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Cotton and linen fabric is a mixed textile of half linen and half cotton, which has the characteristics of 

both linen and cotton, so it is widely used in summer clothes. Shrinkage and bulk properties are 

important indicators of the quality of cotton and linen fabrics, so it is necessary to predict their 

shrinkage and bulk properties accurately. The extreme learning machine algorithm is introduced to 

predict the fluctuation range, and the particle swarm optimization algorithm is used to optimize it. 

Furthermore, fuzzy information granulation (FIG) technology is employed to achieve the dynamic 

extraction of characteristics associated with cotton-hemp blended fabrics. This is achieved through the 

construction of an FIG-PSO-ELM algorithm, the efficacy of which is subsequently verified. The 

experimental results showed that the shrinkage rate and elastic viscosity of cotton and linen blended 

fabric changed significantly within 1500 seconds. The value range was 49.2 to 51.2, and the maximum 

value was 51.15. In addition, the prediction results of the FIG-PSO-ELM method in the minimum value 

(Low), the average value (R), and maximum value (Up) sequences were consistent with the actual 

values, showing good prediction accuracy. Compared with the prediction results of the other four 

algorithms, such as BPNN, RBFNN, PSO-ELM, and traditional ELM, FIG-PSO-ELM had the smallest 

errors on the three sequences, with the lowest values of 0.0019 and 0.0368, respectively. Overall, the 

FIG-PSO-ELM method has a good prediction effect, accurately predicts the polycondensation area 

and porosity of cotton and linen fabrics, and has a good effect on the actual weaving of cotton and 

linen fabrics. 

Povzetek: Razvit je nov napovedni model FIG-PSO-ELM za natančno napovedovanje krčenja in 

poroznosti bombažnih in lanenih tkanin.

1 Introduction 

Cotton and linen fabrics are widely used in textile 

materials for summer clothing because of their natural 

environmental protection and good air permeability. 

Cotton and linen fabrics combine the strength of linen 

with the softness of cotton, complementing each other's 

advantages and disadvantages, making them excellent 

materials for textiles [1]. In cotton and linen fabrics, the 

two characteristics of shrinkage and porosity are 

important indicators to test their quality. Predicting the 

fluctuation of the two indicators is an important way to 

improve cotton and linen fabrics [2]. Domestic scholars 

have conducted in-depth research on this basis. Saricam 

C believed that the thermal conductivity, fiber, and 

shrinkage properties of blended fabrics such as cotton and 

linen helped to improve their comfort [3]. Nongnual et al. 

proposed a drop shape analysis method using a computer 

algorithm for image brightness detection, thereby 

realizing the precise estimation of the sliding angle and 

providing a new idea for the commercial use of cotton 

and linen fabrics [4]. Birkocak compared the porosity of 

different fabrics such as cotton and flax fibers and found  

 

that it helps to improve the quality and strength of cotton 

and linen fabrics [5]. However, there is currently almost 

no data-driven modeling research on the performance of 

cotton and linen fabrics, and there is no effective method 

for predicting the porosity characteristics of cotton and 

linen fabrics. Therefore, the study introduces an Extreme 

Learning Machine (ELM), and uses the Particle Swarm 

Optimization (PSO) algorithm to make the optimization 

in practical applications. It also introduces Fuzzy 

Information Granulation (FIG) technology, which 

constitutes the FIG-PSO-ELM algorithm. The purpose is 

to realize the effective prediction of the fluctuation range 

of the shrinkage and looseness characteristics of cotton 

and linen fabrics to improve its quality. 

2 Related work 

Fabric is one of the three elements of clothing, that 

affects the style and characteristics of clothing, as well as 

the color and shape of clothing [6]. In fabric quality and 

strength, polycondensation performance and porosity 

occupy a certain proportion. Therefore, accurately 

predicting the fluctuation range of the two in the process 
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of fabric production is helpful to improve its quality [7]. 

Based on this, scholars around the world have tried to 

study it in detail. Zhang et al. proposed a more 

environmentally friendly enzymatic method to improve 

the shrink resistance of wool fabrics and effectively 

improve their polycondensation performance [8]. Luo et 

al. developed a new continuous pad dyeing method, 

which effectively reduced the shrinkage of wool fabrics 

and improved their color fastness [9]. Liu et al. 

synthesized a new N-phenyl maleimide, which effectively 

improved the polycondensation performance and comfort 

of wool fabrics and enhanced their antibacterial 

properties [10]. Šaravanja et al. studied the effects of dry 

and wet cleaning on three types of fabrics, which helped 

to improve fabric strength and shrinkage properties [11]. 

Qi et al. used a two-step method to develop a cotton 

fabric with different heat transfer properties. While the 

shrinkage performance of the cotton fabric was improved, 

its thermal insulation effect was also effectively enhanced 

[12]. Fahritdinovna et al. provided constructive 

suggestions for improving the quality of national fabrics 

through an in-depth study of the fiber composition of 

garment fabrics [13]. 

In addition, Zhang et al. realized the adjustable 

porosity of medical protective garments, which is 

conducive to improving their tensile strength [14]. Fouda 

et al. studied the thermophysical properties of single 

jersey knitted fabrics to improve their wear resistance and 

air permeability [15]. Dehghan et al. analyzed the thermal 

properties of textiles to determine the effect of porosity, 

etc., which effectively helped to improve their quality 

[16]. Kim et al. studied the changes in the internal 

structure of silk gauze under different hot-pressing times, 

which helped to improve its elongation and reduce its 

porosity [17]. Kim and Um analyzed the effect of 

pressing temperature on the porosity of the fabric in detail, 

thus assisting in the production of silk non-woven fabrics 

with more properties [18]. The above contents are 

summarized in Table 1. 

 

 
Table 1: Summary of references 

Reference 

number 
Author Research Outcome Description Potential Shortcomings 

[8] Zhang et al 

Develops an eco-friendly enzymatic method 

to enhance wool fabric shrink resistance and 

shrinkage performance. 

Scale and economic analysis is 

required. 

[9] Luo et al 

Introduces a new continuous pad dyeing 

method to reduce wool fabric shrinkage and 

improve color fastness. 

Long-term fabric performance 

data are limited. 

[10] Liu et al 
Utilizes a novel N-phenylmaleimide to 

improve wool fabric properties. 

Need to increase durability 

research. 

[11] Šaravanja et al 
Examines the effects of dry and wet cleaning 

on fabric properties. 

Limited universality across 

fabric types. 

[12] Qi et al 
Develops cotton fabric with improved 

thermal properties using a two-step method. 

Applicability to other fabric 

types is not discussed. 

[13] Fahritdinovna et al 
Studies fiber composition to improve ethnic 

fabric quality. 

A thorough analysis of all 

relevant fibre properties is 

required. 

[14] Zhang et al 
Uses coating technology to adjust porosity in 

medical protective clothing. 

Assessment of comfort and 

breathability is not mentioned. 

[15] Fouda et al 
Investigates the thermo-physiological 

properties of knitted fabrics. 

Applicability to different 

knitting techniques is 

unknown. 

[16] Dehghan et al 
Analyzes the thermal properties of textiles to 

determine the role of porosity. 

Variability under different 

environmental conditions is not 

addressed. 

[17] Kim et al 
Studies the effect of hot press cycles on silk 

non-woven fabric structure. 

The effect of different pressure 

temperatures on fabric 

structure is not specified. 

[18] Kim and Um 
Analyzes the effect of pressing temperature 

on silk non-woven fabric porosity. 

Different press times and their 

effects are not discussed. 

 

A review of the literature reveals a dearth of 

data-driven modeling studies on the properties of cotton 

and linen fabrics. Furthermore, there is currently no 

method for predicting the porosity characteristics of these 

fabrics that is both relatively effective and widely 

applicable. Therefore, the study proposes the 

FIG-PSO-ELM method. The FIG-PSO-ELM method is 

proposed out of the need for accurate prediction of the 
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polycondensation properties and porosity of cotton and 

linen fabrics, which is crucial to ensure product quality 

and production efficiency. Existing studies lack effective 

data-driven models to dynamically predict these 

characteristics, but FIG-PSO-ELM provides an 

innovative solution by combining FIG technology to 

process dynamic data and using PSO algorithm to 

improve the prediction accuracy of ELM. 

 

3 The shrinkage performance and 

porosity of cotton and linen fabrics 

based on the ELM algorithm 

3.1 ELM Algorithm for Data-Driven 

Modeling 
To improve the polycondensation performance and 

porosity of cotton and linen fabrics, ELM is used to 

predict the range of variation of polycondensation 

performance and porosity of cotton and linen fabrics, and 

the effectiveness of the design is verified. As a new type 

of feed-forward neural network with a single hidden layer, 

ELM has the corresponding weights of randomly 

generated input layers and the relevant thresholds of 

hidden layers. ELM does not need to make any 

adjustments. Only by setting the number of neurons in the 

hidden layer, the optimal solution can be obtained by 

using the least square method. Compared with the 

traditional neural network, ELM solves the problem of 

inefficiency and complex parameter updating caused by 

the back-propagation algorithm, and also simplifies the 

network parameter setting, fast training, and 

generalization performance [19]. The simplest three-layer 

ELM network structure is shown in Figure 1. 
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Figure 1: Schematic diagram of three-layer ELM network structure 

 

From Figure 1, the three-layer ELM includes an 

input layer, a hidden layer, and an output layer, and the 

activation function selected inside must be infinitely 

differentiable in any range. Among them, e  represents 

the maximum number of particles in the input layer. q  

represents the maximum number of particles in the output 

layer. In addition, the corresponding expression of ELM 

output in hidden layer neurons is expressed in formula 

(1). 

( ) ( )
1

L

i j j i j

j

f x g x  
=

= +      (1) 

 

In formula (1), ( )if x  represents the output value 

of the hidden layer ELM. L  represents the number of 

neurons in the hidden layer. j  represents the j -th 

neuron. i  represents the number of training samples. 

j  represents the connection weight between the hidden 

layer neurons and the output layer. ( )g   is the 

activation function of the hidden layer. j  represents 

the weight of the input layer. ix  represents the input 

value of the input layer. j  represents the threshold of 

the hidden layer neurons. The purpose of ELM learning is 

to minimize the output error, so its expression is formula 

(2). 

( )
1

0
M

i i

i

f x y
=

− =        (2) 

 

In formula (2), M  represents the maximum 

number of training samples. iy  represents the output 

value of the output layer. According to formula (2), there 

is an equation between the weights of the two sections, 

the weights of the input layer, and the output of the 

output layer. Its expression is shown in formula (3). 

( )
1

L

j j i j i

j

g x y  
=

+ =       (3) 

 

According to formula (3), the matrix expression can 

be introduced to simplify it accordingly. Its simplified 

expression is shown in formula (4). 



66   Informatica 48 (2024) 63–76                                                                      X. Hou 

( ) ( )

( ) ( )

1 1 1 1

1 1

L L

M L

M L M L

H Y

g x g x

H R R

g x g x



   

   

=


 + +
  

=    
  + + 

L

M M

L

(4) 

 

In formula (4), H  represents the output matrix of 

the hidden layer.   represents the output weight matrix 

of the hidden layer. Y  represents the expected output 

matrix. R  represents the overall matrix. Since the input 

layer weights and hidden layer thresholds of H  ELM 

are random, they can be regarded as a known output 

matrix. On this basis, according to the value   that can 

be obtained by the least square method, its evaluation 

formula is shown in formula (5). 

 

ˆ H Y +=              (5) 

 

In formula (5), H +  represents the narrow sense 

inverse matrix. According to the derivation process of 

formula (1) to formula (5), the training process of the H  

ELM algorithm can be given. Its training process is 

shown in Figure 2. 
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Figure 2: ELM algorithm training process 

 

From Figure 2, the training process of the ELM 

algorithm first gives multiple training samples, and sets 

the number of hidden layer neurons and activation 

functions. Second, it uses the random principle to set the 

weights and hidden layers of the output layer and the 

layer threshold. Then, it calculates the output hidden 

layer matrix according to formula (4) and the given 

activation function. Finally, the output weight is 

calculated according to formula (5), and the model 

obtained at this time is trained and can be directly used to 

predict the test samples. After the ELM training process, 

it can be known that the ELM is derived from a single 

hidden forward neural network, which also has the 

nonlinearity of the neural network. Compared with the 

traditional neural network, ELM only needs to set the 

number of neurons in the hidden layer in the initial stage, 

which reduces the cost of learning time and improves the 

versatility of the network. Therefore, in this study, ELM 

is selected as the basic algorithm to predict and model the 

shrinkage and porosity of cotton and linen fabrics. 

 

 

3.2 PSO-ELM algorithm and FIG technology 
In the actual production process of cotton and linen 

fabrics, dynamic data is used much more frequently than 

static data, and the data in the database is stored fluidly, 

that is, the data is generated sequentially. However, when 

training the ELM algorithm, all training samples are used 

to compute the output matrix. If the training samples are 

dynamic, the ELM algorithm will train every time a new 

training sample arrives until all new samples have arrived 

and no new samples have been generated. This will 

consume a lot of time. In addition, the polycondensation 

process of cotton and linen fabrics has the characteristics 

of high nonlinearity and complexity, so it is necessary to 

improve the traditional ELM to strengthen the stability of 

the prediction model. The PSO algorithm is a method 

based on swarm intelligence to achieve the optimal goal 

through optimal particle accumulation and optimal 

tracking [20]. During the iterative process of the PSO 

algorithm, the velocity and position need to be updated. 

Its velocity and position updating formulas are shown in 

formulas (6) and (7). 
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( ) ( )1

1 1 2 2
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Formula (6) is the particle velocity update formula. 

Among them, 
1t

odv +
 represents the updated particle speed. 

t

odv  represents the particle speed before the update.   

is the inertia weight, which can adjust the searchability of 

the particle.   represents the current iteration number. 

odp  is the extreme value of the particle individual. bdp  

represents the group extreme value of the particle swarm. 
c  is the learning factor, which can adjust the flight step. 

r  is a random number, whose value is maintained 

between [0, 1]. d  represents the dimension of the 

particle. 

1 1t t t

od od odx x v+ += +          (7) 

Formula (7) is the particle position update formula. 
1t

odx +
 represents the updated particle position. In addition, 

the expressions of individual extremum and group 

extremum of particles in formula (6) are shown in 

formula (8) and formula (9). 

( )1 2, , ,o o o oDp p p p= L        (8) 

In formula (8), o  represents the serial number of 

the particle in the individual extremum. D  is the 

maximum value of the particle dimension. 

( )1 2, , ,b b b bDp p p p= L        (9) 

 

In formula (9), b  is the serial number of the 

particle in the population extremum. From the principle 

of PSO algorithm and formula (6) to formula (9), PSO 

has the advantages of fast convergence, fewer parameters 

and simple and easy implementation. Therefore, the study 

combines the PSO with ELM to obtain the PSO-ELM, 

which effectively improves the efficiency. The training 

steps of PSO-ELM are shown in Figure 3. 
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fitness value of particle swarm
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Figure 3: PSO-ELM training steps 

 

From Figure 3, the training steps of the PSO-ELM 

algorithm network can be roughly divided into three steps. 

First, the population is generated. For complex problems, 

the number of particles can be set to 100-200. The 

particles in the population consist of an input weight 

matrix and a hidden layer offset. Second, the ELM 

algorithm is used to compute the corresponding weight 

matrix, and the training samples are used to compute the 

root mean square error of each particle to compute the 

fitness value of the PSO-ELM algorithm. Finally, the 

optimal fitness value is output. In addition, the research 

also uses FIG technology to extract the characteristics of 

the time series of fabric shrinkage. Information 

granulation is first proposed by Professor LAZ adeh in 

the United States. It essentially decomposes the similarity 

of elements in the set into a series of subsets, and each 

subset is a particle of information. There are three basic 

theories in the information granulation model, among 

which the fuzzy set theory is chosen in the research. The 

reason is that the fuzzy set theory can better describe 

incomplete knowledge. The expression of FIG 

technology, which is constructed based on information 

granulation and fuzzy set theory, is shown in formula 

(10). 

( )a z is A is =      (10) 

In formula (10), A  represents the fuzzy subset. z  

represents the variable in the domain of discourse.   

represents the probability that the variable falls in the 

fuzzy subset. In a given time series, the granulation 

process of fuzzy information is mainly divided into two 

stages, which are window segmentation and fuzzy 

processing. Window segmentation is to divide the time 

series into several small sequences at equal intervals, and 

each small sequence is an operation window. 

Fuzzification is to establish a fuzzy particle in each 

operation window, that is, a fuzzy subset that can express 

variables reasonably. In formula (10), the task of 

fuzzification is to determine the membership function of 

the fuzzy subset. Generally, in the process of granulation, 

the shape of fuzzy particles must be determined first, and 
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then their degree of membership can be determined. The 

study uses a triangular blur particle. The membership 

function expression of this particle is shown in formula 

(11). 

( )

0,

,

, , , ,

,

0,

x a

z a
a z m

m a
W z a m n r

r z
n z r

r n

z r




−
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 −

= 
−  

 −
 

  (11) 

In formula (11), a , m  and r  are the parameters 

of the fuzzy subset, which correspond to the minimum 

value (Low), the average value (R), and maximum value 

(Up) of the operation window, respectively. W  

represent the membership function of the fuzzy subset. 

The specific steps of the granulation method used in the 

study are shown in Figure 4. 
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Figure 4: Specific steps of the granulation method used in the study 

 

From Figure 4, the granulation method first 

determines the average parameter of fuzzy particles, then 

determines the minimum parameter of fuzzy particles, 

and finally determines the maximum parameter of fuzzy 

particles. When determining the Low value of fuzzy 

particles, the corresponding calculation formula is shown 

in formula (12). 

( )

( )

2
k

k

N
x

W x

MinimizeQ a
m a

 
  

 



=
−


    (12) 

In formula (12), x  represents the element in the 

time series, and the maximum value is Nx .     

represents the sign of rounding down. In addition, when 

determining the Up value of fuzzy particles, the 

corresponding calculation formula is shown in formula 

(13). 

( )

( )

2
k

k

N
x

W x

MaximizeQ r
r m

 
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 



=
−


   (13) 

In formula (13),     is the sign of rounding up. In 

data preprocessing, FIG technology is mainly used for 

in-depth data analysis. In data-driven model research, 

FIG and machine learning are generally combined to 

perform step-by-step interval prediction based on the 

original point prediction. FIG technology is excellent in 

feature extraction and can realize effective interval 

prediction, so it is used in research to predict the 

shrinkage performance of cotton and linen fabrics and the 

fluctuation range of porosity. 

 

3.3 Prediction of polycondensation 

performance and porosity fluctuation range 

of cotton and linen fabrics based on 

FIG-PSO-ELM 
In the prediction of the fluctuation range, the research 

combines FIG technology with PSO-ELM to obtain the 

FIG-PSO-ELM algorithm. Its core firstly combines the 

obtained three characteristic components, namely the 

maximum, average and minimum three characteristic 

components, in a certain period, which reflects the 

fluctuation range of shrinkage performance. Secondly, 

since it is static to use the past amplitude to predict the 

future amplitude, the combination of FIG and PSO-ELM 

algorithms can effectively predict the characteristic 

components. The variations in shrinkage and porosity of 

cotton and linen fabrics will have a certain impact on the 

subsequent textile relief. Therefore, it is necessary to 

abandon the traditional idea of point prediction and 

expand to the prediction of its fluctuation range. The 

shrinkage performance of cotton and linen fabrics refers 

to the use of a fixed clip to secure the two ends of the 

fabric under standard atmospheric pressure. Under the 

action of external force, one end of the fabric gradually 

shrinks toward the other end. When the fabric is gathered 
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to the maximum without wrinkles, the ratio of the length 

of the fiber after movement to the original length of the 

fabric is the final shrinkage rate [21]. Bulkiness refers to 

the ratio of the length of movement of a fabric to the 

original length of the fibers, where one end of the fabric 

is held together by external force and the other end 

shrinks inward without wrinkling [22]. Based on this, the 

research builds the FIG-PSO-ELM algorithm model, and 

its process is shown in Figure 5. 
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Figure 5: FIG-PSO-ELM algorithm model flow diagram 

 

From Figure 5, the FIG-PSO-ELM process is mainly 

divided into two stages: offline training and online 

prediction. In the offline training stage, firstly, the 

original time series-related data of cotton and linen fabric 

shrinkage and porosity are used as samples. Secondly, the 

size of the corresponding window is divided, and the 

sample is fuzzy information granulated using the formula 

(11). Then the step size is determined and the first three 

quarters of the data of each sequence are set as training 

samples and the remaining data as test samples. Next, the 

three sequences of Low, R, and Up are normalized and 

processed to [0, 1]. After the normalization process is 

completed, the three sequences in the training samples 

can be input into the ELM for corresponding training. 

Finally, the average deviation is used as the adaptive 

degree function based on the training samples, and the 

PSO is utilized to optimize the weight of the ELM and 

the hidden layer threshold. In the online test phase, first, 

the three sequences in the test sample are input into the 

ELM model trained in the offline phase for the 

corresponding prediction. Second, the predicted results 

are compared with the actual results. When the offline 

training is used to normalize the three-sequence data, the 

corresponding normalization formula is shown in formula 

(14). 

min

max min

i

i

x x
x

x x

−
=

−
         (14) 

 

In formula (14), x  is the normalized data. ix  

represents the data of a certain attribute in the training 

sample. minx  and maxx  are the minimum and maximum 

values of the column data corresponding to the attribute. 

In addition, before the experiment, it is necessary to set 

the corresponding performance index. The study uses the 

mean square error and means absolute error of the test 

sample as the evaluation index to analyze the prediction 

error accordingly. The corresponding calculation formula 

is shown in formula (15). 
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


    (15) 

 

In formula (15), MSE  represents the mean square 

error. D  represents the number of test samples. i  

represents the actual value of the test sample. i   is the 

predicted value of the test sample. MAE  represents the 

mean absolute error. 

 

4 Performance analysis of 

FLG-PSO-ELM in practical 

applications 
To verify the effectiveness of the FLG-PSO-ELM 

algorithm in predicting the shrinkage performance and 

porosity fluctuation range of cotton and linen fabrics, the 

research carried out corresponding simulation training. 

Before the experiment, the research set up the 

experimental data according to the corresponding 

experimental conditions (the main data resources came 



70   Informatica 48 (2024) 63–76                                                                      X. Hou 

from a company's distributed control system). The 

content is shown in Table 2. 
 

 
Table 2: Pre-setting content of experimental data 

Number of original 

sequence data 

Time between 

windows 
Number of windows 

Input value in the 

next window 

Time (Coagulation 

performance 

characteristics) 

1440 5min 288 
First four windows 

 
First 20 minutes 

Time (Characteristic 

fluctuation range) 

Number of 

samples 
Training sample data Test sample data 

Operating 

environment 

5 minutes after 284 Top 3/4 Rear 1/4 MATLAB R2017a 

 

From Table 2, the study takes one minute as the 

sampling period to analyze the characteristics of 

shrinkage and bulkiness of 1440 cotton and linen fabrics. 

In a 5 -minute window, the fuzzy information of the 

original time series data is granulated, and a total of 288 

windows are set. The values of the first 4 windows are 

used as input to predict the next window. In the first 20 

minutes, the eigenvalues are used to predict the range of 

characteristic fluctuations in the next 5 minutes, and 284 

samples are obtained, of which the first 3/4 are used as 

training samples, and the rest are used as test samples for 

model testing. The environment for the experiment is 

chosen from Matrix Lab (MATLAB). The study first 

compares the distribution of its original shrinkage and 

porosity characteristics with the distribution after FIG, 

and the results are shown in Figure 6. 
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Figure 6: Comparison results of original characteristic distribution and distribution after FIG 
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From Figure 6(a), within the 1500s of collection, the 

shrinkage and bulk intrinsic viscosity of cotton and linen 

fabrics are in a state of violent fluctuation, and the values 

are maintained between 49.2-51.2. Among them, within 

1000-1500s, the maximum and minimum values are 

reached, which are 51.15 and 49.3, respectively. From 

Figure 6(b) that after it is processed by FIG, the values of 

the three sequences are maintained on one line, and the 

values are roughly between 49.25-51.25. To sum up, the 

FIG-processed data are roughly kept on the original data 

line, which meets the requirements of the experiment. On 

this basis, the study takes the Low, R and Up series as 

examples, and uses the FIG-PSO-ELM method to predict 

them. The prediction results are shown in Figure 7. 
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Figure 7: FIG-PSO-ELM prediction results on three sequences 
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Figures 7(a)~7(c) are the comparison results of the 

predicted value and the real value of the Low sequence, R 

sequence, and Up sequence, respectively. From Figure 

7(a), when the granularity window is between 0-20, there 

is a discrepancy between the actual Low value and the 

Low predicted by FIG-PSO-ELM, which is maintained 

between 50.05-50.6. When the granularity window is 

between 20-70, the Low of the two is the same, 

maintained between 49.35-50.95, and the maximum value 

appears when the granularity window is between 30-40, 

which is 50.95. From Figure 7(b), the predicted R-value 

obtained by using FIG-PSO-ELM is consistent with the 

actual R-value, and the value is maintained between 

49.4-51.0. Among them, the maximum value also appears 

in the grain window of 30-40, which is 51.0. From Figure 

7(c), the actual Up value is consistent with the predicted 

value. The maximum still occurs in the graining window 

of 30-40 at 51.15. On the whole, the prediction results of 

the FIG-PSO-ELM selected in the study on the three 

sequences are consistent with the actual results, showing 

a high accuracy rate and strong effectiveness. 

To further test the accuracy of the FIG-PSO-ELM, 

the study introduces Back-Propagation Neural Network 

(BPNN) and Radial Basis Function Neural Network 

(RBFNN). At the same time, PSO-ELM and traditional 

ELM models are selected, and the prediction results of 

the four algorithm models and the FIG-PSO-ELM model 

on the three sequences are compared. The results are 

shown in Figure 8. 
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Figure 8: Prediction results of five algorithms on three sequences 

 

From Figure 8, the predicted results of 

FIG-PSO-ELM are consistent with the actual results, and 

the values of the three are roughly maintained between 49 

and 51. However, other algorithms will always have 

some differences under different granulation windows, 

especially the traditional ELM algorithm, which has 

obvious fluctuations, and the predicted results are quite 

different from the actual results. When the number of 

granulation windows is 20-40, there is an obvious gap. 

The minimum values of Low, R, and Up sequences are 

45.1, 39.5, and 44.2, respectively, which show a poor 

fitting effect. On the whole, the performance effect of 

ELM is the worst, BPNN reduces the error due to the 

additional back-propagation process, and PSO-ELM uses 
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the PSO algorithm to optimize the parameters of ELM, 

thus avoiding the problem of decreasing prediction 

accuracy. The proposed FIG-PSO-ELM algorithm shows 

the highest prediction accuracy. In this process, after 

comparing the predicted values of the five algorithm 

models with the actual values, the corresponding MSE  

values and MAE  values are obtained. The study 

compares the two error values between different 

prediction models, and the results are shown in Figure 9. 
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Figure 9: Error comparison results of five algorithms on three sequences 
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From Figure 9, in the comparison of Low sequence 

errors, the MSE  and MAE  values of the 

FIG-PSO-ELM are the lowest, which are 0.0027 and 

0.0369, respectively. The two error values of ELM are 

higher than other algorithms, and the highest MSE  

value reaches 1.1017. In the R sequence, the lowest 

MSE  and MAE  values of FIG-PSO-ELM are 0.0019 

and 0.0387 respectively, and they are still far lower than 

1.1861 and 0.5115 of the ELM algorithms models when 

the test time is higher than 0.0007s of ELM. Likewise, 

both errors of FIG-PSO-ELM are the lowest in the Up 

sequence. In general, the FIG-PSO-ELM model has good 

stability, and its prediction error remains unchanged for 

different sequence components; The stability of the 

PSO-ELM algorithm model is also good, and the 

prediction error is slightly higher than that of FIG- 

PSO-ELM. In terms of test time, the time spent by 

FIG-PSO-ELM is shorter than that of ELM. Therefore, 

the use of the FIG-PSO-ELM method can accurately 

predict the fluctuation range of shrinkage and porosity of 

cotton and linen fabrics, so that it can effectively improve 

its wrinkle resistance and reduce its surface roughness in 

weaving. Finally, the FIG-PSO-ELM algorithm is used to 

predict the polycondensation performance and porosity of 

various fabric types, namely cotton, linen, cotton-linen 

blend, silk and wool, to verify the generalization ability 

and accuracy of the algorithm. The experimental results 

are shown in Figure 10. 
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Figure 10: Experimental results 

 

In Figure 10, the horizontal coordinates 1-5 

represent cotton, hemp, cotton-hemp blend, silk, and 

wool, respectively. The FIG-PSO-ELM model performs 

well in predicting the shrinkage performance and porosity 

of different fabric types, with low MSE  and MAE , 

indicating that the model can provide accurate predictions. 

Cotton and silk fabrics have the highest accuracy, while 

wool fabrics have relatively large errors, indicating that 

special optimization of the model may be required for 

some special fabric characteristics. In summary, the study 

not only proves the generalization ability of 

FIG-PSO-ELM algorithm, but also provides a practical 

forecasting tool for the textile industry in fabric quality 

control and production efficiency improvement. 

5 Conclusion 

To achieve effective control in the production of cotton 

and linen fabrics, and to improve their polycondensation 

performance and porosity, the PSO algorithm was used to 

optimize the ELM, and FIG was selected to extract the 

polycondensation and porosity characteristics of cotton 

and linen fabrics. The FIG-PSO-ELM algorithm was 

proposed and its effectiveness was verified. The results 

showed that within the 1500s of the collection, the 

intrinsic viscosity of cotton and linen fabrics fluctuated 

greatly, and the value was roughly maintained between 

49.2-51.2. When the time was 1000-1500s, it reached the 

maximum (51.15) and minimum (49.3) value. In addition, 

on the Low, R, and Up sequences, the values predicted by 

the FIG-PSO-ELM were roughly the same as the actual 

values, maintaining between 49-51, showing high 

accuracy. At the same time, comparing with the 

predictive results of the other four algorithms on the three 

sequences, it was found that the FIG-PSO-ELM had the 

highest degree of agreement between the predictive 

results and the actual results. The ELM was the lowest, 

and the R sequence value reached a maximum of 39.5. 

On this basis, the study compared the sum of the five 

algorithms in MSE  and MAE . It was found that the 

values of the FIG-PSO-ELM on the three sequences were 

significantly lower than those of the other four algorithms, 

with the lowest MSE  value being 0.0019 and the 

MAE  lowest value being 0.0368. In a word, the 
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FIG-PSO-ELM algorithm presented in the study shows 

high performance, which can accurately predict the 

fluctuation range of shrinkage and porosity of cotton and 

linen fabrics, and has a good effect on improving the 

quality of cotton and linen fabrics. However, the study 

only explores part of the content of the prediction model, 

which can be further explored in the subsequent defect 

detection. 

Although the FIG-PSO-ELM algorithm has shown 

remarkable results in predicting the shrinkage 

performance and porosity of cotton and linen fabrics, 

future work can further expand its application and 

improve its performance. Specifically, a fault detection 

mechanism can be integrated to identify production 

anomalies in real-time, and the algorithm's generalization 

ability under different structures and conditions can be 

tested. Moreover, the efficiency of the algorithm can be 

optimized to handle real-time data streams, and a 

user-friendly interface can be developed to enhance the 

interaction experience. In addition, conducting long-term 

performance evaluations, fusing multi-modal data to 

improve the depth of predictions, improving the 

interpretability of algorithms, and promoting 

interdisciplinary collaboration are all potential directions 

to advance the field. Through these improvements, the 

FIG-PSO-ELM algorithm is expected to achieve a wider 

application in the textile industry and provide higher 

value. 

6 Discussion 

The proposed FIG-PSO-ELM method shows excellent 

performance in predicting polycondensation properties 

and porosity of cotton and linen fabrics. In previous 

studies, as described in reference [8], [9], and [10], 

enzymatic methods, continuous pad dyeing techniques, 

and the application of novel N-phenylmaleimide were all 

aimed at improving specific properties of wool fabrics. 

However, these methods mainly focused on specific 

fabric handling techniques without involving the use of 

data-driven models for performance prediction. In 

contrast, the FIG-PSO-ELM method uses advanced 

data-driven technology to dynamically predict fabric 

characteristics, which has significant advantages in 

real-time monitoring and production adjustment. The 

performance advantage of the FIG-PSO-ELM method 

can be attributed to several key factors. First of all, the 

improvement of the algorithm, especially the 

optimization of ELM by the PSO algorithm, improves the 

prediction accuracy and generalization ability of the 

model. Secondly, the application of FIG technology 

enhances the processing power of dynamic data, enabling 

the model to more accurately capture fluctuations in 

fabric characteristics. In addition, compared with 

traditional ELM and other neural network models, 

FIG-PSO-ELM is more efficient in data processing, as 

reflected in the experimental results, and its prediction 

error is significantly lower than other methods. 

The FIG-PSO-ELM method has brought new 

contributions to the textile field. Its superior prediction 

accuracy and efficiency make it have important 

application value in the quality control of cotton and linen 

fabric production. This method can not only reduce the 

number of unqualified products but also improve 

production efficiency and reduce costs. In addition, the 

application of the FIG-PSO-ELM method can be 

extended to other types of fabrics and textile materials, 

providing new possibilities for the intelligence and 

automation of the textile industry. 

Funding 

The research is supported by: School-level scientific 

research and innovation platform project: collaborative 

innovation center for structural innovation and functional 

research and development of shoes and clothing product 

(No. PT21003/0301); Fujian Young and Middle-aged 

Project: Research on Friction Comfort of New Clothing 

Fabrics Based on Long-distance Running (No. 

JZ180909). 

References 

[1] B. K. Behera, “Comfort and handle the behavior of 

linen-blended fabrics,” AUTEX Research Journal, 

vol. 7, no. 1, pp. 33-47, 2007. 
https://doi.org/10.1515/aut-2007-070104 

[2] M. Peng, C. Liu, S. Chen, S. Gao, L. Jiang, and J. Ma, 

“Development and performance study of a new 

shrink-proof and non-iron cotton blended fabric,” 

Textile Research Journal, vol. 89, no. 16, pp. 

3269-3279, 2019. 

https://doi.org/10.1177/0040517518809043 

[3] C. Saricam, “The comfort properties of hemp and flax 

blended denim fabrics with common industrial 

washing treatments,” Textile Research Journal, vol. 

92, no. 17-18, pp. 3164-3178, 2022. 

https://doi.org/10.1177/00405175211054216 

[4] T. Nongnual, S. Kaewpirom, N. Damnong, S. 

Srimongkol, and T. Benjalersyarnon, “A simple and 

precise estimation of water sliding angle by 

monitoring image brightness: A case study of the 

fluid repellency of commercial face masks,” ACS 

Omega, vol. 7, no. 15, pp. 13178-13188, 2022. 

https://doi.org/10.1021/acsomega.2c00628 

[5] D. T. Birkocak, “Effects of needle size and sewing 

thread on seam quality of traditional fabrics,” 

Textile and Apparel, vol. 32, no. 3, pp. 277-287. 

https://doi.org/10.32710/tekstilvekonfeksiyon.10880

43 

[6] D. Atalie, and G. Ashagre, “Abrasion, pilling, and 

snagging properties of half-bleached bedsheet 

fabrics made from 100% cotton yarns with various 

parameters,” Journal of Natural Fibers, vol. 19, no. 



76   Informatica 48 (2024) 63–76                                                                      X. Hou 

10, pp. 3788-3796, 2022. 

https://doi.org/10.1080/15440478.2020.1848727 

[7] N. Senthil, and B. Dhurai, “Knittability enhancement 

study of 100% linen yarn using softeners,” Journal 

of Natural Fibers, vol. 19, no. 12, pp. 4393-4402, 

2022. 

https://doi.org/10.1080/15440478.2020.1863287 

[8] N. Zhang, P. Huang, P. Wang, Y. Yu, M. Zhou, and Q. 

Wang, “Combined cutinase and keratinolytic 

enzyme to endow improved shrink-resistance to 

wool fabric,” Fibers and Polymers, vol. 23, no. 4, pp. 

985-992, 2022. 

https://doi.org/10.1007/s12221-022-4445-0 

[9] Y. Luo, S. Zhai, L. Pei, J. Wang, and Z. Cai, 

“Environment-friendly high-efficiency continuous 

pad dyeing of non-shrinkable wool fabric by the 

silicon fixation method without auxiliary 

chemicals,” ACS Sustainable Chemistry & 

Engineering, vol. 10, no. 11, pp. 3557-3566, 2022. 

https://doi.org/10.1021/acssuschemeng.1c07793 

[10] G. Liu, W. Wang, and D. Yu, “Facile fabrication of 

durable antibacterial and anti-felting wool fabrics 

with enhanced comfort via novel 

N-phenylmaleimide finishing,” Bioprocess and 

Biosystems Engineering, vol. 45, no. 5, pp. 921-929, 

2022. https://doi.org/10.1007/s00449-022-02710-2 

[11] B. Šaravanja, S. Kovačević, T. Pušić, K. Malarić, 

and D. Ujević, “Impact of dry and wet cleaning on 

structural, mechanical and protective properties of 

fabrics designed for electromagnetic shield 

application,” Fibers and Polymers, vol. 23, no. 3, pp. 

666-679, 2022. 

https://doi.org/10.1007/s12221-022-3028-4 

[12] B. Qi, F. Wang, Q. Chen, B. Xu, P. Wang, M. Zhou, 

and Q. Wang, “Enzymatic construction of a 

temperature-regulating fabric with multiple 

heat-transfer capabilities,” Cellulose, vol. 29, no. 6, 

pp. 3513- 3528, 2022. 

https://doi.org/10.1007/s10570-022-04467-z 

[13] V. Z. Fahritdinovna, T. S. Erkaevich, and P. O. 

Viktorovna, “Comparative analysis of the 

qualitative characteristics of national fabrics,” 

Academicia Globe: Inderscience Research, vol. 3, 

no. 04, pp. 596-602, 2022. 

https://doi.org/10.17605/OSF.IO/8JGPN 

[14] H. Zhang, Y. Cao, Q. Zhen, J. Cui, and X. M. Qian, 

“Facile preparation of PET/PA6 bicomponent 

microfilament fabrics with tunable porosity for 

comfortable medical protective clothing,” ACS 

Applied Bio Materials, vol. 5, no. 7, pp. 3509-3518, 

2022. https://doi.org/10.1021/acsabm.2c00447 

[15] A. Fouda, P. Těšinová, A. Khalil, and M. Eldeeba, 

“Thermo-physiological properties of polyester 

chenille single Jersey knitted fabrics,” Alexandria 

Engineering Journal, vol. 61, no. 9, pp. 7029-7036, 

2022. https://doi.org/10.1016/j.aej.2021.12.041 

[16] N. Dehghan, P. Payvandy, and S. Talebi, 

“Introducing a novel model for predicting effective 

thermal conductivity of spacer fabrics based on their 

structural parameters,” Journal of Thermal Analysis 

and Calorimetry, vol. 147, no. 12, pp. 6615-6629, 

2022. https://doi.org/10.1007/s10973-021-11000-0 

[17] Y. E. Kim, Y. J. Bae, Y. S. Seok, and I. C. Um, 

“Effect of hot press time on the structure 

characteristics and mechanical properties of silk 

non-woven fabric,” International Journal of 

Industrial Entomology, vol. 44, no. 1, pp. 12-20, 

2022. https://doi.org/10.7852/ijie.2022.44.1.12 

[18] S. J. Kim, and I. C. Um, “Preparation, structural 

characterization, and properties of natural silk 

non-woven fabrics from different silkworm 

varieties,” Fibers and Polymers, vol. 23, no. 4, pp. 

1130-1141, 2022. 

https://doi.org/10.1007/s12221-022-4350-6 

[19] Z. Zhou, W. Deng, Y. Wang, and Z. Zhu, 

“Classification of clothing images based on a 

parallel convolutional neural network and random 

vector functional link optimized by the grasshopper 

optimization algorithm,” Textile Research Journal, 

vol. 92, no. 9-10, pp. 1415-1428, 2022. 

https://doi.org/10.1177/00405175211059207 

[20] P. Cheng, J. Wang, X. Zeng, P. Bruniaux, and X. 

Tao, “Motion comfort analysis of tight-fitting 

sportswear from multi-dimensions using intelligence 

systems,” Textile Research Journal, vol. 92, no. 

11-12, pp. 1843-1866, 2022. 

https://doi.org/10.1177/00405175211070611 

[21] F. Shi, M. Wang, K. Fang, Z. Zhao, H. Zhao, and W. 

Chen, “Fabrication of chitosan-loaded 

multifunctional wool fabric for reactive dye digital 

inkjet printing by Schiff base reaction,” Langmuir, 

vol. 38, no. 33, pp. 10081 -10088, 2022. 

https://doi.org/10.1021/acs.langmuir.2c00961 

[22] H. Yildirim, and F. Ozturk, “A benchmark study of 

the material models for forming simulation of 

woven fabrics,” The Journal of the Textile Institute, 

vol. 113, no. 6, pp. 1027-1038, 2022. 

https://doi.org/10.1080/00405000.2021.1914409 

 


