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Large-span spatial grid structures often face structural damage and defects during long-term service. 

To extend the lifespan of these structures and promptly detect damage and defects, this study proposes a 

model for structural damage identification in large-span spatial grid structures based on an improved 

genetic algorithm using simulated annealing optimization. Firstly, the Monte-Carlo sampling method is 

used to complete the sensitivity analysis of the finite element structural model. Then, a search heuristic 

algorithm, genetic algorithm, which simulates the process of biological evolution, is used for the 

identification of structural damages. Finally, a probability-based general optimization algorithm, 

simulated annealing algorithm, is used to optimize and improve the initial population generation and 

genetic operation of the genetic algorithm. Experimental results demonstrate that the hybrid intelligent 

algorithm's damage identification model achieves a balanced advantage between precision and recall, 

and the model's recall is 0.93 at a precision rate of 0.9. The area under the receiver operating 

characteristic curve reaches the highest level at 0.927. The optimization error evaluation indicators for 

different test functions consistently fall below 0.4, indicating superior optimization accuracy compared 

to other models. The genetic improvement strategy significantly enhances convergence performance for 

three convergence indicators, achieving a 100% convergence rate and the fastest iteration speed among 

the models. The algorithm accomplishes the convergence of the optimal value of the objective function 

at 140 generations of the population, with an optimal convergence value of 0.17. The damage 

identification model yields recognition results of 0.94 for single-member damage and 0.95 for multi-

member damage, with recognition errors for other members within a reasonable range. The recognition 

model achieves more than 90.0% accuracy in recognizing both random defects and actual damage. The 

model can also effectively identify damage under random defects. This research enriches theoretical 

knowledge in the field of structural damage identification, playing a crucial role in ensuring the safety 

and reliability of large-span spatial grid structures. 

Povzetek: Študija uvaja izboljšan model za prepoznavanje poškodb v velikorazponskih prostorskih 

mrežnih strukturah. Z uporabo genetskega algoritma in optimizacije s simuliranim ohlajanjem izboljša 

zanesljivost konstrukcij.

1 Introduction 

Large-span spatial grid structures, characterized by large 

spans and no internal beam and column support, enable 

open and flexible layouts over a considerable spatial range. 

In recent years, these structures have seen widespread use 

and development in venues such as sports stadiums, 

exhibition halls, airport terminals, large equipment 

maintenance workshops, and large commercial complexes, 

thanks to their use of high-strength, lightweight materials 

allowing the design of large enclosed structures with high 

clearance requirements [1-2]. However, defects such as 

material defects, cross-sectional area deviations, and poor 

seam quality often occur during the fabrication of grid 

structures. Long-term exposure to damp and corrosive 

environments can also lead to fatigue and corrosion  

 

damage in these structures, while large loads can cause 

damage such as loose connections and detachment at 

component connection points [3]. These defects and 

damages can compromise the structural integrity of spatial 

grid structures, resulting in equipment damage, structural 

instability, deformation, or collapse, posing significant 

economic losses [4]. Therefore, timely detection and repair 

of damage and defects in large-span spatial grid structures 

are essential. Common techniques for structural damage 

detection include monitoring sensors, acoustic wave 

detection, thermal imaging, and vibration analysis. With 

the advancement of computer technology, the use of image 

processing techniques for identifying potential structural 

damage and the application of computer algorithms or 

machine learning in conjunction with structural 
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monitoring data have gradually gained traction. However, 

damage identification methods based on computational 

intelligence still have some shortcomings and exhibit low 

accuracy in the face of complex structural damage [5]. To 

address this, this study designs a damage identification 

model for large-span spatial grid structures based on 

genetic algorithm (GA) and simulated annealing (SA), and 

conducts experiments on the structural damage 

identification model. The study comprises four main parts: 

firstly, a review of the current state of computational 

intelligence in structural damage identification technology 

both domestically and internationally; secondly, an 

explanation of the design process of the structural damage 

identification model for large-span spatial grid structures 

based on SA-GA; thirdly, performance evaluation and 

simulation experiments of the designed identification 

model; and finally, a summary and conclusion of the 

research experiment results. The realization of this study is 

expected to enrich the theoretical aspects of structural 

damage identification technology for large-span spatial 

grid structures and extend their lifespan. 

2 Background 

The research related to the automatic identification and 

localization of structural damage through the learning and 

training of structural feature data using machine learning 

and artificial intelligence algorithms has gained 

widespread attention in the field of structural engineering. 

In order to further enhance structural damage identification 

technology, scholars both domestically and internationally 

have conducted a series of studies on computational 

intelligence for structural damage identification. Existing 

strategies for assessing structural damage states primarily 

rely on traditional visual inspection, which is limited by 

the subjectivity or professional expertise of the inspection 

personnel, leading to lower reliability in detecting 

structural damage features. Barkhordari et al. designed a 

structural damage identification model using deep 

convolutional networks and ensemble learning algorithms. 

Experimental results indicated that the proposed method 

achieved a 94% accuracy and 92% recall rate in 

distinguishing various damage types such as bending, 

shearing, combination, or undamaged conditions [6]. 

Structural damage identification is crucial for ensuring the 

safety and functionality of structures. Mohebian et al. 

proposed a metaheuristic optimization algorithm based on 

visible particle sequence search for structural damage 

identification. Inspired by the visibility graph technique, 

this method treated candidate solutions as particle 

sequences and mapped them to a visible graph network to 

obtain visible particles for optimizing solutions. 

Experimental results demonstrated that this method 

exhibited high accuracy, reliability, and computational 

efficiency in damage identification [7]. The task of 

monitoring the structural safety and integrity of aging 

bridges was urgent. An indirect data-driven identification 

method, using instrumented vehicles to measure and 

receive indirect data of bridge structural damage features, 

has attracted considerable attention. To mitigate 

environmental and operational interferences, Hajializadeh 

designed a bridge damage identification model based on 

deep learning algorithms. This model achieved automatic 

extraction of damage features from measurement data. 

Under four positive damage scenarios and three different 

driving speeds, this method could detect and classify 

bridge damage through instrument measurements [8]. Lei 

et al. developed a steel frame structural damage detection 

method based on support vector machines. By setting up 

ten structural scenarios, different damage indicators were 

extracted as features. Experimental results demonstrated 

that this method exhibited good recognition capability for 

different indicators of damage features, with good 

detection accuracy and robustness [9]. 

The sensitivity method based on modal data exhibits 

lower damage detectability and encounters prominent 

issues related to the ill-conditioning of modal data noise in 

structural damage localization and quantification. To 

address this, Daneshvar et al. developed a damage 

localization and quantification method using an optimized 

iterative regularization approach employing iterative 

reweighted norm-based tracking for denoising. This 

method enhanced damage detectability, accuracy, and 

effectiveness, enabling adaptation to incomplete noisy 

modal data for structural damage localization [10]. 

Composite structures, particularly laminated composite 

structures, suffer significantly from the impact of 

imperceptible material losses at their surfaces, 

necessitating the development of methodologies and 

technologies to monitor structural health. Gomes and 

Giovani devised a two-step composite laminate damage 

identification method using a metaheuristic sunflower 

optimization algorithm and finite element analysis 

simulation. Experimental results demonstrated the 

method's capability to identify locations and severity of 

multiple damages within material structures, exhibiting 

high identification efficiency [11]. In order to enhance the 

accuracy of Bayesian damage identification methods, Luo 

et al. improved the objective function and sampling 

methods for Bayesian damage identification based on 

autoregressive coefficients and particle swarm 

optimization algorithms. Experimental results validated 

the method's strong identification ability and high 

sampling statistical efficiency in scenarios involving 

multiple damages, affirming its feasibility and accuracy 

[12]. 

Conventional damage identification methods exhibit 

poor accuracy in identifying fatigue cracks and loosening 

of bolts in transmission tower structures. Zuo and Guo 

proposed a time-domain damage identification method 

based on linear and nonlinear autoregressive model 

expressions and Itakura distance, employing a greedy 

strategy with a random pruning algorithm to optimize and 

enhance both linear and nonlinear autoregressive models. 

Experimental results demonstrated the method's 

effectiveness in identifying nonlinear damage in frame 
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models and transmission tower models [13]. 

The results of the related work are summarized in 

Table 1. In summary, numerous studies have addressed 

structural or material damage identification, affirming the 

practicality of computer technology and data-driven 

approaches in damage detection. However, research 

specifically targeting structural damage identification in 

large-span spatial structures remains relatively scarce, 

with room for improvement in accuracy and practicality. 

To address this gap, research integrating GA and SA for 

structural damage identification in large-span spatial 

structures has been initiated. 

 

 
Table 1: Summary of relevant research work 

Literature 

coding 

Literature 

Information 
Methodology Result Limitations 

[6] 
Barkhordari 

et al. 

Deep convolutional 

networks and ensemble 

learning algorithms 

94% accuracy and 

92% recall 

High model 

complexity and low 

computational 

efficiency 

[7] 
Mohebian et 

al. 

Visible particle sequence 

search algorithm 

This algorithm 

outperforms other 

metaheuristic 

algorithms in terms 

of accuracy, 

robustness, and 

convergence speed 

High model 

complexity 

[8] Hajializadeh 

Deep learning and 

Bayesian optimization 

techniques 

Under conditions of 

variable speed, 

uneven track, and 

operating noise, 

bridge damage can be 

accurately and 

automatically 

detected and 

classified solely 

through train 

measurements 

The accuracy of 

damage 

identification can be 

further improved 

[9] Lei et al. Support vector machine 

Obtain acceptable 

detection accuracy, 

with good detection 

accuracy and 

robustness 

The model is too 

simple and has poor 

performance 

[10] 
Daneshvar et 

al.  

Optimized iterative 

regularization method 

Improved the 

detectability of 

damage, determined 

the optimal 

regularization value, 

and obtained accurate 

solutions. 

High model 

complexity 

[11] 
Gomes and 

Giovani 

Meta heuristic sunflower 

optimization method and 

finite element analysis 

simulation 

Effectively 

identifying the 

location and severity 

of multiple damage 

situations in 

composite structures 

has high efficiency in 

saving time and 

computational costs 

Only applicable to 

composite material 

structures 

[12] Luo et al. 

Autoregressive 

coefficient objective 

function and particle 

swarm optimization 

Strong recognition 

ability and high 

sampling and 

statistical efficiency 

High model 

complexity 
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algorithm for Bayesian 

optimization 

[13] Zuo and Guo 

Linear and nonlinear 

autoregressive models, 

linear and nonlinear 

autoregressive models 

Nonlinear damage 

identification 

methods can 

effectively identify 

nonlinear damage in 

framework models 

and transmission 

tower models 

Only for the 

transmission tower 

model, the model 

complexity is 

relatively high 

 

3 Design of a structural damage 

identification model for large-span 

spatial grid structures based on SA-

Optimized GA 
During long-term service, defects and damage inevitably 

occur in large-span spatial grid structures. To enhance the 

damage identification technology for such structures, a 

research initiative was undertaken to design a damage 

identification model suitable for large-span spatial grid 

structures, utilizing GA and SA. 

 

3.1 Design of damage identification model 

based on numerical simulation and GA 
Material fatigue, corrosion, dynamic loading, and 

design/construction defects can all lead to damage and 

defects in structures. In order to address the issue of 

damage identification in large-span space grid structures, 

ensuring structural integrity, maintenance of equipment 

operation, and reducing property damage and casualties, 

research is conducted using finite element numerical 

simulation and GA for damage identification [14]. GA is 

an optimization algorithm that mimics the evolution of 

nature and has the ability of parallel search for large-scale 

problems. The loss identification problem of large-span 

spatial grid structure involves the selection and 

optimization of multiple variables, and GA can deal with 

multivariate optimization problems with strong 

interpretability. The probabilistic design method in finite 

element software can complete the reliability analysis of 

the structure, and the correlation coefficients of the 

variables to the vibration frequency of the structure can be 

obtained by using the finite element method to determine 

the damage influencing factors. Based on this, GA can 

realize the identification of damage location. 

Using ANSYS software, a model of a large-span spatial 

grid structure is established. Material and geometric 

uncertain characteristics, such as the elastic modulus of the 

structure, the cross-sectional area of the truss members, 

and density, are selected for structural stability sensitivity 

variable analysis. Structural vibration frequency is chosen 

as the output variable for damage identification. The study 

utilizes the Monte-Carlo method combined with Latin 

hypercube techniques to improve variable sampling 

methods. The Monte-Carlo method is a statistical 

inference method based on random samples, which 

approximates problems that cannot be directly solved 

analytically by generating a large number of random 

samples using statistical principles [15]. Monte-Carlo 

computations leverage multi-core or distributed 

computing, ensuring high computational efficiency. Due 

to the strong randomness of installation errors and defect 

losses in space grid structures, the parallel processing 

mode of Monte-Carlo is suitable for cyclic experiments 

under different working conditions of space grid structures. 

The probability distribution function of Monte-Carlo 

failure probability is calculated as shown in Equation (1), 

where ( )G X  represents the functional function, and 

( )g X  represents the joint probability density function of 

random variables. 

( )  ( ) ( ) 10
0 ... ... nG X

P G X g X dX dX


 =   (1) 

The structural reliability index and failure probability 

calculation are shown in Equation (2), where   

represents the probability function of the standard normal 

distribution; fp  represents the failure probability; 
f

p  

is the Monte-Carlo representation; I  represents the 

indicator function; N  represents the number of 

experimental analyses. 

 

( )

( )

1

1

1

1
f

n

if

i

p

p I G X
N

 −

=

 =  −

  =  


     (2) 

The generation of random samples in the Monte-

Carlo method is crucial, and the uncertainty of Monte-

Carlo will affect the distribution and quantity of random 

samples. The study introduces Latin Hypercube Sampling 

(LHS) for sample generation. LHS technology ensures an 

even distribution of samples, avoiding the repetition and 

overlap sampling of traditional Monte-Carlo methods, 

which can be used for sensitivity analysis and reliability 

analysis of variables, as shown in the sampling process 

comparison in Figure 1. 
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Monte Carlo method

Latin hypercube sampling

 

Figure 1: Schematic diagram of the LHS process 

 

The LHS random sampling process is shown in 

Equation (3), where X  represents the random variable; 

i  represents a certain stratified interval, and there are N  

stratified intervals. 

/ ( 1) /      
( 1) /    /  

i

i

X X N i N
i N X i N
= + −
−  

    (3) 

After Monte-Carlo-LHS sampling, the probability 

design system of ANSYS software is used to analyze the 

material and geometric uncertain characteristics and their 

effects on structural modes. This determined the defect-

sensitive parameters of the large-span grid structure, 

facilitating damage identification when the grid structure 

has random defects. Based on GA, a structural damage 

identification model is designed. GA is a search heuristic 

algorithm that simulates the process of biological 

evolution, by simulating the phenomena of reproduction, 

crossover and gene mutation in natural selection and 

genetic mechanism, a set of candidate solutions is kept in 

each iteration. The better individuals are selected from the 

solution group according to some index, and these 

individuals are combined using genetic operators (such as 

selection, crossover, mutation, migration and local and 

neighborhood search) to produce a new generation. The 

process is repeated until some convergence index is 

satisfied. 

The GA can simultaneously process multiple 

individuals and automatically adjust search behavior. It 

has advantages of strong adaptability, high robustness, and 

parallelism and is widely used in solving optimization 

problems in computer science. The workflow of GA is 

shown in Figure 2 [16]. GA first uses parameter encoding 

to transform feasible solutions to the structural damage 

identification problem in space into floating-point number 

encodings, which represent a series of genes or 

chromosomes. Floating-point number encoding can 

significantly reduce computational complexity and ensure 

operational efficiency. 

 

Start

Generate initial population

Generate a new 
generation of 

population

Meet termination criteria

Selecting Individuals

Calculate individual fitness 
values

Genetic  
manipulation

Output optimal 
individual

End

Y

N

 

Figure 2: GA workflow diagram 

 

The selection process of the GA is designed to mimic 

the natural selection mechanism. The fitness function is 

constructed based on the modal information of the grid 

structure. The fitness function measures the quality of 

individuals, with higher fitness values leading to retention 

and participation in the next iteration, while lower fitness 

values result in elimination [17]. After multiple iterations, 

the individual with the highest fitness value in the 
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population, representing the global optimal solution for the 

optimization problem, is obtained. The research employs 

the roulette wheel selection method for individual 

selection, with the selection probability calculated as 

shown in Equation (4). In this equation, f  represents the 

individual's fitness value, and if  represents the fitness 

values of individuals in the population. The principle of 

setting the population size of GA needs to consider the 

complexity of the problem, computational resources, and 

convergence speed. Complex problems require a larger 

population size to increase the diversity of the search and 

the possibility of finding a globally optimal solution. The 

study considers setting the population size from 20 to 160. 

 

1

i n

i

i

f
p

f
=

=


         (4) 

The selected superior individuals act as parents for 

crossover operations, where genetic segments are 

combined to form new individuals. The study utilizes 

uniform crossover for the crossover operation. After 

performing mutation operations, certain genes in the next-

generation population undergo mutation with a certain 

probability, enhancing the exploration ability of the search 

space. The iterative process of selection, crossover, and 

mutation continues until the stop condition is met. The 

principle of setting the crossover rate needs to consider the 

size of the search space, early convergence and the search 

range. It not only needs to increase the diversity of the 

population but also need to avoid the problem of early 

convergence, the crossover rate of the value of the range 

of 0.6-0.9. At the same time, according to the diversity of 

the population, do not destroy the good solution and to 

avoid the early convergence of the principle of setting the 

rate of variation, the research set the rate of variation of the 

consideration of the range of 0.5 percent to 1.0 percent. 

The damage identification process based on GA is 

illustrated in Figure 3. The selection of parameters such as 

population size, crossover rate, and mutation rate is crucial 

in GA. Improper parameter selection can slow down the 

evolution of GA. For the problem of damage identification 

in large-span network spatial structures, GAs need further 

improvement [18]. 

 

Determine structural damage 
parameters

Fitness calculation

Selecting Individuals

Start

Meet termination criteria

Genetic  
manipulation

Identifying damage parameters

Generate initial population

Correction of geometric and material 
properties

N

Y

Generate a new 
generation of 

population

Localization and quantification of structural 

damage

 

Figure 3: GA-based damage identification process 

 

3.2 Design of a damage identification model 

for large-span grid spatial structures based on 

SA-Optimized GA 
In the structural identification process using GA, structural 

damage locations and extents are identified through modal 

corrections of intact structures. To enhance the accuracy of 

GA in the damage identification process, optimizations 

and improvements are made regarding the initial 

population generation and genetic operations. 
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The traditional GA search process is conducted based 

on the population form, and the distribution of individuals 

in the initial population has a crucial impact on the 

effectiveness of GA. Diversification in the initial 

population improves the exploration ability of the solution 

space, while a concentrated or singular distribution may 

lead GA to a local optimum without finding the global 

optimum. Additionally, the distribution of individuals in 

the initial population is related to the convergence speed. 

Therefore, considering the concept of Hamming distance, 

which measures the number of differing characters at 

corresponding positions in two equally long strings, the 

study sets a distance limit for the population individuals to 

ensure diversity. 

Crossover and mutation operations determine the 

diversity and evolutionary potential of offspring 

individuals. Reasonable crossover and mutation 

parameters contribute to maintaining algorithm diversity 

and improving exploration ability and convergence speed. 

The study proposes an improved adaptive crossover 

probability, as shown in Equation (5). The crossover 

operation is performed based on the individual's fitness 

value. In Equation (5), 
'f , maxf , minf , and avgf  

represent the individual's fitness value, maximum fitness 

value, minimum fitness value, and average value, 

respectively; 1k  and 1cp  are random constants. 

 

'

'

1 1

max min

'

1

             

           

avg

c c avg

c c avg

f f
p p k f f

f f

p p f f

 −
= − 

−
 = 

 (5) 

The calculation process of the arithmetic crossover 

operator is shown in Equation (6), where Ax  and Bx  

represent the parents, and Bx  and 
'

Bx  represent the 

offsprings.   and   are random constants. 

( )

( )

'

'

1

1

A A B

B B A

x x x

x x x

 

 

 = + −


= + −
    (6) 

From Equations (5) and (6), when the average fitness 

of parents and offspring stabilizes, the optimization 

process gradually stops. To address this, the study employs 

a heuristic crossover operator for mutation operations, as 

shown in Equation (7). 

 
( )

( )

'

'

1

1

A A B

B B A

x x x

x x x

 

 

 = + −


= + −
    (7) 

In Equation (7),   represents the heuristic crossover 

coefficient, and the calculation process is described in 

Equation (8).   represents a random number, and n  

represents the number of times the calculation in Equation 

(7) is performed during the crossover process. 

 
( )

( ) ( )

( )1n

A

A B

f x

f x f x





−

 
=  

+  

 (8) 

Similarly, the improved calculation of the mutation 

probability mp  is described in Equation (9), where 1mp  

and 2k  are constants. 

 

'

'

1 2

max min

'

1

             

           

avg

m m avg

m m avg

f f
p p k f f

f f

p p f f

 −
= − 

−
 = 

(9) 

Building upon the improved GA, a fusion with an 

enhanced SA is introduced to further enhance the accuracy 

of damage detection. SA is a global optimization algorithm 

based on the principles of physical annealing. It employs a 

strategy of random search to simulate the temperature 

variations and structural adjustments in the annealing 

process of materials. By adjusting the probability of 

accepting inferior solutions, it escapes local optima and 

facilitates the search for global optima, as illustrated in 

Figure 4 [19]. The SA heats the solid to a sufficiently high 

temperature and then allows it to cool slowly. When the 

solid is heated, the particles become disordered as the 

temperature rises, and the internal energy increases. When 

it is cooled, the particles become orderly and reach 

equilibrium at each temperature, and finally reach the 

ground state at room temperature, and the internal energy 

is minimized. The SA algorithm gives the search process a 

time-varying and zero probability of jumping, which can 

effectively avoid falling into local minima and eventually 

converge to the global optimum. 

 

Heating process Isothermal process Isothermal process

 

Figure 4: Simulation of physical annealing process 

 

SA possesses strong global search capabilities. As the 

temperature decreases, the probability of accepting 

inferior solutions gradually diminishes, leading the search 

process towards stability and eventually reaching a global 

optimum. Compared to other optimization algorithms, SA 

requires relatively small parameter adjustments. Therefore, 
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a combined optimization with SA and the improved GA is 

chosen. The workflow of traditional SA is depicted in 

Figure 5 [20]. SA starts from the set initial temperature 0T  

and goes through three iterative processes of heating, 

isothermal, and cooling. By calculating the energy state 

generated during the iteration process, the energy 

difference, i.e. the change in the objective function, is 

solved. Based on the Metropolis criterion, it is determined 

whether to accept the new state. As the temperature 

decreases, the probability of accepting a poor solution 

gradually decreases, and the search process gradually 

tends to stabilize, ultimately reaching the global optimal 

solution. 
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to calculate the objective function A

Variation<0
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Figure 5: The workflow of traditional SA 

 

The calculation of the objective function's variation is 

shown in Equation (10), where 1S  and 2S  represent the 

solution after perturbation, and ( )1f S  and ( )2f S  

represent the objective function values of the solution. 

 ( ) ( )1 2df f S f S= −       (10) 

The computation process of the Metropolis criterion 

is given in Equation (11), where p  represents the 

probability of accepting a solution. 

 

1           0

exp     0

df

p df
df

T




=   
−  
 

 (11) 

Although SA is effective in searching for global 

optima, it lacks control over the search space and tends to 

have slower convergence compared to other optimization 

algorithms. The initial temperature setting and the strategy 

for temperature reduction are critical. The initial 

temperature setting needs to consider the complexity of the 

problem and the limitation of computational resources, and 

the initial temperature can be estimated according to the 

characteristics of the objective function. The temperature 

descent strategy includes linear decay, exponential decay 

and adaptive decay, etc. It is necessary to balance the 

global search and local search ability, and the temperature 

descent strategy needs to be adjusted through experiments. 

Optimization improvements are made to SA, 

including the design of a temperature parameter decay 

function shown in Equation (12), where   represents the 

decay coefficient, adjusted as needed. 

 1k kt t+ =      (12) 

The rate of temperature parameter reduction 

determines the length of the Markov chain kL  in SA. The 

length of the Markov chain affects the search range of the 
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solution space. The relationship between the established 

functions of kL  and n , representing the number of 

damaged elements n  in the spatial framework structure, 

is shown in Equation (13), where   is a tuning 

coefficient, a constant. 

 kL N=        (13) 

The calculation of the variation in the objective 

function kE  for the initial population individuals in SA 

is given in Equation (14), where ( )' ,fitness x avgfitness  

represent the current fitness and the average fitness. 

 ( )'kE fitness x avgfitness = −    (14) 

According to Equation (11), the calculation of the 

probability p  of accepting new individuals in the 

offspring population is given in Equation (15), where k  

represents the probability calculation parameter. 

 exp k

k

k E
p

t

 
= − 

 
    (15) 

To address the issue of preserving excellent 

individuals in GA, a hybrid approach is introduced, where 

both improved SA and improved GA are combined. SA 

operations are applied to individuals after genetic 

crossover and mutation, as illustrated in Figure 6. 
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Figure 6: Improved hybrid SA-GA workflow 

 

4 Performance testing and structural 

damage identification analysis of 

SA-GA in large-span spatial grid 

structures 
To validate the effectiveness of the proposed structural 

damage model for large-span spatial grid structures, 

performance testing experiments and application 

effectiveness analyses were conducted, followed by a 

detailed discussion of the results. 

 

4.1 Performance testing of SA-GA damage 

identification model 
The experiment was conducted based on a 64-bit WIN10 

operating system with an NVIDIA GeForce MX150 2GB 

graphics card and 125GB of RAM. The central processor 

was a 2.7 GHz Intel Core i5-6500. To conduct the 

algorithm's performance testing, a program was 

implemented in the C++ language to execute the required 

testing algorithms. Initially, the study focused on 

evaluating the optimization performance of the hybrid 

improved SA-GA through five test functions, including 

single-modal benchmark functions like Sphere Function 

and Schwefel Function, and multi-modal benchmark 

functions like Rastrigin Function, Griewank Function, and 

Ackley Function. Sphere Function is a convex function 

whose goal is to minimize the sum of squares of all 

variables; Schwefel Function has multiple local minima; 

Rastrigin Function and Griewank Functio are commonly 

used test functions for multi-modal optimization problems, 

which are non-convex functions with multiple local 

minima. The Ackley function is a multi-dimensional 
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function with a large number of local minima. 

The study compared the performance of the algorithm 

with Firefly Algorithm (FA), Whale Optimization 

Algorithm (WOA), and traditional GA. Precision, recall, 

and Receiver Operating Characteristic Curve (ROC) were 

chosen as the evaluation metrics for algorithmic 

optimization capabilities. Precision and recall jointly 

assessed the model's classification ability, maintaining a 

balance between accuracy and comprehensiveness. The 

study utilized the Precision-Recall curve (PR) to depict the 

relationship between precision and recall. The Area Under 

the Curve (AUC) of the ROC curve comprehensively 

evaluated the algorithm's performance, with experimental 

statistical results illustrated in Figure 7. 

Figure 7 indicates that the hybrid SA-GA designed in 

the study exhibited superior performance in both PR and 

ROC curves, positioned at the far right and left extremes 

of the coordinate axes, respectively. At a precision of 0.9, 

the hybrid SA-GA achieved a recall of 0.93, outperforming 

FA, GA, and WOA with recalls of 0.61, 0.68, and 0.79, 

respectively. In the same experimental environment, the 

hybrid SA-GA demonstrated a relative advantage in 

balancing precision and recall. The AUC values for the 

hybrid SA-GA, FA, GA, and WOA were 0.927, 0.804, 

0.673, and 0.758, with SA-GA having the highest AUC 

value, indicating the best overall model performance. 
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Figure 7: Comparison of PR and ROC curves for different intelligent optimization algorithms 

 

The study employed Mean Absolute Error (MAE) 

and Root Mean Squared Error (RMSE) to evaluate 

optimization errors for different intelligent optimization 

algorithms. MAE and RMSE exhibited varying 

sensitivities to outliers, providing a comprehensive 

assessment of errors between optimized values and true 

values. Results in Figure 8 showed that the SA-GA 

designed in the study consistently achieved low error 

values across different test functions, distinguishing itself 

from the other three algorithms. The median levels of 

MAE and RMSE remained below 0.4, indicating high 

optimization accuracy. 
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Figure 8: Comparison of MAE and RMSE of different intelligent optimization algorithms 
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Table 2 presents the convergence results of the 

proposed GA improvement method. It was evaluated 

based on the mean of the best solution in 30 independent 

experiments. The number of times the optimal solution 

was reached, and the minimum iteration counted. The 

hybrid improved SA-GA outperformed the other two 

algorithms from all three evaluation perspectives. In 30 

independent experiments, the traditional GA reached the 

optimal solution only 19 times, indicating lower 

optimization accuracy. The improved GA achieved the 

optimal solution 27 times but demonstrated less stable 

optimization accuracy across different test functions. SA-

GA achieved a 100% convergence rate, consistently 

obtaining the target optimal solution. Additionally, this 

method exhibited the fastest convergence speed. 

 

 
Table 2: Comparison of convergence of improved algorithms 

Test function Algorithm 
Average convergence 

value 

Convergence 

times 

Minimum number of 

iterations 

Sphere 

GA 6.246E-6 13 627 

Improve GA 5.246E-10 23 432 

SA-GA 4.236E-15 30 246 

Schwefel 

GA 9.165E-6 19 416 

Improve GA 5.161E-8 27 364 

SA-GA 4.357E-12 30 221 

Rastrigin 

GA 8.554E-6 16 475 

Improve GA 6.458E-8 21 349 

SA-GA 2.497E-12 30 221 

Griewank 

GA 7.165E-6 14 513 

Improve GA 2.674E-10 24 416 

SA-GA 2.348E-15 30 260 

Ackley 

GA 8.512E-6 16 468 

Improve GA 3.254E-9 24 314 

SA-GA 2.177E-11 30 224 

 

Continuing to compare and analyze the solution space 

search ability of different algorithms, the Hypervolume 

Indicator (HV) and Inverted Generational Distance (IGD) 

were used as evaluation indexes, and the experimental 

results are shown in Fig. 9. From Fig. 9(a), the research 

improved SA-GA had obvious advantages over the 

traditional GA, FA, and WOA algorithms in terms of the 

HV value.The HV value of the SA-GA algorithm could be 

up to 0.92, and the volume between the algorithm's Pareto 

front and the reference point was large. In Fig. 9(b), the 

IGD value of the improved SA-GA was the smallest in the 

same experimental environment, and was less than 0.1 at 

the early stage of the iteration. In contrast, the IGD values 

of the GA, FA, and WOA algorithms were all greater than 

0.20. The GA, FA, and WOA algorithms generated the 

solutions that were closest to the real Pareto front. 
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Figure 9: Comparison of HV and IGD for different algorithms 
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The F1 values of different algorithms are shown in 

Fig. 10 in comparison with the execution efficiency. In Fig. 

10(a), the F1 value curve of the improved SA-GA was at 

the highest level, and the maximum F1 value was close to 

1. The classification F1 values of GA and FA did not differ 

much, and they were all in the range of 0.8-0.9, and the F1 

value of the WOA was the lowest, and the highest value 

only reaches 0.68. In Fig. 10(b), the computation time of 

the different algorithms were in an increasing trend with 

the increase of the number of training samples, and the 

improved SA-GA took the least time, and the model 

classification took 4.21s when the data samples reached 

8000. In terms of the combined F1 value reception and 

computation time consuming, the improved SA-GA had a 

better performance, and the improved strategy played an 

improved role. 
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Figure 10: Comparison of F1 value and execution efficiency of different algorithms 

 

4.2 Analysis of damage identification effect in 

large-span spatial grid structure based on SA-

GA 
The study developed an analysis of the damage 

identification effect in a large-span space grid structure 

based on the SA-GA. The designed grid structure 

comprised 70 nodes and 186 members, with fixed supports 

at the truss base and hinged connections between members. 

The structural model was constructed using ANSYS, and 

damage identification was performed based on the 

optimization of a target function constructed using 

frequency and mode shapes. The structural composition 

and node numbering are shown in Figure 11. 
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Figure 11: Schematic diagram of the structural composition form and node numbering of the experimental setup

 

Firstly, various damage scenarios were considered, 

including undamaged conditions and 100% damage to 

single members (members 27, 47, and 48). The results of 

identifying 100% damage to member 27 are shown in 

Figure 12. The algorithm converged to the optimal value 

of the target function in 140 generations, with a minimum 
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value of 0.17. In Figure 12(b), it is observed that, under the 

SA-GA model, the damage level of member 27 was 0.94, 

significantly distinguishing it from other members. While 

several other members exhibited damage levels above 0.2, 

the considerable gap from member 27 suggested the need 

to consider a certain level of damage identification error in 

the experiment. 
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Figure 12: 100% damage identification result of single member 27 

 

The identification results for undamaged conditions 

and 100% damage to members 47 and 48 are presented in 

Figure 13. For undamaged conditions in Figure 13(a), the 

SA-GA model demonstrated high accuracy, with all 

members' damage identification values below 0.10, 

indicating an undamaged state. In the case of multiple 

damages in Figure 13(b), the SA-GA model performed 

well, with damage identification values for members 47 

and 48 exceeding 0.95, indicating significant damage. 

However, some members showed damage levels above 

0.20, considered reasonable identification errors. 
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Figure 13: Identification of multiple damage and non damage conditions 

 

Finally, random defects in the elastic modulus of the 

grid structure were introduced in multiple damage 

scenarios, and the distribution of the population and the 

accuracy of damage identification are shown in Figure 14. 

The average distance gradually decreased with 

evolutionary iterations, maintaining a certain diversity in 

the population. The identification model achieved 

accuracy rates of over 90.0% for recognizing random 

defects and actual damage, demonstrating the capability to 

identify damage in the grid structure with 

random defects. 
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Figure 14: Structural damage identification under random defects 
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5 Discussion 

As an important form of building structure, the safety and 

stability of the net frame structure is crucial for the safe use 

of the overall building. Defects in the rod material, 

negative deviation of the cross-sectional area, and initial 

deflection caused by collision during transportation or 

installation can easily lead to random defects in the rod 

material. Therefore, periodic damage detection of in-

service grid structures is an effective means to detect 

structural damage and provide early warning in a timely 

manner. Existing common techniques for structural 

damage detection include monitoring sensors, acoustic 

wave detection, thermal imaging technology and vibration 

analysis. With the rapid development of computer 

technology, the use of image processing technology to 

identify potential structural damage, as well as structural 

monitoring data combined with computer algorithms or 

machine learning to identify structural damage has 

gradually been widely used. However, while the damage 

identification approach based on computational 

intelligence brings many advantages, it also has some 

shortcomings. For example, in the studies of literature [6], 

literature [7], literature [10], and literature [12], although 

the detection accuracy, robustness, convergence speed, 

and damage recognition ability have been enhanced, the 

high model complexity and low computational efficiency 

increase the training difficulty and time cost of the model, 

and may also lead to a decrease in the model's 

generalization ability in practical applications. Moreover, 

there is a strong dependence on the quality and quantity of 

input data, which limits the performance of the recognition 

results. The studies in literature [11] and literature [13] 

only focus on composite structures and transmission tower 

models, and the scalability and applicability of the models 

are low. 

Combining the shortcomings of the existing studies, 

the study firstly used Monte-Carlo sampling method to 

complete the sensitivity analysis of the finite element 

structural model. Then, GA was utilized for structural 

damage identification. Finally, SA was used to optimize 

and improve the initial population generation and genetic 

operation of GA. It was found that the recall of the hybrid 

SA-GA was 0.93 at a precision of 0.9, while the recall of 

the other algorithms was below the 0.80 level. The single-

rod damage degree recognition result was 0.94, and the 

multi-rod damage recognition degree values were all 

above 0.95, and the damage recognition error was in the 

reasonable error range. Comparing the study of literature 

[6] and others, Barkhordari M S et al. achieved only 94% 

precision and 92% recall. The studied design achieved 

better performance. Also comparing the study of literature 

[8], the combined visible advantages of intelligent 

optimization algorithms in solving the decision-making 

problems made the model to have a superior performance 

compared to deep learning techniques. The study's 

optimization strategies for GA population, GA and SA 

parameters played a role in simplifying the model and 

improving the performance. 

6 Conclusion 

The development and application of computer technology 

and intelligent algorithms in structural damage 

identification have made significant progress. To further 

improve the precision of structural damage identification 

in large-span space grid structures, a damage identification 

model based on SA-GA was designed. Experimental 

results showed that the PR curve and ROC curve of the 

hybrid SA-GA performed well. When the precision was 

0.9, the recall rate of the hybrid SA-GA was 0.93, while 

the recall rates of other algorithms were below 0.80. The 

maximum AUC value of the hybrid SA-GA was 0.927, 

indicating the best overall performance of the model. The 

MAE and RMSE errors of SA-GA were at a low level, 

significantly better than the values of the other three 

algorithms, demonstrating high optimization accuracy. For 

different test functions, SA-GA found the optimal solution 

up to 30 times, surpassing the two algorithms before 

improvement. Additionally, SA-GA required fewer 

optimization iterations and converged faster. The SA-GA 

algorithm had obvious advantages over the traditional GA, 

FA, and WOA algorithms in terms of HV value, which 

could reach up to 0.92. The IGD value was the smallest 

among the same experimental environments, which was 

less than 0.1 at the early stage of the iteration. At the same 

time, the F1 value of the algorithm was close to 1 and the 

algorithm execution time was shorter, which was only 4.21 

s. The algorithm could be executed in a short period of time, 

which was only 4.21 s. The algorithm was also very simple. 

The SA-GA model performed well in the conditions of no-

damage, single-damage, and multi-damages. The 

recognition accuracy was excellent, with a degree of 0.94 

for single-damage and degree above 0.95 for multi-

damages. The damage identification errors were within a 

reasonable range. Furthermore, the improved genetic 

operations of the SA-GA model achieved good results, 

maintaining good population diversity and enabling 

damage identification under random defects. The designed 

SA-GA damage identification model achieved good 

application effects in large-span spatial grid structures, 

enabling timely identification of structural damage and 

monitoring. This contributes to the development of 

industries related to structural damage and monitoring. 

However, further research can focus on the identification 

of the extent of damage in grid structures. Meanwhile, GA 

may encounter certain challenges when optimizing larger 

grid structures, and the number of evolutionary 

generations of GA increases significantly with the 

complexity of the structure and the number of rods and 

nodes, making the algorithm's running time and 

computational cost increase significantly. Therefore, 

future research efforts may consider the improvement of 

GA coding methods by using more efficient coding 

methods to reduce the coding length and increase the 
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efficiency of genetic operations or using parallel 

computing techniques to accelerate the operation process 

of GAs. 
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