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The study constructs a three-dimensional model by using finite element software to optimize the hull 

compartment structure. The optimized design variables are obtained through sensitivity analysis. At 

the same time, the study uses particle swarm optimization algorithm to improve the back-propagation 

neural network. The improved algorithm is optimized by using the staged mutation strategy and 

chaotic search to realize the optimization calculation of the hull compartment structure. Real sample 

data are obtained through orthogonal tests and relevant validation is carried out. The experimental 

validation showed that the minimum optimal equivalent stress solution of the proposed method was 

0.167, which was 1.7041 less than the back propagation neural network algorithm based on particle 

swarm optimization. The maximum optimal shear stress solution of the proposed method was 0.0640, 

which was 0.9761 less than the comparison algorithm. The equivalent stresses of the inner sole plate 

before and after optimization were 140N/mm2 and 160N/mm2, respectively. Compared with the other 

methods, the accuracy of the proposed method was increased by 19.31%, 3.75%, and 2.96% over the 

three compared methods, respectively. As a result, the algorithmic computational efficiency and the 

ability to find the optimum can be improved by combining the staged mutation strategy with the 

particle swarm optimization algorithm to improve the back propagation neural network. The proposed 

method can effectively improve the stress of the cockpit components and realize the structural 

optimization. This method has positive application significance in the optimal design of ship cabin 

structure. 

Povzetek: V članku je opisan tridimenzionalni model za optimizacijo strukture ladijskih predelov s 

pomočjo metode končnih elementov. Uporaba izboljšanega nevronskega omrežja s strategijo mutacije 

in kaotičnim iskanjem izboljšuje strižne napetosti in stresne točke, kar prispeva k večji stabilnosti in 

optimizaciji ladijske strukture.

1 Introduction 

As an important water transportation vehicle, the design 

of the hull structure of oil tankers directly affects the 

safety, economy, and environmental friendliness of the 

vessel [1-3]. In the design of oil tankers, the optimization 

of the hull compartment is important to improve the 

performance. The layouts, dimensions, and weight 

distributions of the cabin structure should be accurately 

calculated and comprehensively considered to ensure the 

stability and durability of the vessel during transportation 

[4-6]. Many researchers begin to explore the application 

of artificial intelligence algorithms in the optimization of 

hull structures to further improve the accuracy and 

efficiency of design [7]. Among these artificial 

intelligence algorithms, the Back Propagation (BP) neural 

network is a commonly used machine learning method. 

BP neural network shows better advantages in dealing 

with complex problems by simulating the learning 

mechanism of humans. The basic idea of BP is to modify 

the weights and thresholds of the network. This can be 

achieved through the mean square error between the 

actual output of the neural network and the desired output 

of the sample. Then the actual output mean square error 

of the network reaches the target value. BP has been 

widely used in the optimal design of hull structure such 

as total hull resistance and uniformity of companion flow 

on the pulp disc surface. The BP neural network is 

effective in many fields. However, there are still some 

limitations in the practical application, such as the 

problem of easily falling into local optima [8]. Therefore, 

it is necessary to improve the BP neural network. Particle 

Swarm Optimization (PSO) has the advantages of simple 

structure, few parameters, and easy to implement. Its 

improvement strategy for combining with other 

algorithms has been studied more. In view of this, this 

study focused on the structure of oil tanker compartments, 

conducted finite element analysis, and introduced the BP 

neural network. Meanwhile, the improvement methods 

and applications in optimization compartment structures 

were explored to effectively optimize the structure of ship 

compartments. The goal of the optimization is to develop 
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an optimized design method for the structure of ship 

compartments. In this way, the automation and 

intelligence of the structural design of oil tanker 

compartments can be achieved. Then the performance 

indicators of the hull can be more accurately predicted 

and the structure of the hull can be optimized. The 

artificial intelligence algorithms in the structural design 

of oil tanker compartments are introduced for structural 

optimization. This is beneficial for improving the 

intelligence of structural design and providing important 

references for ship structural design. The study is divided 

into four parts. The first part is a literature review, which 

introduces the research status of the ships and the BP 

neural network. The second part is to conduct finite 

element analysis and sensitivity analysis of the oil tanker 

compartment structure. Meanwhile, sample data are 

obtained, and relevant predictions are carried out through 

the improved BP neural network. In the third part, the 

results are analyzed, the effectiveness of improving the 

BP neural network and optimizing the structure is studied, 

and a discussion section is added. In the fourth part, the 

research methods are summarized, and the research 

shortcomings and future research directions are pointed 

out. 

2 Related Works 

The early oil tanker was a single-shell structure, which 

had structural stability defects. The hull may be damaged. 

The crude oil may leak when collisions occur, resulting in 

negative impacts on the marine ecology. Therefore, it is 

necessary to optimize the design of the hull. Lian F et al. 

considered the various costs of shipping companies to 

improve the overall efficiency. Meanwhile, a method was 

proposed to determine the optimal vessel and weekly 

service frequency to minimize total costs. The results 

showed that the optimal size was smaller than the 

currently largest in-service container ship [9]. Dai R et al. 

made improvements in the topology optimization and 

other aspects of solid plates for pressure resistant hull 

outer compartments to simplify the construction and 

reduce the weight of the solid plate. The strength of the 

entire structure was analyzed using 

Hyperworks/Optimization. The results showed that the 

maximum stress of the solid plate after topology 

optimization was the smallest. The weight of the solid 

plate after optimizing the diameter of aperture was 

reduced by 19%. The shear stress was increased by 38% 

[10]. Ameen N M et al. proposed a new method for 

robust nonlinear Proportional-Integral-Derivative (PID) 

controllers to improve the response speed of the system 

and reduce the impact of nonlinearity and uncertainty. 

Nonlinear functions were added. Differential terms in 

conventional PID controllers were filtered. Then the 

corresponding controller gain was adjusted. The results 

indicated that the system had good performance, with 

good performance in zero steady-state error and better 

transient response [11]. Guo S et al. designed an 

autonomous path planning method based on deep 

reinforcement learning to improve the automation of 

unmanned ships’ path planning in unknown environments. 

The method combined deep deterministic strategy 

gradient algorithm and simulated the optimal action 

strategy based on relevant empirical data. The navigation 

restriction areas were set to improve the effectiveness of 

the method. The experimental results showed that the 

proposed method had a good convergence speed and ran 

stably [12]. Zakerdoost H et al. proposed a framework to 

optimize the performance of ship propeller systems in 

waves. This framework determined the main geometric 

characteristics and optimized them under two levels and 

multi-point operating conditions. Methods such as 

multi-objective evolutionary algorithms were adopted to 

minimize the effective power and maximize the 

propulsion efficiency. A semi-empirical formula was 

used to estimate the additional wave resistance. The 

results indicated that the proposed method was effective 

[13]. 

Zhang Z et al. introduced the BP neural network to 

predict the ship traffic flow in the designated port area. 

The parameters of the BP neural network were optimized 

by improving the PSO algorithm. The analysis of the ship 

traffic flow was conducted through the obtained model. 

The test results showed that the method had good 

predictive performance and good convergence [14]. Liu 

Y et al. proposed a method based on the empirical mode 

decomposition, genetic algorithm, and BP neural network 

to more accurately evaluate the state of rolling bearings. 

First, the vibration signals were decomposed, features 

were extracted, and then the parameters of the BP neural 

network were optimized. The proposed method had a 

high accuracy after verification with relevant bearing 

datasets [15]. Lu J et al. proposed a boiler steam pressure 

control system based on the BP-PID control to improve 

the boiler steam pressure control and address the 

shortcomings of traditional PID control methods. The 

simulation results showed that the PID controller based 

on the BP neural network achieved better control 

performance, with no oscillation, no overshoot, and short 

transition time in the response curve [16]. Zhang D 

proposed a diagnostic method based on the adaptive 

neural network to improve the accuracy and timeliness of 

ship power plant fault diagnosis. This method was 

applied to fault detection and estimation, effectively 

solving the limited applicability and low accuracy of 

current ship equipment fault identification methods. The 

simulation results showed that the model effectively 

reduced fault diagnosis errors and diagnosed faults faster 

and more effectively [17]. When Pany C et al. studied the 

axis of an infinitely long cylindrical curved plate. They 

conducted relevant research based on finite element 

combined with wave methods to understand the bending 

vibration natural frequency. The results showed that the 

proposed method effectively reduced computational 

complexity and had a good application effect [18]. Pany 

C et al. introduced the finite element method and 
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conducted relevant analysis to understand the propagation 

of free waves in two-dimensional periodic plates. From 

the obtained results, the proposed method effectively 

described the propagation of free waves [19]. Pany C et al. 

introduced triangular finite element method to investigate 

the flutter of periodic supported curved plates. This 

method achieved high accuracy and was used for flutter 

analysis. The results showed that the proposed method 

had good accuracy [20]. 

In summary, with the complexity of hull, there are 

characteristics such as high dimensionality and high 

nonlinearity in the optimization problems of the ship 

research. Traditional methods are difficult to deal with 

these problems. However, BP neural network is a good 

artificial neural network with strong adaptability and 

self-learning ability, which has significant advantages in 

high non-linear problems. The relationship between ship 

geometric parameters and structural response is highly 

nonlinear, making it very suitable for predicting structural 

response output. Therefore, the study applies the BP 

neural network to optimize the hull section of oil tankers. 

To solve the local minimum, this study aims to improve 

the algorithm to achieve structural optimization of oil 

tankers. The study introduces the BP neural network to 

intelligently optimize the cabin structure of oil tankers, 

which has certain reference value for optimizing the 

structural design. The unstable generalization ability of 

the BP neural network can be optimized by adopting a 

new PSO algorithm, which may improve the BP neural 

network to handle high nonlinearity problems. In addition, 

the study further compares the differences between the 

existing methods and the proposed method to effectively 

illustrate the need for the study, as shown in Table 1. 

 

 
Table 1: Comparison of the proposed method with existing methods 

References Methods Results limitations 

Lian F et al. 

[9] 

Determine the optimum ship size and 

number of services per week to minimise 

the total cost, taking into account the costs 

to shipping companies in various areas 

Optimum size should be 

smaller than the largest 

container ship currently in 

service 

Theoretical optimization 

of hull structure 

dimensions from an 

economic point of view 

only 

Dai R et al. 

[10] 

Strength characterization of the entire 

structure using Hyperworks/Optimization 

Topology optimizes solid 

plate with the 

minimum-maximum 

stress value 

Require hundreds or 

thousands of iterations 

and is time consuming 

Ameen N M 

et al. [11] 

Add a nonlinear function to a conventional 

PID controller and filter the differential 

term, and tuning the corresponding 

controller gain 

The performance of the 

system is better in terms 

of zero steady state error 

with better transient 

response 

High computational 

effort, poor convergence 

performance, and 

difficult to obtain 

effective gradient 

information 

Guo S et al. 

[12] 

An autonomous path planning approach 

combining deep deterministic policy 

gradient algorithms 

Better convergence speed, 

able to run stably 

Higher computational 

volume 

Zakerdoost H 

et al. [13] 

Methods such as multi-objective 

evolutionary algorithms are used to 

minimize the effective power and maximize 

the propulsive efficiency. Semi-empirical 

formulas are used to estimate the additional 

wave resistance. 

Optimize the performance 

of a hull propeller system 

in waves 

The method relies on 

training data and is not 

efficient enough for 

structural optimization 

of the agent model 

This paper 

Analyze the structure of ship's cabin 

segments by Three-Dimensional (3D) 

modeling based on finite element analysis 

and construct an optimization model with 

the BP improved by PSO 

Reduce computation, 

improve iterative 

efficiency, and effectively 

enhance the stresses in 

compartment members for 

structural optimization 

- 

 

3 Optimization design of oil tanker 

structure on the ground of 3D 

modeling and improved BP neural 

network 

Firstly, finite element analysis of the tanker compartment 

is carried out. A 3D two-compartment model is 

constructed to optimize the tanker compartment structure. 

Secondly, the stress results of the hull components under 

the most hazardous working conditions are analyzed to 

determine whether the tanker internal structure could be 
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optimized. Sensitivity analysis and sample collection of 

the compartment structure are then performed. The PSO 

algorithm is optimized by using a staged mutation 

strategy. The MIPSO-BP and SMPSO-BP neural 

networks are proposed. 

 

3.1 Finite element analysis, sensitivity 

analysis, and sample acquisition of hull 

compartment structure 
Hull structural analysis is an important part of ship design. 

With the continuous advancement of technology and the 

increasing complexity of hull structures, traditional 

regulatory methods are able to meet the needs of modern 

ship design. The finite element analysis gradually 

becomes a main method for hull structural analysis. This 

method can more accurately simulate the actual stress and 

deformation of hull. First, the cabin is analyzed using 

finite element software to understand the sensitivity of 

the model. Meanwhile, the BP neural network is trained, 

and samples are obtained. Subsequently, the PSO 

algorithm is improved through a staged mutation strategy. 

Meanwhile, the improved algorithm is used to optimize 

the BP neural network. The design of oil tanker structure 

optimization is achieved by improving the BP neural 

network after constructing a mathematical model for 

optimizing the cabin structure. The performance of the 

BP neural network is improved by optimizing the PSO 

algorithm. A mathematical model for optimizing the 

cabin structure is constructed. The constructed 

optimization mathematical model can provide an 

important theoretical basis for the optimization of hull 

structures. In this regard, a finite element analysis is 

conducted on the cabin section of the 107600DWT 

RAMAX oil tanker to understand whether there is room 

for structural optimization. ANSYS software is chosen 

for finite element analysis. Overall, the structure of the 

study is shown in Figure 1. 

 

Establish a finite element 

model of two compartments 

of an oil tanker

Sensitivity 

analysis

Use orthogonal 

experimental method to 

obtain sample data

Optimize PSO algorithm 

through staged mutation 

strategy

Analysis of 

component 

stress results

Optimize 

BP neural 

network

Build an optimization 

model for cabin 

structure

Determination 

of constraint 

conditions

Forecast 

output

Finite element analysis of cabin section structure
Sensitivity analysis of segment structure and sample 

acquisition

 BP optimized by PSOOptimization of cabin structure

 

Figure 1: Research structure 

 

In Figure 1, this structure includes sections such as 

cabin model construction and sample acquisition. Firstly, 

the cabin segment model is constructed using finite 

element software. Among them, the ship adopts a double 

shell longitudinal skeleton structure, with 6 cargo oil 

tanks. The relevant parameters of the ship are shown in 

Table 2. 

 

 
Table 2: Relevant parameters 

Parameter 

Total 

length 

(m) 

Length 

between 

vertical 

lines (m) 

Standard 

captain (m) 
Shape width (m) 

Shape depth 

(m) 

Structure 

draft (m) 

Value 243.80 237.00 237.00 42.00 21.30 14.55 

Parameter 
Ballast 

draft (m) 

Square 

coefficient 

Structure 

draft 

displacement 

(t) 

Rib spacing 

(FR.49-FR.79) 

(meters) 

Rib spacing 

(FR.79-FR.86) (meters) 

Value 8.50 0.8557 127037 4.93 4.58 

 

In Table 2, the oil tank area is Frame (FR) 49-FR.86, 

with a total length of 243.80m and a ballast draft of 

8.50m. The entire ship model is replaced with a segment 

model. Meanwhile, the overall coordinate system of the 

finite element model of the segment structure is 

established by using a right-handed Cartesian coordinate 

system. The coordinate origin of this model is at the 

intersection of rib 61 on the longitudinal section of the 
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ship and the baseline. The X-axis, Y-axis, and Z-axis are 

set. In the cabin model, two cabin models are selected. 

Meanwhile, the structural limit evaluation object is a 

complete cargo oil tank in the middle of the ship. The 

boundary is the front and rear hull structure of the cargo 

oil tank. The relevant structure of the cabin section is 

shown in Figure 2. 

 

Longitudinal bulkhead 

structure

Horizontal bulkhead 

structure

 

Figure 2: The relevant structure of the cabin section 

 

Figure 2 shows the structure of longitudinal and 

transverse bulkheads. Half of the complete oil tank can be 

taken forward and backward to weaken the influence of 

boundary conditions on structural response. Then a 

1/2+1+1/2 tank segment calculation model is formed. In 

this regard, the entire No.3 oil tank and 1/2 of the No.2 

and No.4 oil tanks are taken for finite element modeling. 

During the grid division, attention should be paid to the 

type, number, and shape of the grid. Fewer triangular 

elements should be used. In general, the finite element 

mesh of the cabin structure is divided longitudinally 

based on rib spacing or similar spacing and horizontally 

based on longitudinal spacing or similar spacing, with the 

mesh shape as close to a square as possible. Meanwhile, 

the aspect ratio of plate elements is usually less than 3. 

Triangular elements should be avoided in areas of high 

stress or high stress gradient. The aspect ratio of plate 

elements should be close to 1. There are two types of 

material property settings, namely SAH and AH steel 

materials. These two materials yield stresses are 355MPa 

and 315MPa, respectively. These two materials have 

ultimate tensile strength of 726MPa and 513MPa, 

corresponding elongation of 16% and 22%, respectively. 

The stress-strain curves of the two materials are shown in 

Figure 3. 

In Figure 3, the stress-strain curve of the two 

materials is located above the SAH steel material. As the 

strain increases, the curves show a trend of first 

increasing and then decreasing. Specific material 

parameters are shown in Table 3. 
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Figure 3: Stress-strain curve 

 

 
Table 3: Main parameters of materials 

Parametric Parameter value 

AH material factor for high strength steel 0.78 

SAH material factor for high strength steel 0.72 

Modulus of elasticity 2.06×1011N/m2 

Poisson's ratio 0.3 

Bulk density 7850 kg/m3 

Gravitational acceleration 9.81 m/s2 
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Figure 4: The relevant structure of the cabin section 

 

According to the parameters set in Table 3, a 3D 

two-compartment segment model is constructed with 

24637 nodes and 44900 cells. The finite element model 

of the cabin section is shown in Figure 4. 

From Figure 4, the constructed 3D two-compartment 

model is in good condition. The deck, side outer plate, 

ship bottom plate, longitudinal and transverse bulkheads, 

rib plates, and other plates of the cabin section are 

simulated using four-node or three-node plate elements. 

Meanwhile, longitudinal bones, reinforcing ribs, and 

other bone materials are simulated using two-node beam 

elements. At the same time, the actual cross-section and 

eccentricity of each bone component are taken into 

account. During the model construction, each node has 6 

degrees of freedom, namely 3 translational degrees of 

freedom (displacement in the x, y, and z axes) and 3 

rotational degrees of freedom (rotation around the x, y, 

and z axes). These degrees of freedom may vary 

depending on the type of element established. For 

example, beam elements typically have 1 to 2 rotational 

degrees of freedom. The selected oil tanker type for 

research is relatively large, which mainly bears four types 

of loads, namely hull water pressure, cargo load, ship 

weight, and cabin end bending moment. Among them, the 

outboard water pressure includes two situations, namely 

full and non-full load draft conditions. The water pressure 

outside the hull is composed of static water pressure and 

wave hydrodynamic pressure under full load conditions. 

The relevant expression of the reference water pressure is 

shown in equation (1). 
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In equation (1), 0P  represents the reference water 

pressure, the unit of 0P  is kN/m2. wC  represents the 

wave coefficient. The mold depth is set to D . L  

represents the standard ship length. d  represents the 

draft of the design structure. The units of D , L , and 

d  are all in meters. The calculation formula for the 

pressure of liquid cargo in the cabin is shown in equation 

(2). 

0 ( 2.5)P g h= +         (2) 

In equation (2), P  represents the pressure of liquid 

cargo in the tank, which is measured in kN/m2. The 

density of liquid cargo in the tank is set to 0 , and the 

unit is t/m3. The gravitational acceleration is set to g , 

with a value of 9.81m/s2. The vertical distance from the 

top of the cabin to the calculation point is set to h , with 

a unit of m. Considering the pressure of steam and other 

factors inside the cabin, an additional head of 2.5m is set. 

The self-weight of the ship is the weight of the empty 

ship in the cabin section. In the finite element analysis, 

mass density and gravitational acceleration are set and 

applied to the model. In addition, it is necessary to 

calculate the end face bending moment as the boundary 

condition for the forces on the two end faces, and the 

relevant calculation formula is shown in equation (3). 

s w rM M M M= + −         (3) 

In equation (3), M  is the end face bending 

moment. The wave bending moment is set to wM . The 

static water bending moment is set to sM . The corrected 

bending moment is set to rM . When there is no sM  

under the corresponding working condition, there is rM . 

It is unable to determine the maximum static water 

bending moment sM  under the corresponding working 

condition. Therefore, it is necessary to correct the static 

water bending moment according to the guidelines. rM  

is an additional bending moment caused by local loads. 

Among them, the relevant expression of rM  is shown in 

equation (4). 

2 2

0 0

3 1

32 32
r m eM Q L Q L= +       (4) 

In equation (4), 0L  represents the total length of the 

cabin model, which is measured in meters, and rM  is 

measured in kN*m. The linear uniformly distributed 

pressure of the middle compartment model is set mQ . 

The linear uniformly distributed pressure of the two end 

compartments is set eQ . The units of mQ  and eQ  are 

the same, both in kN/m. The boundary conditions applied 

at both ends of the cabin include force and displacement 

boundary conditions when applying the cabin model for 

finite element analysis. The boundary condition of force, 

namely the end face bending moment, represents the 

constraints on the cabin section at both ends. The 

displacement boundary condition restricts the rigid body 

displacement (linear displacement and angular 

displacement) of the model. If the boundary conditions 

are not constrained, the singularity in the structural 

stiffness matrix of finite element analysis may occur, 

resulting in solution failure or incorrect stress results. 

There are many nodes at both ends of the cabin model. It 

would be more laborious and time-consuming to impose 

the constraints one by one. Boundary conditions are 

applied through multi-point constraint forms. The specific 

boundary conditions are shown in Table 4. 

In Table 4, Cons represents a fixed displacement of 

0 in that direction. Link represents the displacement of 
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relevant points within the end face connected to 

independent points. BM indicates the application of end 

face bending moment in this direction. x , y , and z  

represent the line displacement in the x , y , and z  

directions, respectively. x , y , and z  represent the 

angular displacement in the x , y , and z  directions, 

respectively. The accurate stress results in finite element 

analysis can be obtained by applying boundary conditions 

more efficiently. There is only one longitudinal bulkhead 

in the cabin calculation model. Therefore, the strength of 

8 working conditions is calculated according to relevant 

specifications. Conditions 1, 2, 3, and 6 are in navigation 

state. Conditions 4, 5, and 7 are in port state. Condition 8 

is in ballast navigation state. The most dangerous 

working condition is the vertical state in working 

condition 2 after finite element static analysis. The stress 

results of various hull plate components are compiled 

under this working condition, as shown in Table 5. 

 

 
Table 4: Boundary conditions 

Constraint 
Linear displacement Angular displacement 

x  y  z  x  y  z  

End face A / Link Link Link Link / 

End face B / Link Link Link Link / 

Independent point A Cons Cons / BM Cons Cons 

Independent point B Cons Cons / BM Cons Cons 

Middle longitudinal 

bulkhead 
Cons / / / Cons Cons 

 

Table 5: Maximum equivalent stress and maximum shear stress of components 

Component 
Bottom 

plate 

Bilge 

plate 
Side shell 

Inner 

bottom 

plate 

Inner 

bottom 

inclined 

plate 

Inner 

shell 

plate 

Strength 

deck 

Bottom 

girder 

Maximum 

shear stress 

(N/mm2) 

/ 77.5 91.2 / 100 90.1 / 105 

Maximum 

equivalent 

stress (N/mm2) 

193 151 179 140 175 174 204 198 

Component 

Centerlin

e 

bulkhead 

Transver

se 

bulkhead 

Non-watertig

ht horizontal 

frame 

Watertigh

t 

horizontal 

frame 

Platform 

plate 

7670 

horizont

al truss 

13250 

horizontal 

truss 

19200 

horizont

al truss 

Maximum 

shear stress 

(N/mm2) 

128 47 113 47.2 / 87.8 69 102 

Maximum 

equivalent 

stress (N/mm2) 

226 87 206 83.9 106 154 134 191 

 

According to the relevant guidelines for direct 

calculation of the oil tanker in Table 5, the stress values 

of these components are within the specified allowable 

stress range. That is to say, these components can be 

optimized, providing possibilities for subsequent 

structural optimization. Due to the large thickness of 

structural plates and cross-sectional dimensions of bone 

materials in oil tankers, using these two indicators as 

design variables may increase the difficulty of 

optimization and affect the optimization. Sensitivity 

analysis of the cabin structure needs to be carried out by 

selecting ISIGHT software and conducting sensitivity 

analysis through parameter testing method before 

optimizing the design. The parameter testing is a 

sensitivity analysis method for studying independent 

design variables. The core principle of this method is 

finite difference, which means that a single design 

variable is subjected to small perturbations while keeping 

other design variables constant. The derivative of the 

objective or constraint function with respect to this design 

variable is calculated using the difference formula, which 

is the sensitivity value. The objective or constraint 

functions are the mass of the cabin structure, the 

maximum equivalent stress, and the maximum shear 

stress. The equivalent stress takes into account the Max 

Von Mises theory. According to the Max Von Mises 

theory, the failure of a material depends only on whether 

the equivalent stress exceeds the yield limit of the 
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material. The material failure situation can be determined 

by combining stress in different directions into an 

equivalent stress value. The optimization design variables 

selected for the study are the geometric parameters of the 

ship, and parameter sensitivity analysis is conducted. 

Variable parameters can be changed arbitrarily during the 

optimization process. Fixed parameters are constant and 

cannot be changed arbitrarily during the ship construction 

process. Therefore, physical parameters are generally not 

selected as design variables, but rather the geometric 

parameters of the ship are selected as optimization design 

variables. The variable of parameters represents the 

thickness of different sheets. The structural bone material 

size is set as a constant. Therefore, the variable for 

optimized design can be obtained, which includes 35 

variables such as the thickness of the bottom outer plate, 

the thickness of the side outer plate, and the thickness of 

the inner bottom plate. The sensitivity of these variables 

to the mass of the cabin section is calculated. Based on 

the calculation results, the sensitivity values of all design 

variables are positive, indicating a positive correlation 

with the mass of the cabin section. The structural weight 

can be reduced by lowering the values of each design 

variable. Among these components, the sensitivity values 

corresponding to 8 design variables, such as the ship's 

bottom plate and side outer plate, are relatively high. 

Their proportion in the design variables is small, at 22%, 

and their contribution to the structural mass reaches 67%. 

Therefore, these sensitivity values can be considered as 

optimization design variables. On this basis, the 

maximum equivalent stress sensitivity and maximum 

shear stress sensitivity of the design variables are 

calculated. Based on these calculation results, the design 

variables with higher sensitivity are selected after 

comprehensive consideration. The remaining variables 

are filtered out. As a result, six optimization design 

variables, including the thickness of the bottom plate and 

the strong deck plate, can be obtained. 

The BP neural network is used as a mapping model 

between structural plate thickness and response. This 

algorithm can only be constructed through sample data. 

The structure of the BP neural network is shown in 

Figure 5. 

In Figure 5, the BP neural network consists of an 

input layer, a hidden layer, and an output layer. The 

neurons in the hidden layer use an S-shaped double 

tangent transfer function. The neurons in the output layer 

use a linear transfer function. The nodes in the input, 

hidden, and output layers are 6, 13, and 1, respectively. 

Therefore, the quality of sample data can be improved. 

The orthogonal design method is used to obtain sample 

data based on the BP neural network [21]. The selection 

of experimental factors is on the basis of the six 

optimization design variables obtained above, with a 

factor level of 5. The experimental orthogonal table is 

L25 (56). 25 and 6 represent the number of rows and 

columns in the orthogonal table. L represents the 

orthogonal table code. The experimental plan is 

determined and the thickness of each group of test plates 

is introduced into the model. The relevant results of the 

cabin section are obtained after the finite element 

calculation. The final sample data consists of 130 sets 

after comprehensive consideration. The training sample 

set consists of 105 sets of data. Partial sample data are 

shown in Figure 6. 

In Figure 6, there are certain differences in the 

thickness of the component plates under different test 

times. Among the test times from 1 to 5, the thickness of 

the bottom plate is the same, all of which are 19mm. 
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Figure 5: BP neural network structure diagram 
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Figure 6: Partial sample data 



Optimization Design of Hull Compartment Structure based on 3D… Informatica 48 (2024) 159–178 167 

 

3.2 Optimization design of cabin structure on 

the ground of SMPSO-BP neural network 
An experiment is conducted on structural optimization 

design methods after obtaining the sample data. The BP 

neural network has a tendency to converge to local 

minimum. Therefore, this algorithm is improved by 

selecting the PSO algorithm. The PSO algorithm has 

strong global search ability and can compensate for the 

shortcomings of the BP neural network. Firstly, the study 

maps the weights and thresholds of the BP neural 

network to PSO algorithm particles. The mean square 

error function of the BP neural network is obtained 

through the PSO algorithm fitness function, and the 

specific mathematical expression is shown in equation 

(5). 

2

1 1

1
( )

n m

jk jk

j k

f y t
n = =

= −       (5) 

In equation (5), ky  means the actual output of the 

BP neural network. The expected output of the algorithm 

is set to kt . Both k  and j  represent serial numbers. 

The number of training samples is set to n , and the 

number of output nodes of the BP neural network can be 

expressed as 'm . The PSO-BP neural network is shown 

in Figure 7. 

In Figure 7, first, the relevant parameters of the BP 

and PSO algorithms are initialized. The mathematical 

expression of the variable dimension 'D  is shown in 

equation (6). 

D inputnum hiddennum hiddennum

hiddennum outputnum outputnum

=  + +

 +
(6) 

In equation (6), the number of input and output layer 

nodes is set to inputnum  and outputnum , respectively. 

hiddennum  means the number of hidden layer nodes. 

The individual extreme value pbest  and the global 

extreme value gbest  are initialized. The initial position 

of the particles is mapped to the initial weights and 

thresholds of the BP neural network. According to 

equation (5), the particle fitness is obtained, and the 

position of the particle with the lowest fitness is treated as 

gbest , with pbest  as the initial position of the particle. 

The particle position and velocity are updated. The 

specific update formula is shown in equation (7). 
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Figure 7: Related processes 
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  (7) 

In equation (7), ( )idx t  and ( )idv t  denote the 

current positions and velocities of the particles; ( 1)idx t +  

and ( 1)idv t +  denote the updated positions and 

velocities of the particles. idp  denotes the individual 

optimum found by the particles. gdp  denotes the 

population global optimum. ( )t  denotes the inertia 

weights. 1c  and 2c  denote the learning factors. 1r  and 

2r  denote the random numbers between [0,1]. The 

fitness values of particles are calculated. pbest  and 

gbest  are updated. gbest  and the current maximum 

iteration number are tested. If gbest  is greater than the 

target value or the iteration number is smaller than the 

maximum iteration, the particle position and velocity are 

re-updated. Subsequent steps are continued. On the 

contrary, the iteration is stopped. The particle position 

vector corresponding to gbest  is mapped to the initial 

weights and thresholds of the BP neural network. 

Although the PSO algorithm has a certain improvement 

effect on the BP neural network, the convergence effect 

of the BP neural network is not satisfactory and can only 

converge to the local optimal solution due to the previous 
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algorithm's inability to maintain population diversity. In 

this study, a staged mutation strategy is used to obtain the 

Staging Mutation Particle Swarm Optimization (SMPSO) 

algorithm and optimize the PSO algorithm. The process 

of SMPSO algorithm is shown in Figure 8. 

In Figure 8, at the beginning stage of algorithm 

iteration, Multiple Interval Particle Swarm Optimization 

(MIPSO) is used to improve the way particles generate 

initial positions. Therefore, particles can be more evenly 

distributed in the search space. In the middle and later 

stages, the PSO algorithm is randomly perturbed gbest  

under the influence of chaotic algorithms, allowing the 

PSO algorithm to jump out of local minima. Overall, the 

process of the SMPSO-BP neural network is shown in 

Figure 9. 
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Figure 8: MIPSO algorithm flowchart 

 

In Figure 9, the parameters of the BP neural network 

and PSO algorithm, such as pbest  and gbest , are 

initialized. The initialization process is the same as in 

Figure 7. The particle velocity and position are updated. 

If the particle fitness value is smaller than the historical 

pbest , the current position pbest  is adjusted. On the 

contrary, the current gbest  is considered as the particle 

position. The number of evolutionary stagnation steps of 

gbest  is judged and whether the number exceeds the 

preset gT  is analyzed. If the number exceeds gT , the 

chaotic perturbation is applied to the current gbest , and 

the expression of gbest  is shown in equation (8). 

1 2( , , , )g g gDgbest p p p=       (8) 

In equation (8), p  represents the element in 

gbest . i  represents the number. igbest  is mapped to 

the domain of the cubic chaotic system [-1,1]. The 

mapping result is treated as the initial value of the cubic 

chaotic equation iz . The expression for iz  is shown in 

equation (9). 

( ) ( )i i i i iz gbest a b a= − −      (9) 

In equation (9), ia  represents the maximum 

igbest  in the i -th dimension. The minimum value in 

that dimension is set to ib . A chaotic variable sequence 

iz  is obtained through 
( ) ( 1,2 )F

iz F = , where F  

represents the variable. 
( )F

iz  inverse is mapped to the 

original search space, resulting in 
( ) ( ) ( ) ( )

1 2( , , , )F F F F

i g g gDgbest p p p= . The fitness value of each 
( )F

igbest  is calculated to obtain the 
*gbest  with the 

lowest fitness value, otherwise this step is skipped. The 

position of any particle in the current population is 

replaced with 
*gbest  and the current maximum iteration 

and gbest  are tested. The testing steps are the same as 

those in Figure 7. Simulation analysis is conducted on the 

SMPSO-BP neural network. The parameter settings are 

shown in Table 6. 

In Table 6, the learning rate of the BP neural 

network is 0.1. The mathematical model for optimizing 

the cabin structure is shown in equation (10). 
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Figure 9: The process of the SMPSO-BP neural network 

 

Table 6: Parameter settings 

Algorithm Parameter Value 

BP neural network 

Training target error 0.00001 

Maximum number of iterations 

(times) 
2000 

Learning rate 0.1 

SMPSO algorithm 

Population size 30 

Number of particles in each 

sub-interval (number) 
3 

Learning factors 1 2 2c c= =  

Maximum speed 0.5 

Maximum iteration (times) 5000 

Maximum number of iterations 

for cubic chaotic systems 

(times) 

60 

gT  5 

 

min ( )

. ( ) 0, ( 1,2, , )

( ) 0, ( 1,2, , )

i

n

j

k

find x

F X X R

s t G X j m

H X k l







 =
 = =

   (10) 

In equation (10), ix  means the optimal solution of 

the design variable. The column vector composed of 

structural optimization design variables is represented as 

 1 2 ', ,
T

nX x x x= . 'n  represents the number of x . 

The objective function of structural optimization is set to 

( )F X . The inequality and equality constraint functions 

of structural optimization are set to ( ) 0jG X   and 

( ) 0kH X = , respectively. The minimum thickness, 

maximum equivalent stress, and maximum shear stress of 

the selected components should be less than the 

corresponding allowable stress according to the 

requirements of the "Classification Code for Steel 

Seagoing Ships 2012" for large oil tanker components. 

The SMPSO-BP neural network is used to predict and 

output these stresses. The expression for ( )F X  is 

shown in equation (11). 
' '

1 1

( )
n n

i i i i i

i i

F X V S t 
= =

= =       (11) 

In equation (11),   represents the density of the 

component material. As the materials are all steel, the 
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density is taken as 7850kg/m3. V , S , and t  represent 

the volume, area, and thickness of the component, 

respectively. The objective function is to minimize the 

weight of the oil tanker compartment. Matlab software is 

chosen. The cabin structure design is optimized through 

the constraint minimization function fmincon of the 

software. The optimization is constrained by the 

prediction results of the SMPSO-BP neural network. The 

fmincon function is nonlinearly constrained. The 

SMPSO-BP neural network converges continuously 

through iteration when the weight of the oil tanker 

compartment structure is the lightest. 

4 Experimental results 

Firstly, the MIPSO algorithm was validated using the 

collected real sample data. PSO-BP neural network was 

introduced for comparison. Secondly, the performance of 

the MSPSO-BP neural network was examined. Finally, 

the SMPSO-BP neural network was used to optimize the 

mathematical model for the optimization of the ship 

segment structure for calculation and analysis. Other 

algorithms were introduced for convergence performance 

comparison. 

 

4.1 The Performance of MIPSO-BP neural 

network 
The Matlab software was chosen to analyze the optimal 

fitness and error of the research method. Meanwhile, the 

convergence of the method was revealed. The training 

sample set had 105 sets of data. The testing sample set 

had 25 sets of data. The performance of the MIPSO-BP 

neural network was verified. The parameter settings are 

shown in Table 4. The PSO-BP neural network was used 

as the comparison algorithm. The initial position and 

velocity of particles in the PSO algorithm were taken as 

random numbers between [- l, 1]. The number of particles 

in each sub-interval of the MIPSO algorithm was 3, with 

a maximum particle velocity of 0.5. The maximum 

iteration for the cubic chaotic system was 60. Both neural 

networks were trained 10 times. The two neural networks 

were compared in terms of initial particle distribution, 

optimal solution of PSO algorithm, and network 

generalization ability. The initial particle distribution of 

the two algorithms was obtained in Figure 10. 
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Figure 10: Initial distribution of particles 
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Figure 11: Initial distribution of particles 

 

In Figure 10 (a), the initial particle position 

distribution randomly generated by the PSO-BP neural 

network was uneven, with 1 particle in the interval [0.2, 

0.4], which was 5 fewer than the interval [0.8, 1.0], and 3 

particles in the interval [-0.6, -0.8]. Compared to Figure 

10 (a), the initial distribution of particles in Figure 10 (b) 

was relatively uniform. The algorithm pre-divided 10 

sub-intervals, and the particle positions were randomly 

generated within the corresponding intervals, with 3 

particles in each sub-interval. The optimal fitness values 
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for equivalent stress and shear stress of these two 

algorithms were analyzed in Figure 11. 

In Figure 11 (a), the MIPSO-BP neural network had 

a faster convergence speed compared to the PSO-BP 

neural network. The MIPSO-BP neural network had an 

initial optimal fitness value of 121.4, which was 136.2 

lower than the PSO-BP neural network’s 257.6. The 

MIPSO-BP neural network began to converge at 115 

iterations, while the PSO-BP neural network did not yet 

converge at 200 iterations. In Figure 11 (b), when the 

iteration number was 160, the optimal fitness value of the 

MIPSO-BP neural network for shear stress was 0, which 

was 3.7 times smaller than the PSO-BP neural network. 

Therefore, the MIPSO algorithm performed well and 

improved the performance of the BP neural network. The 

analysis of the SMPSO-BP neural network and the 

optimal solution of the PSO-BP neural network are 

shown in Figure 12. 

0.0 

1.0 

2.0 

3.0 

4.0 

5.0 

6.0 

7.0 

8.0 

1 2 3 4 5 6 7 8 9 10

Training frequency/time

PSO-BP SMPSO-BP

O
p

ti
m

al
 s

o
lu

ti
o

n
 f

o
r 

eq
u

iv
al

en
t 

st
re

ss
 t

ra
in

in
g

 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.2 

1 2 3 4 5 6 7 8 9 10

Training frequency/time

PSO-BP SMPSO-BP

T
h
e 

o
p
ti

m
al

 s
o
lu

ti
o
n
 f

o
r 

sh
ea

r 

st
re

ss
 t

ra
in

in
g

 

Figure 12: The optimal solution of the algorithm 

 

In Figure 12 (a), the SMPSO-BP neural network had 

a smaller optimal solution for equivalent stress compared 

to the PSO-BP neural network. When the training 

frequency was 1, the optimal equivalent stress solution of 

the SMPSO-BP neural network was 0.3825, which was 

2.0575 less than that of the PSO-BP neural network. 

When the training frequency was 5 times, the maximum 

equivalent stress optimal solution of the SMPSO-BP 

neural network was 0.4670, which was smaller than that 

of the PSO-BP neural network. In Figure 12 (b), the 

maximum and minimum values of the optimal shear 

stress solution for the SMPSO-BP neural network were 

0.0640 and 0.0084, respectively, which were smaller than 

those of the PSO-BP neural network. A comparison of 

the diversity of the two algorithms is then shown in 

Figure 13. 
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Figure 13: Comparison of algorithmic diversity 
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Comparing the population location diversity of the 

two algorithms in Figure 7(a) and (b), both algorithms 

showed an overall oscillating downward trend in the early 

stage of iterative evolution. While in the late iteration, the 

diversity of the SMPSO-BP neural network oscillated 

above and below 0.16. The diversity of the PSO-BP 

neural network was stable and consistent. The ideal 

population diversity curve is often slowly decreasing and 

with large oscillations, showing superior ability to 

balance global and local search. Therefore, this can 

indicate that the population diversity of the proposed 

SMPSO-BP neural network is better. This may be due to 

the fact that the chaotic perturbation strategy maintains a 

continuous change in the population diversity of the 

algorithm. The detection errors of these two algorithms 

were analyzed in Figure 14. 

In Figure 14 (a), the SMPSO-BP neural network had 

smaller line fluctuations and more stable prediction errors 

compared to the PSO-BP neural network. In sample point 

5, the equivalent stress error of the SMPSO-BP neural 

network was 0.49N/mm2, which was 0.64N/mm2 less 

than the PSO-BP neural network. The equivalent stress 

error of the latter was 1.13N/mm2. In Figure 14 (b), the 

SMPSO-BP neural network had a smoother line 

compared to the PSO-BP neural network. In sample point 

10, the shear stress errors of the PSO-BP and SMPSO-BP 

neural networks were 0.0079N/mm2 and 0.0003N/mm2, 

respectively, with the former being 0.00076N/mm2 larger 

than the latter. Therefore, the performance of the research 

method was better. 

 

4.2 Analysis of optimization results for tank 

section structure of oil tankers 

The SMPSO-BP neural network was applied to the 

structural optimization of oil tanker compartments, the 

fmincon function ran in Matlab software. The optimal 

plate thickness of the components was analyzed in Figure 

15. 

 

Figure 14: Detection error of two 

algorithms 
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Figure 15: Actual plate thickness and optimal plate thickness 

 

Figure 15 (a) shows the actual plate thickness of 

different components. The actual plate thickness of the 

bottom outer plate was 21.0m, which was 1.0m larger 

than the strong deck. The inner shell plate thickness was 

16.0m. The thickness of the component plates in Figure 

15 (b) decreased compared to Figure 15 (a). The optimal 

thickness of the bottom outer plate was 17.5m, which was 

3.5m less than its actual thickness. The optimal 

thicknesses of the side outer plate and inner shell plate 

were both 14.0m. The relevant stress situation of some 

components after optimizing the middle section of the oil 

tanker is shown in Figure 16. 

In the two sub-graphs of Figure 16, the equivalent 

stress and shear stress of the components increased after 

the optimization design. However, both were within the 

allowable values. In Figure 16 (a), for the equivalent 

stress of the ship's bottom plate, the pre-optimization 

value was 193N/mm2, which was 23N/mm2 smaller than 

the optimization value, and its allowable value was 

305N/mm2. The equivalent stresses before and after 

optimizing the inner bottom plate were 140N/mm2 and 

160N/mm2, respectively. In Figure 16 (b), the shear stress 

of the inner bottom inclined plate before optimization 

was 100N/mm2, which was 7N/mm2 lower than the 

optimization value and 60N/mm2 lower than the 

allowable value. The finite element analysis calibration 

showed that the stresses were improved and met the 

requirements. The above results implied that the 

optimized tanker section structure reduced the use of 

materials and improved the utilization of steel while 

maintaining or improving its load carrying capacity.  
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Figure 16: Actual plate thickness and optimal plate thickness 

 

This is of great significance for reducing 

shipbuilding costs and improving economic efficiency. In 

addition, the optimized stress distribution was more 

reasonable, which was conducive to improving the 

durability and reliability of the structure, thus enhancing 

the integrity of the overall structure. The comparative 

methods include the improved Long Short-Term Memory 

(LSTM) [22] and the improved Wavelet Neural Network 

(WNN) [23] to analyze the weight of cabin segments 

under different iterations and different methods, as shown 

in Figure 17. 
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Figure 17: Section weight situation 

 

In Figure 17 (a), the weight of the cabin segment 

processed by the research method varied under different 

iterations. When the iteration was 0, the weight of the 

cabin segment before optimization was 3912.45 tons. 

When the iteration was 1130, the algorithm began to 

converge, and the minimum weight of the cabin segment 

was 3648.49t. In Figure 17 (b), the cabin weight under 

the research method was the smallest compared to other 

methods, which was 78.04t smaller than the improved 

LSTM’s 3726.53t. Therefore, the research method had 
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good performance and effectively reduced the steels used 

in the hull. Finally, the study further compares the 

convergence time and convergence performance of 

SMPSO-BP with MIPSO-BP, PSO-BP, LSTM, and 

WNN as shown in Table 7. 

 

 
Table 7: Comparison of convergence performance of different methods 

Method Time (s) Accuracy (%) 

PSO-BP 4.23 82.03 

MIPSO-BP 1.02 92.45 

SMPSO-BP 0.95 97.87 

LSTM 1.87 94.33 

WNN 1.53 95.06 

 

Comparison of Table 7 showed that the convergence 

time required for MIPSO-BP and SMPSO-BP was 

significantly lower than the other algorithms. The 

convergence time required for SMPSO-BP was only 0.95 

s, with an accuracy of 97.87%. The accuracy of 

SMPSO-BP was increased by 19.31%, 3.75%, and 2.96% 

compared to PSO-BP, LSTM, and WNN, respectively. 

This indicated that the research algorithm greatly reduced 

the computational time overhead and improved the 

computational efficiency and algorithmic performance. 

5 Discussion 

The MIPSO-BP neural network had smaller errors 

compared to the PSO-BP neural network. In sample point 

5, the equivalent stress error of the SMPSO-BP neural 

network was 0.49N/mm2, which was 0.64N/mm2 smaller 

than the PSO-BP neural network. The study utilized 

chaotic sequences to perturb the optimal position of the 

population, thereby avoiding the local minima. This can 

avoid the increased algorithm time caused by chaotic 

perturbations in each iteration, improve the performance 

of the PSO algorithm, and reduce the error of the 

MIPSO-BP neural network. In the research on optimal 

trajectory planning for robots, Du Y et al. also improved 

the performance of the PSO algorithm through hybrid 

motion, thereby shortening the running time of the 

robotic arm [24]. This is to some extent consistent with 

the strategy of studying and optimizing PSO algorithms. 

In the control of multi-system robots by Xu Z et al., the 

PSO algorithm was optimized by introducing hybrid 

motion, thereby improving the accuracy of the method 

[25]. There are similarities between the optimization 

method and the research method. In the parameter 

identification of Li M et al.'s photovoltaic model, a 

hybrid disturbance mechanism was added around the 

global optimal solution to achieve better identification 

results [26]. Therefore, the convergence speed of the PSO 

algorithm was improved. This optimization method is to 

some extent consistent with this study, that is, the 

optimization method studied is effective. 

The proposed method not only synthesizes the 

self-learning ability of BP neural network and the global 

search ability of PSO algorithm. The generalization 

ability and prediction accuracy of the network are 

effectively improved by optimizing the weights and 

thresholds of the BP neural network through the 

improved PSO algorithm. In addition, the SMPSO-BP 

neural network can converge to the optimal solution more 

quickly and reduce the computation time when dealing 

with the ship structure optimization problem, which is of 

great significance for practical engineering applications. 

The study novelty lies in the successful application of the 

staged variation strategy to the PSO algorithm to 

optimize the BP neural network. In addition, this study 

provides a new method for the optimal design of ship 

compartment structures. This study has significant results 

in reducing material usage, lowering shipbuilding costs, 

and improving structural performance. These 

contributions not only promote the technological progress 

in the ship design, but also provide valuable references 

for other engineering fields. 

In the future, the research will further optimize the 

algorithm to improve its application. First, the proposed 

method can be applied to different types of ships and 

more complex structural components to verify its 

versatility and adaptability. Second, more design 

parameters are considered in the optimization, such as the 

spacing and size of the transverse strong frame, to 

achieve a more comprehensive structural optimization. In 

addition, further research is conducted to improve the 

algorithmic computational efficiency and robustness, 

especially when dealing with large-scale and 

multi-objective optimization problems. Finally, the 

possibility of combining the proposed method with other 

optimization techniques or artificial intelligence methods 

is explored to further improve the optimization 

performance. 

6 Conclusion 

The finite element analysis of oil tanker compartments 

was studied to optimize the structure of oil tanker 

compartments. A 3D two-compartment model was 

constructed to analyze the stress results of various hull 

components under the most dangerous working 

conditions and to determine whether there is room for 

optimization in the oil tanker. On this basis, sensitivity 

analysis of cabin structure and sample acquisition was 

carried out. The performance of the PSO-BP neural 

network was improved by using a staged mutation 

strategy to optimize the PSO algorithm. A cabin structure 
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optimization model was constructed, and constraints were 

determined. Relevant predictions were made by 

improving the BP neural network. The results showed 

that the MIPSO-BP neural network had a more uniform 

initial particle distribution compared to the PSO-BP 

neural network. The algorithm pre-divided 10 

sub-intervals, each randomly generating 3 particles. The 

PSO-BP neural network had 1 particle in the interval [0.2, 

0.4], which was 5 fewer than the interval [0.8, 1.0]. The 

SMPSO-BP neural network had a smaller optimal 

solution for equivalent stress compared to the PSO-BP 

neural network. When the training frequency was 1, the 

optimal equivalent stress solution of the SMPSO-BP 

neural network was 0.3825, which was 2.0575 less than 

the PSO-BP neural network. The stress on the cabin 

components increased after structural optimization. For 

the equivalent stress of the ship's bottom plate, the value 

before optimization was 193N/mm2, which was 23N/mm2 

lower than the optimization value. The weight of the 

cabin segment obtained by the research method was 

relatively small compared to other algorithms. The cabin 

weight obtained by the research method was 3648.49t, 

which was 78.04t smaller than the improved LSTM 

algorithm. Therefore, this study can effectively carry out 

the structural design of the cabin section. However, the 

research still needs further improvement, such as 

application verification in different types of ships and 

other complex structures. Future research also needs to 

consider the adaptability and robustness of the algorithm, 

further enhancing its universality and practicality. 

Meanwhile, the study only considers the thickness of the 

component plate as a variable in the optimization of the 

cabin structure and treats other parameters as known 

quantities. In the future, parameters such as the spacing of 

the horizontal strong FR can be added to the optimization 

of the cabin structure. 

7 Nomenclature 

All symbols and abbreviations: 

Project Meaning 

BP Back Propagation 

PSO Particle Swarm Optimization 

SAH A certain steel material 

AH A certain steel material 

0P  The reference water pressure 

wC  The wave coefficient 

D  The mold depth 

L  The standard ship length 

d  The design structure draft 

P  The pressure of liquid cargo in the tank 

0  The density of liquid cargo in the tank 
g  The gravitational acceleration 

h  
The vertical distance from the top of the cabin to the 

calculation point 

M  The end face bending moment 

wM  The wave bending moment 

sM  The static water bending moment 

rM  The corrected bending moment 

0L  The total length of the cabin model 

mQ  
The linear uniformly distributed pressure of the middle 

compartment model 

eQ  
The linear uniformly distributed pressure of The two 

end compartments 

x  The line displacement in the x  direction 

x  The x  direction 
y  The y  direction 

z  The z  direction 

y  The line displacement in the y  direction 

z  The line displacement in the z  direction 

x  The angular displacement in the x  direction 

y  The angular displacement in the y  direction 

z  The angular displacement in the z  direction 

ISIGHT Analysis software 
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L The orthogonal table code 

ky  The actual output of the BP neural network 

kt  The expected output of the algorithm 

k  Serial number 

j  Serial number 

n  The number of training samples 
inputnum  The number of input 

outputnum  The number of output layer nodes 

hiddennum  The number of hidden layer nodes 

pbest  The individual extreme value 

gbest  The global extreme value 

SMPSO Staging Mutation Particle Swarm Optimization 

MIPSO Multiple Interval Particle Swarm Optimization 

gT  The preset value 

p  The element in gbest  

i  The number 

iz  The cubic chaotic equation 

ia  The maximum value of igbest  in the i -th dimension 

F  The variable 
( )F

iz  Chaotic variable sequence 
*gbest  Global extremum with minimum fitness value 

1c  The learning factor 

2c  The learning factor 

ix  The optimal solution of the design variable 

'n  the number of x  

( )F X  The objective function of structural optimization 

( ) 0jG X   The inequality constraint function 

( ) 0kH X =  The equality constraint function 
  The density of the component material 

V  The volume of the component 

S  The area of the component 
t  The thickness of the component 

LSTM Long Short-Term Memory 

WNN Wavelet Neural Network 

PID Proportional-Integral-Derivative 
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