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Currently, unmanned aerial vehicle remote sensing technique has wide application in agricultural soil 
salinization monitoring. However, there are still issues such as high costs and complex data 
preprocessing. Based on this, the research is conducted on the unmanned aerial vehicle multispectral 
image. The ground synchronous acquisition of soil conductivity is regarded as the data source. The 
multispectral image spectral characteristics and texture characteristic information of the unmanned 
aerial vehicles is extracted through the gray symbiotic matrix method and Gabor two-dimensional filter. 
The soil conductivity of unmanned aerial vehicle remote sensing quantitative inversion model is 
established combined with the limit learning algorithm. The results showed that the mean, variance, 
homogeneity, contrast, dissimilarity, entropy, second-moment, and correlation had good association. 
The correlation coefficient was between 0.17 and 0.35. However, the correlation of the mean, variance, 
homogeneity, and entropy was significantly higher than the remaining indices. The salinity indices ARVI, 
SI-T, NDSI, S6, S1, S3, S5, S2, SI3, and SI2 showed positive correlations with soil conductivity. The 
correlation coefficient was between 0.19 and 0.67. The quantitative inversion model of soil conductivity 
based on limit learning machine algorithm was constructed by fusing spectral feature and texture feature 
information. Its modeling set coefficient of determination was 0.77, 0.82, and 0.86, respectively. Its 
prediction sets coefficient was 0.73, 0.77, and 0.80. The model had the highest prediction accuracy 
compared with the texture feature model and the spectral index model. Through information fusion, the 
prediction accuracy of the model was significantly improved. The results show that the unmanned aerial 
vehicle remote sensing monitoring model of soil salinity can be constructed by using the algorithm. This 
study has certain technical guidance value for unmanned aerial vehicle remote sensing monitoring of 
soil salinization 

Povzetek:Članek raziskuje uporabo brezpilotnih letal za daljinsko zaznavanje in kvantitativni model za 
inverzijo prevodnosti tal s pomočjo algoritma Extreme Learning Machine (ELM). Model, ki združuje 
spektralne in teksturne značilnosti, je kvalitetno napovedoval prevodnost tal, kar ima pomembno 
vrednost za spremljanje slanosti tal v kmetijstvu.

1 Introduction 
Under the influence of natural or human factors, the 
surface layer's salt content of soil continues to increase. 
The phenomenon of saline alkali disasters formed when 
the soil salinity ≥ 0.3% is called soil salinization. As a 
global ecological and environmental issue, soil 
salinization has received widespread attention from 
researchers and governments around the world [1, 2]. The 
main manifestation of soil salinization in China is the 
uneven distribution of water and salt. This is because 
during soil salinization, local areas experience changes in 
water movement due to the impact of precipitation, surface 
water, groundwater, and other factors on the surface or 
changes in groundwater levels. Finally, the phenomenon 
of salt moving towards the surface with water is caused [3, 
4]. Due to the combined effects of natural and human 
factors, soil salinization is gradually deteriorating. Natural 
factors include temperature, precipitation, terrain, 

vegetation, etc. Human factors include fertilization, 
cultivation, irrigation, and other human activities. Salt 
accumulation in soil causes changes in soil 
physical, chemical, and biological aspects. Salt 
accumulation seriously affects the growth and 
development of crops, reduces soil nutrient 
availability, and ultimately reduces crop yield and 
quality [5-7]. It should implement precise saline soil 
treatment plans and soil salinization prevention and 
control measures to prevent the expansion of soil 
salinization scale. Accurately obtaining information on 
soil salinization is a fundamental prerequisite for 
formulating saline soil treatment plans and prevention and 
control measures. Indicators that can characterize 
soil salinization information are obtained by utilizing 
modern technological means. Improving the accuracy 
of soil salinization monitoring is crucial for soil 
salinization prevention and control [8]. 

The conventional soil salinity detection methods 
obtain data from point sources, which has the limitation of 
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spatial discontinuity. This is not conducive to obtaining 
detailed spatial distribution information of soil salinization, 
which consumes a lot of time and manpower. The 
development of satellite Remote Sensing (RS) technology 
offers a novel method for quickly obtaining soil salinity 
information. Satellite RS technology can estimate soil 
salinity on a large scale, quickly, and without damage. The 
satellite RS technology is widely applied in soil salinity 
monitoring, providing strong technical support for soil 
salinization research [9, 10]. However, with the developed 
precision agriculture, satellite RS spatial and temporal 
resolution can no longer meet the demand. Especially for 
single farmland, this technology cannot provide more 
accurate and cost-effective spatial information. Unmanned 
Aerial Vehicle (UAV) RS technique has wide application 
in large-scale terrain mapping, land use surveys, and 
environmental monitoring [11, 12]. The UAV RS 
technology can carry out shooting work in large areas. RS 
operations are simple. The UAV RS technology is less 
affected by terrain and weather factors, which can 
compensate for the shortcomings of satellite RS [13, 14]. 

In agricultural RS, multispectral UAV RS is 
commonly used. This RS system is composed of a 
multispectral camera carried by UAV that can be used to 
obtain the main health indicators of crops. Its images can 

extract vegetation indices, reflectance, and digital surface 
models, among others. Meivel et al. used normalized 
differential vegetation index and near-infrared band 
sensors for UAV RS analysis in multispectral views of 
agricultural land. The standard irrigation level was 60%. 
The correlation between plant growth p ≤ 0.01 [15]. Webb 
et al. tested a relatively new method for identifying acidic 
soil regions using UAV, which linked UAV observations 
of normalized vegetation indices with field measured soil 
pH values to determine soil acidity regions [16]. Sahoo et 
al. proposed a UAV RS wheat nitrogen assessment method 
based on hyperspectral sensors and machine learning. The 
training, validation, and testing values for plant nitrogen 
assessment using this method were 0.97, 0.84, and 0.86, 
respectively [17]. Lednev et al. proposed a UAV 
fluorescence LiDAR for agricultural field diagnosis. On 
site testing demonstrated the feasibility and prospects of 
UAV autonomous LiDAR sensing, which could be used 
for early detection and on-site positioning of plants under 
pressure [18]. Table 1 summarizes the previous research 
on the quantitative inversion model of conductivity UAV 
RS. 

Table 1: Summary of previous research 
Scholar Methodology Key results Limitations 

Gojiya et al. 
[10] 

This article provides an overview 
of soil salinity estimation methods 
based on RS and GIS, including 
salinity index, vegetation index, 

regression method, neural 
network, RS, and satellite data 
used for soil salinity mapping. 

The RS technology is more 
cost-effective and efficient 
than traditional methods. 

The choice of mapping 
method depends on the 

context and requires 
further research. 

Cui et al. [12] 

Neural network, random forest, 
and multiple linear regression 

algorithms are used to establish 
SSC estimation models. 

A fast and low-cost time 
series method for monitoring 
soil salinization in sunflower 

fields has been proposed. 

The accuracy of soil 
salinization detection in 

sunflower farmland needs 
to be improved. 

Guo et al. [13] 

8 different feature space 
monitoring indices based on 

Landsat TM/ETM+/OLI images 
are constructed. 

A model for optimal 
monitoring indicators of soil 

salinization is proposed based 
on field observation data. 

This study lacks practical 
application explanations. 

Pal et al. [14] 

A new model for license plate 
number detection in UAV images 

is constructed using Swin 
transformer. 

The performance of the 
model is further improved 
under adverse conditions 
such as degradation, poor 

quality, and occlusion. 

The accuracy of UAV 
image detection needs to 

be further improved. 

Meivel et al. 
[15] 

Normalized differential vegetation 
index and near-infrared band 
sensors are used for UAV RS 

analysis in multispectral views of 
agricultural land. 

The standard irrigation level 
is 60%. The correlation 

between plant growth p ≤ 
0.01. 

There are few testing 
indicators for research 

models. 

Webb et al. 
[16] 

A relatively new method for 
identifying acidic soil regions is 

constructed using UAV. 

The UAV observations of 
normalized vegetation 

indices are linked with field 
measured soil pH values to 

determine soil acidity 

Only studying soil acidity 
regions is relatively one-

sided. 
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regions. 

Sahoo et al. 
[17]  

A UAV RS wheat nitrogen 
assessment method based on 

hyperspectral sensors and machine 
learning is constructed. 

Training, validation, and 
testing values for plant 

nitrogen assessment using 
this method are 0.97, 0.84, 

and 0.86. 

There is a significant gap 
in the training, validation, 
and testing values of plant 
nitrogen assessment. The 

accuracy of the model 
needs further 
improvement. 

Lednev et al. 
[18] 

A UAV fluorescence LiDAR for 
agricultural field diagnosis is 

constructed. 

The method can be used for 
early detection and on-site 
positioning of plants under 

pressure.  

The method is only useful 
in the early stages of 

crops, lacking full cycle 
application examples. 

 
Machine learning algorithms are also a technique for 

estimating soil Electrical Conductivity (EC), with the 
characteristics of generating adaptive and robust 
relationships. In the soil salinity monitoring model of UAV 
spectral RS, Extreme Learning Machine (ELM) has 
achieved good results, with advantages such as high 
accuracy and fast speed [19]. As a result, the UAV RS 
technique has wide application in agricultural RS. This 
technology allows for flexible selection of time to obtain 
data, high monitoring accuracy, and convenient processing. 
However, there are still issues such as high cost and 
complex data preprocessing. A quantitative inversion 
model for EC UAV RS based on ELM is established in this 
study. 

2 Methods and materials 
Firstly, Gray-level Co-occurrence Matrix (GLCM) is 
utilized. Gabor two-dimensional filters are introduced to 
extract the preprocessed RS images' texture and spectral 
features in the study area. Then ELM is combined to 
construct an EC UAV RS quantitative inverse model based 
on ELM. 
 
2.1 Data Collection and preprocessing 
The research area is located in location A, with geographic 

center coordinates of 40°45′~41°60′N and 
440°45′~41°60′N, belonging to a continental warm 
temperate arid climate. The research area has saline soil, 
with an average annual temperature of 10.8 ℃, an annual 
evaporation of 1992.0~2863.4mm, and an annual 
precipitation of 46.4~64.5mm. This research area owns 
generous solar and thermal resources, with an average 
annual sunshine duration of 2838.2h and an average annual 
frost-free period of 214d. The specific time for UAV to 
collect multispectral images and synchronize ground data 
is May 14, 2024. Usually, soil leaching solution EC is used 
to describe the soil salinity status. The higher the soil 
salinity, the greater the soil EC. 200 soil samples are 
collected in the research area to ensure the stability and 
universality of the relationship model between soil 
measurement and apparent EC. This experiment records 
information such as sampling depth, longitude, and 
latitude. After experimental processing, the conductivity 
of the clear liquid is measured using EICIDDS-307 
conductivity meter. The sample EC1:5 is measured. The 
average EC1:5 value of two soil samples is taken, which is 
the soil conductivity EC1:5 value at the sampling point. 
Table 2 shows the parameters for UAV multispectral data 
collection. 
 

 
Table 2: Parameter settings for unmanned aerial vehicle multispectral data acquisition 

Parameter DJI Elf 4 multispectral edition plant protection UAV 

Flight altitude 200m 
Overlap rate of heading shooting 75% 

Side shooting overlap 80% 

Interval duration 3s 
Image resolution 0.30 m 

The angle between the multispectral lens and the ground 90 

DJI Spirit 4 multi-spectral plant protection UVA is 
used to collect multi-spectral images. In Table 1-1, the 
multispectral imaging system integrates five multispectral 
and one visible light camera containing five wavelength 

spectral acquisition channels, blue, green, red, NIR, and 
red edges corresponding to (450±16) nm, (560±16) nm, 
(650±16) nm, (840±26) nm, and (730±16) nm, 
respectively. The light intensity sensor integrated at the top 
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processes the recorded image files to complete the image 
illumination compensation and eliminate the ambient light 
noise interference after capturing the solar irradiance. 
Then the accurate normalized vegetation index NDVI can 
be obtained. The consistency and accuracy of the data 
collected in different periods can be maintained. The 
optical system, image processing technology, the spectral 
detection algorithm, and other dimensions are integrated 
by using multi-spectral sensor technology. Then the 
accurate acquisition of multi-spectral information and the 
efficient identification of target features can be achieved. 
The flight altitude of the UAV is set at 200m. The overlap 
rate of heading shooting is set at 75%. The overlap rate of 
lateral shooting is set at 80%. The interval between two-
point shooting is three seconds. The shooting interval is an 
equal time interval. The angle between the camera lens and 
the ground should be 90 degrees. The resolution of the 
image shot is 0.30m. During performing data acquisition, 
the pre-planned flight area is imported into DJI GSPro 
software. The aircraft can complete its flight according to 
the flight plan. The stored folder is imported into the 
computer after data collection. Pix4Dmapper software is 
used to correct and concatenate the single-band images of 
the study area. In ENVI 5.3 software, various spliced band 
images are integrated to form a complete image. This study 
will sort the measured EC values of 200 soil samples 
collected, with 2/3 of the samples used for modeling and 
1/3 for validation and testing. 

 
2.2 Remote sensing image feature extraction 
When analyzing whether there is salinization in soil, soil 
texture characteristics can be effectively utilized. The 
texture features have significant differences, especially in 
the surface features, coverage, vegetation types, and other 
landscape areas of soils with different degrees of 
salinization. Texture features mainly include four types: 
statistical, model, signal processing, and structural features. 
This study combines GLCM and Gabor two-dimensional 
filters to extract soil texture features. GLCM is a statistical 
result obtained by maintaining a specific distance between 
two pixels in an image. ( ), , ,p i j d θ  forms a matrix that 
reflects the spatial correlation of grayscale between two 
points in the image. θ  is the direction, which is generally 
calculated in four directions: 0°, 45°, 90°, and 135° 
in applications. d  represents the interval. If the image 
has l  gray levels, its matrix is represented as 

( ), , , l lp i j d
×

 θ  . ( ), , ,p i j d θ  represents the elements in 
the i -th row and j -th column of the gray level co-
occurrence matrix. The final statistical value is expressed 
in a matrix. The values in the matrix represent different 
gray levels. Due to the high computational complexity of 
GLCM, the eight most commonly used features, namely 
mean, variance, angular second-moment, homogeneity, 
contrast, correlation, inverse variance, and entropy, are 
generally used to obtain images’ texture features. The 
mean feature is represented by formula (1). 

 ( ),
i j

Mean i jρ= ∑∑  (1) 

 
In formula (1), ( ),i jρ  represents the element in 

row i  and column j  of GLCM. The higher this value, 
the more difficult and disorganized the image texture is to 
describe. The smaller this value, the easier and more 
regular the texture features are to describe. The variance 
feature is represented by formula (2). 

 

 ( )( )
1 1

2,
N N

i j
Variance i j i Meanρ

− −

= −∑∑  (2) 

The angular second-moment reflects an image's 
grayscale distribution. The larger this value, the more 
uniform the grayscale distribution is represented by 
formula (3). 

 ( )2,
i j

Asm i jρ= ∑∑  (3) 

Contrast represents the brightness contrast between a 
certain pixel value and pixel values in other fields, 
reflecting an image's clarity. A larger value refers to a 
clearer image. Otherwise, this image is blurrier, 
represented by formula (4). 

 

 ( ) ( )2, ,
i j

con i j i jρ= ∑∑  (4) 

Homogeneity refers to the local texture changes in an 
image. If the change is significant, then the matrix value is 
small. If the change is small, then the matrix value is large, 
represented by formula (5). 

 
( )

1 1

2
0 0

, ,

1

N N

i j

i j d
H

i j

θ− −

= =

=
+ −

∑∑  (5) 

In formula (5), d  represents the interval between 
two points in the image. θ  represents direction. The 
entropy feature is represented by formula (6). 

 

 ( ) ( ), log
i j

Ent i j i jρ ρ= −∑∑  (6) 

Correlation reflects the similarity in grayscale levels 
between rows and columns of an image. A larger value 
refers to greater similarity, represented by formula (7). 

 

 ( ) ( ), /x y x y
i j

con ij i jρ µ µ σ σ= −∑∑  (7) 

The inverse variance reflects the local changes in the 
texture of the image. A larger value refers to more regular 
image texture, represented by formula (8). 
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 ( ) ( )2, / 1
i j

Inver i j i jρ  = + − ∑∑  (8) 

 
Gabor filters utilized to extract texture features from 

high-resolution RS images is a very effective method. A 
two-dimensional Gabor filter is used in this study. This 
method consists of a product of a sinusoidal plane wave 
and a Gaussian kernel, including the real and imaginary 
parts. The real part is shown in formula (9). 

 

( )
2 2 2

2, , , , , exp exp 2
2

x y xg x y i
 + γ   λ θ ϕ γ = − × π + ϕ    λσ    

 (9) 

 
In formula (9), λ  represents the Gabor filtering 

wavelength, ϕ  represents the phase shift, σ  represents 
the standard deviation of the Gaussian function, γ  
represents the spatial aspect ratio, and θ  represents the 
direction of the Gabor kernel function. The representation 
of the imaginary part is shown in formula (10). 

 

( )
2 2 2

2, , , , , exp cos 2
2

x y xg x y
 + γ  λ θ ϕ γ = − × π + ϕ   λσ   

 (10) 

 
There are six frequencies. 4 ELM directions include 

ELM 0, 45, 90, and 135. Then there are a total of 24 kernel 
functions. This allows for multi-scale and multi-
directional extraction of soil texture features. The energy 
information of Gabor is the most suitable way to express 
the texture information of images. Using Gabor, an image's 
texture features are obtained using standard deviation and 
mean. The Gabor texture feature vector T  of the image 
is defined, represented by formula (11). 

 

( ) { }0,0 0,0 0,1 0,1 1, 1 1, 1, , , , , , ,v vT v M V M V M V− − − −=     (11) 

In formula (11), ( ),M v   represents the mean of the 
image. ( ),V v   represents the standard deviation of the 
image. The results of T  include imaginary part features, 
real part features, four directions, six frequencies, standard 
deviation, and mean. Therefore, the final image dimension 
obtained is 2×4×6×2=96, which is the texture feature of 
the pixel points in the current region. A 160×160 image 
sample is selected to improve the classification accuracy. 
A sliding domain method is adopted. A sliding window 
with a size of 16×16 is established with a certain pixel 
point as the center. The sample image is traversed using a 
Gabor filter. Gabor filters also have a drawback in image 
processing, namely, the obtained texture feature 
dimensions are too high. Data are organized using a 
covariance matrix to achieve dimensionality reduction of 
high-dimensional feature vectors, represented by formula 
(12). 

( ) 1cov ,
1

n

i i
i

X X Y Y
X Y

n

− −

=

  − −  
  =

−

∑  (12) 

 
Spectral features are a collection of all features that 

describe the segmented image object and its pixels. 
Custom spectral feature parameters can improve the 
classification accuracy in addition to common spectral 
feature parameters such as mean, brightness, and standard 
deviation. The Normalized Difference Vegetation Index 
(NDVI) and salinity index are used to classify saline soil 
in the study area. According to NDVI, soil salinization 
information is extracted and expressed using formula (13). 

 

 ( ) ( )/NDVI NIR R NIR R= − +  (13) 

 
NIR  and R  represent the ground reflectance of the 

near-infrared and red-light bands, respectively. The soil 
Total Salt Index (TSI) is a parameter that can be used to 
describe the spatial distribution of soil salinity. The larger 
the TSI, the greater the difference between soil water, air, 
and other environmental conditions in the region, resulting 
in higher salt content and lower water content. TSI is 
represented by formula (14). 

 
 TSI B R= ×  (14) 
 

In formula (14), B  and R  represent the 
reflectance values of red and blue bands in RS images, 
respectively. The texture segmentation identification 
method using the Gabor filter is as follows: 

(1) First, the input image is read and displayed. 
(2) A series of Gabor filters tuned to different 

frequencies and directions are designed. The tions between 
[0,150] degrees are sampled at steps of 30 degrees. The 
sampling wavelength increases with a power of 2, from 
4 / 2  to the oblique length of the input image. 

(3) The Gabor magnitude features are extracted from 
the source images. The amplitude response of each filter is 
usually used when using a Gabor filter. The Gabor 
amplitude response is sometimes also called the "Gabor 
energy". The each MxNGabor magnitude output image of 
the input gabormag (:,:, ind) is the output of the 
corresponding Gabor filter g (ind). 

(4) The post-processing is needed to use the Gabor 
magnitude response as a classification feature, including 
Gaussian smoothing. Additional spatial information is 
added to feature sets. The expected form of pca and 
kmeans functions is reshaped. The feature information is 
normalized to common variance and mean. 

(5) Simple Gaussian low-pass filtering is then used to 
smooth the Gabor amplitude information to compensate 
for the local variation. The sigma that matches the Gabor 
filter is usually selected to extract each feature. A 
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smoothing term K is also introduced, which controls the 
smoothness of the application to the Gabor amplitude 
response. 

(6) The data are reasted into the expected matrix X of 
the classification function. Each pixel in the image grid is 
a separate data point. Each plane in the variable feature set 
is a separate feature. 

(7) Finally, the Gabor texture features are classified. 
 

2.3 ELM design for quantitative inversion 
model of conductivity unmanned aerial 
vehicle remote sensing 
A quantitative inversion model for EC UAV RS based on 
ELM is constructed after extracting the texture and 
spectral features of RS images in the research area. ELM 
can be regarded as a feedforward neural network, which 
typically presents better classification performance with 

relatively fewer constraints and has relatively better 
generalization ability. Using ELM for training, the weights 
and bias values of the hidden layer nodes can be generated 
randomly using any continuous probability distribution, 
rather than being generated through other methods. ELM 
is more efficient than traditional Support Vector Machine 
(SVM) and Back Propagation Neural Network (BPNN). 
ELM randomly constructs the input and hidden layers' 
connection weights. The hidden layer neurons' threshold is 
constructed, which is not adjusted during training. ELM 
only needs to set the hidden layer neurons. Meanwhile, 
ELM performs a simple generalized inverse operation on 
the hidden layer's output matrix H. The connection weights 
formed by the hidden and output layers can be computed, 
achieving the effect of approximating a continuous system. 
Figure 1 presents ELM's network structure. 
 

Output layer(x) Hidden layer(g) Output layer(y)

wij

bij

βij

1

 
Figure 1: ELM network structure 

 
In Figure 1, when the total hidden neurons are L , 

which contain N different samples ( ),i ix y . The input is 
[ ]1 2, ,..., n

i i i in T
x x x x R= ∈  and the output is 

[ ]1 2, ,..., m
i i i im T

y y y y R= ∈ . Assuming the hidden layer's 
activation function is ( )g x , this function can be any 
nonlinear piecewise continuous function. At this point, the 
output of ELM is represented by formula (13). 

 

( ) ( )
1

, 1, 2,...,
L

j i j i i
i

y f x g x w b j Nβ
=

= = + =∑  (13) 

 
In formula (13), [ ]1 2, ,..., T

i i i inw w w w=  represents a 
weight between the i th neuron connecting the input and 
hidden layers. [ ]1 2, ,..., T

i i i imβ β β β=  refers to the i th 
neuron and the output layer's weight. ib  refers to the i th 
hidden layer neuron's critical value. The simplified 
expression of the network model output by ELM is 
represented by formula (14). 

( ) ( )

( ) ( )

1 1 1 1

1 1

L L

N L N L

Y H
g w x b g w x b

H
g w x b g w x b

β=


+ + 
  =  
  + + 



  



 (14) 

 
In formula (14), H  refers to the hidden layer node's 

output local matrix. β  refers to a weight matrix hidden 
in the output layer. Y  refers to an output matrix. When 
an activation function ( )g x  is infinitely differentiable, 
the obtained objective function is represented by formula 
(15). 

 min H Y
β

β −  (15) 
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In formula (15), L mRβ ×∈ . The optimal solution of 
the objective function is represented by formula (16). 

 H Yβ
∧

+=  (16) 

In formula (16), H +  refers to the Moore-Penrose 
generalized inverse of the hidden output matrix H . The 
problem at this point becomes finding the computational 
matrix H 's Moore-Penrose generalized inverse matrix. 
This can be solved using methods such as 
orthogonalization, iteration, and singular value 
decomposition. After constructing the research model, 
specific evaluations of the model accuracy are conducted 
using determination coefficient (R2), Root Mean Square 
Error (RMSE), and Relative Percentage Deviation (RPD). 

3 Results 
3.1 Model performance evaluation 
Machine learning algorithms were used to validate the 
most commonly used standard test dataset UCI database. 
This proposed classification model’s accuracy and 
effectiveness were verified. The UCI standard dataset was 
used for experimental validation to more accurately 

compare research algorithms. Genetic algorithm optimized 
extreme learning machine parameter model (GA-ELM) 
and artificial bee colony algorithm optimized extreme 
learning machine parameter model (ABC-ELM) were 
selected as comparative methods. In the validation 
experiment, first, the properties of the data set were 
normalized. 20% of the required validation data set was the 
test set. 80% of the set was the training set for the 
parameter optimization of the research algorithm. Each 
model was validated in UCI data set for 10 iterations. In 
the parameter setting of GA-ELM, its population selection 
was 20, with a crossover probability of 0.85, variation 
probability of 0.0085, and crossover probability of 0.8. In 
the parameter selection of ABC-ELM, the population 
selection agreed with the previous two algorithms was 20. 
The number of solutions was 2. In the parameter 
optimization of the three models, the condition for their 
final stop iteration was the same, that is, all models reached 
the maximum iteration. The effect of the proposed 
algorithm model, RF, GA-ELM, and ABC-ELM 
algorithms on classifying the Blood and Glass datasets in 
the UCI database is shown in Figure 2. 
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Figure 2: Classification performance of different algorithms on the UCI dataset 
 

From Figure 2, the proposed algorithm in the Blood 
and Glass UCI datasets showed good classification effects 
regardless of the application of data properties in high or 
low dimensions and the categories in the data set. The 
experimental results were evaluated and analyzed for both 
classification accuracy and running time. The selecting 

results the specific parameters and the corresponding 
optimal accuracy of the four algorithms were also 
calculated. The experimental results are shown in Figure 3. 
 

 

Figure 3: Comparison of three optimal classification results for datasets 
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From Figure 3, the accuracy of the study algorithm in 
Blood and Glass dataset was 77.76% and 99.41%, 
respectively, which was better than GA-ELM, RF, and 
ABC-ELM algorithms. The classification accuracy of the 
study algorithm was higher than GA-ELM by 0.66%-4%, 
ABC-ELM by 0.4%-5.33%, and RF by 3.51%-14.4%. The 
results showed that the proposed algorithm model was 
effective and could be used to detect and evaluate soil 
conductivity. 

 

3.2 Correlation analysis between remote 
sensing image features and soil conductivity 
The study obtained 24 texture features from three spectral 
channels, including red, green, and blue. Each channel 
extracted 8 image features including mean, variance, 
homogeneity, et al. Texture features were obtained by 
utilizing GLCM from the ENVI5.3 toolbox. The texture 
analysis used a 3×3 window and a 90-degree direction to 
calculate feature values. Table 3 shows the results. 
 

Table 3: Correlation analysis between texture features and soil conductivity 

Texture features Red light channel Green light channel Blue light channel 

Mean 0.31 0.27 0.34 

Variance 0.35 0.32 0.31 

Homogeneity 0.34 0.24 0.29 

Contrast 0.21 0.19 0.23 

Dissimilarity 0.22 0.21 0.17 
Entropy 0.33 0.26 0.29 

Second-moment 0.21 0.22 0.2 
Correlation 0.26 0.22 0.21 

 
From Table 3, overall, the correlation between the 

texture features extracted from the three channels and soil 
EC was ranked in descending order: red light channel>blue 
light channel>green light channel. The correlation 
coefficient between texture features and soil EC ranged 
from 0.17 to 0.35. The texture features' correlation 
coefficient extracted from the red-light channel and soil 
EC was between 0.21 and 0.35. The correlation between 
contrast and second-moment with soil EC was the worst, 
with a correlation coefficient of only 0.21. The correlation 

coefficient between the texture features extracted from the 
green light channel and soil EC was between 0.21 and 0.32. 
The correlation coefficient between the texture features 
extracted from the blue light channel and soil EC was 
between 0.17 and 0.34. The correlation between 
heterogeneity and soil EC was the worst, with a correlation 
coefficient of only 0.17. Figure 4 shows soil EC and 
spectral index's correlation. 
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Figure 4: Correlation between soil conductivity and spectral index 
 

From Figure 4, overall, there was a good correlation 
between the selected spectral index and soil EC, with 
absolute correlation coefficients located in 0.19~0.67. The 
salinity indices ARVI, SI-T, NDSI, S6, S1, S3, S5, S2, SI3, 
and SI2 had positive connection with soil EC. The 
vegetation indices DVI, GNDVI, EVI, and RVI had 
negative connection with soil EC. The correlation 
coefficients of SI-T, DVI, ARVI, GNDVI, EVI, and RVI 

all exceeded 0.6. The correlation between SI-T and soil EC 
was the highest, at 0.67. The correlation between SI2 and 
soil EC was the weakest, at 0.19. This indicated that the 
spectral indices selected in this study could characterize 
soil EC to some extent. 
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3.3 Soil conductivity monitoring and 
evaluation 
The 24 texture features extracted from three channels were 
used as model inputs. Based on research algorithms, a soil 
EC estimation model based on texture features was 

constructed and compared with SVM and BPNN. Figure 5 
shows the performance evaluation results of different 
models. 
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Figure 5: Validation results of soil conductivity estimation model based on texture features 
 

From Figure 5, the accuracy of the three soil EC 
estimation models constructed using texture features as 
model inputs ranged from 0.37 to 0.42, all of which 
reached above 0.30. This soil EC estimation model based 
on BPNN is the best, having R2 of 0.44, RMSE of 
0.38dSm-1, and RPD of 1.61, indicating that BPNN had a 
good effect on estimating soil EC. Next was the ELM soil 
EC estimation model, with R2 of 0.42, RMSE of 0.42 dSm-
1, and RPD of 1.47. The SVM soil EC estimation model 
had the worst performance, with R2 of 0.37, RMSE of 

0.65dSm-1, and RPD of 1.55. Overall, the estimation 
accuracy of using texture features alone to construct soil 
EC models was not ideal, with R2 below 0.5, which could 
not accurately estimate soil EC selection. 50 samples from 
the validation set were used to validate three models. 
Figure 6 presents the fit between the predicted and 
measured values. 
 

0 2 4 6 8
0
1

2

3

4

5

6

EC analog value

EC
 m

ea
su

re
d 

va
lu

e

(a) SVM y=0.47x+1.95 R2=0.28

0 2 4 6 8
0

4

6

8

EC analog value

EC
 m

ea
su

re
d 

va
lu

e

(b) BPNN y=0.59x+1.62 R2=0.40

2

0 2 4 6
0
1

2

3

4

5

6

EC analog value

EC
 m

ea
su

re
d 

va
lu

e

(c)ELM y=0.53x+1.65  R2=0.36

 

Figure 6: Actual and predicted values of soil conductivity in the validation set 
 

From Figure 6, the R2 for SVM, BPNN, and ELM 
estimation models was 0.28, 0.41, and 0.36, respectively. 
The RMSE was 0.67dSm-1, 0.66dSm-1, and 0.73dSm-1, 
respectively. The RPD was 1.37, 1.56, and 1.45, 
respectively. The R2 of the validation set model was above 
0.25. The evaluation indicators of the validation set and the 
modeling set were relatively close, without overfitting 
phenomenon. Therefore, the accuracy of SVM and ELM 
estimation models was lower than that of BPNN, which 
had higher RMSE than BPNN. The RPD of BPNN was 
greater than 1.6, and its predictive and stability 

performance were better. 
The selected spectral index could be used as a model 

input for estimating soil EC research. The 14 extracted 
spectral indices were used as the model’s inputs. Based on 
the research algorithm, a soil EC estimation model based 
on texture features was constructed and compared with 
SVM and BPNN. Figure 7 shows the model accuracy 
verification results. 
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Figure 7: Validation results of soil conductivity estimation model based on spectral index 
 

From Figure 7, the accuracy of these three soil EC 
estimation models constructed with spectral index as the 
model input was between 0.65 and 0.77, all reaching above 
0.60. This soil EC estimation method on the foundation of 
ELM was the best estimation model, with the best model 
evaluation results, R2 of 0.77, RMSE of 0.64dSm-1, RPD 
of 1.99, indicating a relatively ideal estimation effect. 
When using spectral index as the model input, ELM had 
better prediction accuracy for soil EC and could better 
express soil EC information. Next was the BPNN soil EC 
estimation model, with R2 of 0.70, RMSE of 0.65dSm-1, 
and RPD of 1.81. Compared to texture features as input for 

the model, this model's accuracy was greatly enhanced. 
This SVM soil EC estimation method is the worst, with R2 
of 0.65, RMSE of 0.68 dSm-1, and RPD of 1.73. Using 
spectral index as the model input to construct a soil EC 
estimation model, its estimation accuracy was higher and 
more stable compared to texture feature models. Three 
models were validated using a validation set. Figure 8 
shows the fit between the predicted and measured values 
obtained. 
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Figure 8: Actual and predicted values of soil conductivity in the validation set 
 

From Figure 8, the R2 of SVM, BPNN, and ELM 
estimation models was 0.63, 0.68, and 0.71, respectively. 
The model accuracy in the validation set was above 0.60. 
The difference in evaluation indicators between the 
validation set and the modeling set was not significant, 
indicating that the model performance was relatively stable. 
The effect of ELM was the most significant, followed by 
BPNN. The modeling effect of SVM was not ideal. 
Compared with traditional analysis methods, machine 
learning methods greatly enhanced this model’s accuracy 

and stability, which had strong ability to handle nonlinear 
mappings. 

All 14 spectral indices and 24 texture features 
extracted from UAV multispectral images were used as 
input variables to further improve the model’s estimation 
accuracy. Therefore, a soil EC estimation model based on 
feature fusion was constructed. Figure 9 shows the results 
of the estimation models. 
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Figure 9: Validation results of soil conductivity estimation model based on feature fusion 
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From Figure 9 (a), the R2 of all three estimation 
models was greater than 0.75, with RPD greater than 1.80. 
The estimation model based on ELM had the best 
performance, with the highest R2, RPD, and lowest RMSE 
(R2=0.86, RMSE=0.34dSm-1, RPD=2.10). This indicated 
that the combination of feature fusion method and ELM 
had strong estimation ability for soil EC. Next was BPNN, 
with R2 of 0.82, RMSE of 0.49 dSm-1, and RPD of 1.81. 
The SVM estimation model had the lowest performance, 
with an R2 of 0.77, an RMSE of 0.51dSm-1, and an RPD 
of 1.88. However, the accuracy of the SVM estimation 
model also improved with different model inputs. From 
Figure 9 (b), the R2, RMSE, and RPD based on ELM were 
0.80, 0.45 dSm-1, and 2.03, respectively, which were also 
the optimal model among these three models. Next was 
BPNN, with R2, RMSE, and RPD of 0.77, 0.53dSm-1, and 
2.00, respectively. The SVM estimation model's accuracy 
was higher than that of ELM and BPNN, with R2, RMSE, 
and RPD of 0.73, 0.50 dSm-1, and 2.01, respectively. The 
difference in evaluation indicators between the modeling 
and validation set models was relatively small. This 
indicated that the model estimation was improved after 
unifying spectral index and texture features as input 
variables. The overfitting phenomenon that existed was 
eliminated. 

4 Discussion 
Soil salinization is a major agricultural problem and can 
reduce crop yields. The monitoring of soil salinization 
often requires expensive costs and manual laboratory 
measurements. However, the UAV RS technology is not 
restricted by the above factors and can monitor the 
research area at high frequency and for a long time. The 
research aims at exploring the potential of the UAV RS 
technology to estimate soil salinity in cotton fields during 
the reproductive period. Some scholars have demonstrated 
the ability of soil salinization based on UAV images. This 
study uses a machine learning model to monitor soil 
conductivity in cotton fields. The quantitative inversion 
model is conducted by fusing spectral and texture feature 
information based on ELM soil conductivity. The results 
showed that this model had the modeling set coefficient of 
determination of 0.77, 0.82, and 0.86, respectively. Its 
prediction sets coefficient was 0.73, 0.77, and 0.80, 
respectively. The quantitative inversion model had the 
highest prediction accuracy. Compared with SVM, ELM 
often produced better performance with less optimization 
constraints and good generalization ability. It is more 
efficient than traditional BPNN, which is the same as the 
method proposed by Wang et al. [20]. The soil salinity 
inversion model was established for different salinization 
grades. The final test results showed that ELM was the 
optimal monitoring model. In conclusion, compared with 
other machine learning algorithms, ELM is promising for 
quantitative soil salinity research. The study used texture 
information, vegetation index, and the collection of two 
data sets. Then the influence of different feature input 

quantity on the predictive ability of soil conductivity 
monitoring model was compared. In the study, the model 
constructed using feature fusion had higher prediction 
accuracy, followed by the vegetation index. The texture 
index model was relatively poor effect. Traditional soil salt 
measurement is usually estimated by the salt index method 
in the bare soil period. Some scholars have also discussed 
the research of UAV multispectral RS technology in soil 
salt content under different vegetation coverage. Hu 
constructed the soil salt based on three input variable group 
RS inversion model. The multiple regression, partial least 
squares regression, limit learning machine, SVM, and 
BPNN were used. The multiple regression model had the 
best inversion effect in the six linear regression model. 
BPNN built on the whole variable group inversion model 
had the highest accuracy [21]. However, the inversion 
model accuracy is still not as good as the research model. 
This is because UAV multispectral RS can directly obtain 
the relevant data of the soil surface to reverse the soil 
salinity. In vegetation coverage, the use of UAV RS of soil 
salt estimation is mainly reflected in the vegetation state of 
growth. Crops mainly absorb soil moisture organs mainly 
root. The impact of soil salinity changes on crop water 
absorption is relatively significant, thus hindering crop 
growth. The soil salinity is relatively high. Crops have 
unhealthy growth. This is mainly from the crown parts of 
the crops. The vegetation index is based on the reflection 
spectral characteristics of vegetation. Various 
combinations of wave bands are used to obtain the growth 
and development of crops. 

5 Conclusion 
The traditional soil salinization monitoring method has 
problems such as high cost, low speed, and low efficiency 
in obtaining soil salinization information. ELM was used 
to monitor soil EC in cotton fields. An EC UAV RS 
quantitative inversion model based on ELM was proposed. 
The modeling set’s R2 of SVM, BPNN, and ELM soil EC 
quantitative inversion models constructed with texture 
features as input was 0.37, 0.44, and 0.42, respectively. 
The prediction set’s R2 was 0.28, 0.41, and 0.36, 
respectively. BPNN had higher prediction accuracy. The 
salinity indices ARVI, SI-T, NDSI, S6, S1, S3, S5, S2, SI3, 
and SI2 were positively correlated with soil EC, with 
correlation coefficients located in 0.19~0.67. The 
correlation between SI-T and ARVI was significantly 
higher than the other 8 spectral indices, having correlation 
coefficients of 0.67 and 0.65, respectively. The vegetation 
indices DVI, GNDVI, EVI, and RVI were negatively 
correlated with soil EC, with correlation coefficients 
located in -0.66~-0.60. The SVM, BPNN, and ELM soil 
EC quantitative inversion models constructed using 
vegetation indices all had high accuracy. The modeling 
set’s R2 was 0.65, 0.70, and 0.77, respectively. The 
prediction set’s R2 was 0.63, 0.68, and 0.71, respectively. 
ELM’s accuracy was higher than that of SVM and BPNN. 
A quantitative inversion model for soil EC was constructed 
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using 14 spectral indices and 24 texture feature 
information. The modeling set’s R2 was 0.77, I0.82, and 
0.86, respectively. The prediction set’s R2 was 0.73, 0.77, 
and 0.80, respectively. ELM had the highest prediction 
accuracy. Finally, this soil EC estimation model using 
ELM was the optimal model, achieving precise monitoring 
of soil EC. However, the universality of this model is poor. 
Multiple different experimental areas have not been 
studied. Further exploration will be conducted in other 
semi-arid and arid areas. 
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