Figure 3: Process diagram of RF algorithm for decision-

making 

 

Figure 3 shows the decision-making process of the 

RF, which includes child nodes and leaf nodes. The child 

nodes represent the intermediate decision points for data 

segmentation in the decision tree. The leaf nodes represent 

the final prediction results. The process starts with the 

sampling of the original data. The data is continuously 

segmented through the child nodes until it reaches the leaf 

node representing the final decision. The branching 

structure in the figure shows that the data is divided into 

different paths at each child node according to the 

established rules, and finally reaches the leaf node. RF sets 

the number of decision trees in the forest to 100, with a 

maximum depth of 20 per tree, to prevent overfitting. In 

addition, Gini impurity is used as a indicator to measure 

the quality of splitting. CNN can process high-dimensional 

and nonlinear data. The maximum pooling operations are 

performed to handle convolutional operations in CNN. To 

ensure consistency between the input and output of the 

data, the maximum element value is selected in the 

downsampling layer to replace the output value at that 

location. This not only ensures data consistency, but also 

enhances sensitivity to feature data information. The 

maximum pooling function introduced in the maximum 

pooling operation can be represented by formula (13). 
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( , ) ( ( , ))O b c Max b c=      (13) 

 

 

 

 

 

 

 

 

 

In formula (13), ( , )O b c  represents the matrix in the 

CNN that has undergone maximum pooling output. 

( , )b c  represents the region with pooling in the 

corresponding matrix. ( )Max   represents the element 

value output by the function after maximizing the input 

elements in the CNN. The schematic diagram of maximum 

pooling in CNN is shown in Figure 4. 
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Figure 4: Schematic diagram of maximum pooling in CNN 

 

In the CNN, the convolutional layer uses 32 3×3 

convolutional kernels, followed by a 2×2 max pooling 

layer. Before the fully connected layer, ReLU activation 

function is used for nonlinear transformation. In summary, 

the study aims to construct a CS load forecasting model by 

integrating RF and CNN. The specific construction 

process is as follows. First, it uses the RF method to predict 

the load of all EVs in the CS. Then, it uses RF to predict 

the load of each charging EV. The collected charging load 

forecasting values are input into the corresponding 

spatiotemporal matrix, which can be represented by 

formula (14). 

 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

n

n

m m m n

x x x

x x x
X

x x x

 
 
 =
 
 
  

 (14) 

In formula (14), ,m nx  represents the charging 

composite data values corresponding to positions m  and 
n  in the matrix. The spatiotemporal matrix for predicting 

charge values is input into the CNN. The convolutional 

layer throughout the entire CNN will continuously 

convolution the size of the matrix. When the requirements 

are met, the changes will be transmitted to the pooling 

layer. The pooling layer utilizes maximum pooling 

operations to expand the pooled channels. This will 

significantly increase the amount of data that can reach the 

fully connected layer. By extracting and weighting these 

data features, the average value of the fully connected 

layer can be calculated. The average output of the fully 

connected layer is the predicted load value of the EV CS. 

The flow chart of the load forecasting model for EV CSs 

based on the RF-CNN is shown in Figure 5. 
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Figure 5: Flow chart of EV CS load forecasting model on the Ground of RF-CNN algorithm 

 

The diversity of initial SOCs has been considered in 

the model. By analyzing a large number of charging data 

under different initial SOCs, the model learns and predicts 

the load changes of CSs under different charging demands. 

The influence of different initial SOC on load forecasting 

of CS is mainly reflected in two aspects: charging time and 

charging power. The research method can automatically 

extract the important features of the load data, and 

effectively reduce the influence of noise. Therefore, the 

load forecasting task of EVs can be effectively completed. 

In practical operation, the research method first collects 

basic data, and then cleans and standardizes the collected 

data. Based on the characteristics of charging behavior, 

key features are extracted from raw data to provide input 

for model training. A load forecasting model is constructed 

and trained by cross-validation method. The model 

structure is optimized by adjusting hyper-parameters and 

using Adam optimizer to minimize the loss function. The 

trained model is deployed to simulated or actual EV CS 

environments for real-time load forecasting and charging 

scheduling. 

 

4 Load analysis and forecasting 

model performance analysis of EV 

CSs 
For verifying the performance of the load forecasting 

model, data collection is conducted on a certain CS. The 

collected data are used to construct a dataset for model 

performance verification. 

 

4.1 Performance analysis of CS load 

forecasting model 
To analyze the performance of the CS load forecasting 

model, a comparison is conducted between the Back 

Propagation Network (BP), LSTM, and RF-CNN to verify 

the performance of the forecasting model. The dataset used 

in the study comes from 15 public EV CSs in Nanjing, 

Jiangsu Province, China. The data collection took place in 

the second quarter of 2022 and covered daily operational 

data from the CSs. The specific data includes the SOC of 

the EV, the number of CSs, the charging power, and the 

geographical location of the CSs. The prediction accuracy 

of SOC data is used to validate the model's ability to collect 

data. Figure 6 compares the prediction accuracy of SOC 

data using three methods. 
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Figure 6: Comparison results of three methods for predicting accuracy of SOC data 
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In Figure 6, as the number of experiments increases, 

the accuracy of SOC data prediction for the three methods 

first increases and then tends to stabilize. The SOC 

prediction accuracy of RF-CNN, LSTM, and BA was 

92.71%, 88.09%, and 85.16%, respectively. To verify the 

data processing ability of the RF-CNN forecasting model, 

the study uses training loss value and average absolute 

percentage error as indicators. The comparison results of 

the training loss values and average absolute percentage 

errors of the three methods are shown in Figure 7. 
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Figure 7: Comparison results of training loss values and average absolute percentage errors of three methods 

 

In Figure 7 (a), as the training iteration progresses, the 

difference in loss values among the three methods also 

increases. The training loss values of RF-CNN, LSTM, 

and BA were 11.34%, 28.52%, and 38.06%, respectively. 

In Figure 7 (b), the average absolute percentage errors of 

the three methods were 1.82%, 2.16%, and 3.61%, 

respectively. This indicates that the RF-CNN used in the 

study has better performance in processing CS data. To 

further test the processing ability of RF-CNN in CS data, 

the study also uses root mean square error and data 
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extraction error as validation indicators. The comparison 

outcomes of the root mean square error and data extraction 

error of the three methods are shown in Figure 8. 
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Figure 8: Comparison results of root mean square error and data extraction error of three methods 

 

In Figure 8 (a), there was a certain difference in the 

root mean square error among the three methods, with RF-

CNN having the smallest root mean square error, followed 

by LSTM and BP. The root mean square errors of RF-CNN, 

LSTM, and BA were 1261, 1428, and 1608, respectively. 

In Figure 8 (b), there were also certain differences in 

extraction errors among the three methods in the process 

of extracting charging data. The BP with the highest 

extraction error and the RF-CNN with the lowest error 

indicate that the RF-CNN model constructed in the study 

has good robustness. To verify the performance of the 

forecasting model in predicting load, the response speed 

and data generalization ability of the model are used as 

indicators. The comparison results of the response speed 

and data generalization ability of the three methods are 

shown in Figure 9. 
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Figure 9: Comparison results of response speed and data generalization ability of three methods 

 

In Figure 9 (a), all three methods had certain 

efficiency in predicting charges. The faster the response 

speed, the better the performance in the forecasting process. 

The average response speeds of RF-CNN, LSTM, and BA 

were 42ms, 58ms, and 83ms. In Figure 9 (b), the data 

generalization ability of the RF-CNN, LSTM, and BA 

methods was 83.61%, 69.84%, and 41.59%, respectively. 

This indicates that the detection efficiency and resource 

optimization allocation ability of the RF-CNN forecasting 

model are also significantly superior to comparison 

methods. The other performance comparisons of the 

research method are shown in Table 2. 

 

 
Table 2: Other performance comparisons 

Performance metric RF-CNN model BP model LSTM model 

F1 score 0.91 0.8 0.85 

Precision 0.92 0.83 0.88 

Recall 0.9 0.79 0.84 
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AUC 0.95 0.87 0.91 

 

 

 

As shown in Table 2, the F1 score of the RF-CNN 

model reached 0.91, with a precision of 0.92, a recall rate 

of 0.90, and an AUC as high as 0.95, indicating that the 

model has high accuracy and reliability in load forecasting 

tasks. In contrast, although the BP model and LSTM model 

also perform well, they are lower than the RF-CNN model 

in all indicators. This further proves the superior 

performance of the research method. 

 

4.2 Application performance analysis of CS 

load forecasting model 
To further validate the application performance of the CS 

load prediction model, this study compares the predicted 

results of RF-CNN, LSTM, and BA with the actual values. 

Figure 10 displays the comparison outcomes between 

predicted values and actual values. 

In Figure 10, the true load value of the CS ranged 

from [151.31, 237.59] kW. The load prediction ranges of 

RF-CNN, LSTM, and BA were [152.05, 231.81] kW, 

[143.49, 245.01] kW, and [157.53, 265.07] kW, 

respectively. The load forecasting value closest to the 

actual value is RF-CNN, with a difference of 0.74kW and 

5.78kW between the minimum and maximum values. The 

trend of the prediction curve is also roughly the same. This 

indicates that the EV CS forecasting model constructed 

using the RF-CNN algorithm has good predictive ability. 

To verify the predictive ability of the forecasting model at 

different time periods, this study conducts load forecasting 

for the CS in mid April, May, June, and July, and compares 

the predicted values with the actual values of the day. 

Figure 11 shows the comparison outcomes between the 

predicted value and the actual values.
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Figure 10: Comparison results between predicted values and true values using three methods 
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(a) Comparison results between predicted 

and actual load values on April 26th
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(b) Comparison results between the 

predicted and actual load values on May 3rd

True value

Predictive value

240 2 4 6 8 10 12 14 16 18 20 22
100

120

140

160

180

200

220

240

260

280

300

320

Time/h

L
o
ad

/k
W

(c) Comparison results between the predicted 

and actual load values on June 26th
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and actual load values on July 28th
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Figure 11: Comparison results between predicted values and true values of the RF-CNN model 

 

Figures 11 (a), (b), (c), and (d) show that there are 

significant differences in the load of CSs on different dates. 

Among them, May 3rd was a holiday, with a large number 

of people traveling and more EV mileage, which increased 

the need for charging. The other three days are all working 

days, and the load of the CS wa relatively small. The 

difference between the predicted value and the true value 

of the forecasting model constructed during the research 

was very small. The load curve was the same. This 

indicates that the forecasting model constructed in the 

research can effectively predict the load of CSs. To further 

validate the performance of the RF-CNN forecasting 

model, this study conducts research on different charging 

methods for EVs. Disordered charging, positive sequence 

valley time charging, reverse sequence valley time 

charging, and sequential valley time charging are taken as 

indicators. Figure 12 shows the predicted results of four 

charging methods in EV CSs. 
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Figure 12: Prediction results of four charging methods in 

EV CSs 

 

In Figure 12, there was no specific time limit for 

disordered charging, and the cost was paid based on the 

actual usage time, resulting in higher charging cost. 

Therefore, the load variation of the CS under this charging 

method is relatively small. Positive sequence valley time 

charging is carried out during the low electricity 

consumption period of the power system. Due to the 

relatively low charging cost during this stage, the CS load 

is relatively large. Reverse valley charging is carried out 

during peak periods of power consumption in the power 

system, and the charging cost is relatively high under this 

charging method. Therefore, the quantity of EVs charged 

at the charging point is relatively small, and the load 

change is not significant. Time series valley charging is 

carried out according to the user's usage habits and needs. 

Under this charging method, the CS load is relatively 

stable and does not change much. In summary, the RF-

CNN model constructed in the study can effectively 

predict the specific CSs load, indicating that the 

forecasting model has high practicality. The results are 

shown in Table 3. 

 

Table 3: Comparison of all results 

Performance index RF-CNN BP LSTM 
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Prediction accuracy (%) 92.71 85.16 88.09 

Training loss (%) 11.34 38.06 28.52 

Average percentage error 

(%) 
1.82 3.61 2.16 

Response speed (ms) 42 83 58 

Data generalization 

capability (%) 
83.61 41.59 69.84 

 

From Table 3, RF-CNN predicted accuracy, training 

loss, average percentage error, response speed, and data 

generalization. The performance is better than BP and 

LSTM. In order to further evaluate the robustness of the 

model, a sensitivity analysis is conducted to explore the 

impact of different parameters on the model performance. 

By simulating different numbers of CSs, as the number of 

CSs increases, the prediction accuracy of the model 

slightly decreases. However, due to the integrated nature 

of the RF-CNN algorithm, this impact is limited and the 

decrease remains within 5%. The change in charging 

power has a direct impact on the model performance. 

When there is a significant fluctuation in the charging 

power data, the prediction accuracy of the model may 

decrease. By adjusting the model parameters, it can 

quickly recover above 98%. Time factors, such as the 

different time distributions of charging behavior 

throughout the day, have a significant impact on model 

predictions. The model performs better in handling data 

during peak hours, which may be related to the 

standardization of charging demand. 

5 Discussion 

The RF-CNN model proposed in the study shows 

significant performance improvement in load forecasting 

of EV CSs compared with existing technologies. The RF-

CNN model achieved a prediction accuracy of 92.71%, 

significantly higher than the 85.16% and 88.09% of BP 

and LSTM models, and also superior to methods such as 

Fuzzy control based on RBF-NN and assisted deep 

learning frameworks. This difference may be attributed to 

the fact that RF-CNN combines the feature selection 

ability of RF with the spatiotemporal feature learning 

ability of CNN, effectively improving the model's ability 

to capture complex charging behaviors. The novelty of the 

RF-CNN model lies in its innovative algorithm design, 

which improves the accuracy and robustness of load 

forecasting for CSs by integrating two powerful learning 

mechanisms. The scalability of the RF-CNN model is 

particularly important in large-scale deployment across 

multiple CSs. The model can adapt to charging networks 

of different scales, improve processing capabilities 

through distributed computing, and achieve real-time 

analysis and prediction of CS data with wide geographical 

distribution. In large-scale deployment, the distributed 

architecture of the RF-CNN model allows for the 

simultaneous processing of data from different 

geographical locations, reducing the latency in data 

transmission and processing. Compared with traditional 

models, it has significant advantages in computational 

efficiency. 

6 Conclusion 

The study solved the single data and low accuracy in 

traditional CS load forecasting models by predicting the 

load of charging vehicle CSs. This study aims to use SOC 

as the data collection object and combine RF with CNN to 

improve the performance of the model. The results 

indicated that the predicted value range of the forecasting 

model for the CS was [152.05, 231.81] kW, and the true 

load range of the CS was [151.31, 237.59] kW. The 

difference between the minimum and maximum predicted 

values of the model and the actual values was 0.74kW and 

5.78kW. Meanwhile, the forecasting model also accurately 

predicted the load of CSs at different periods and charging 

methods, and the trend was very close to the true value. 

This indicates that the RF-CNN forecasting model has 

better generalization performance and adaptability, which 

can better capture the complexity and uncertainty of load 

changes. In summary, the forecasting model constructed 

can assist EV CS managers in load analysis and prediction. 

It can accurately predict future load conditions and provide 

valuable references for the planning and scheduling of CSs. 

Future research can apply the model to CSs under 

more diverse geographical and climatic conditions to 

validate and enhance the model's generalization ability and 

adaptability. Meanwhile, integration methods for real-time 

data streams can also be explored to enable the model to 

respond to real-time changes in charging demand and 

provide support for dynamic charging scheduling. 

 

 
Table 4: Nomenclature table 

Full name Abbreviation 

Charging Station CS 

Electric Vehicle EV 

Random Fores RF 

Convolutional Neural Network CNN 
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Long Short-Term Memory LSTM 

Traffic Flow TFL 

Individual Household Electricity Consumption Prediction IHEPC 

State of Charge SOC 

Back Propagation BP 
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