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Under the background of rapid advancement of information technology and the Internet, the impact of 

online public opinion on social stability and campus environment is increasingly significant, especially 

the negative online public opinion involving college students. To effectively detect and manage 

negative online public opinion, this study proposes a public opinion classification model that combines 

the Sooty Tern algorithm with support vector machines. The traditional Sooty Tern optimization 

algorithm is improved by using three strategies: Tent chaotic mapping, adaptive t-distribution 

mutation factor, and random walk. Combining it with neural network, a public opinion prediction 

model with time series characteristics is designed. The test results showed that the classification model 

had a precision rate of 92.86%, a recall rate of 93.75%, an F1 value of 93.82%, a resource 

consumption rate of 18.63%, and an average calculation time of 9.1s, which is the best among the 

comparison models. In addition, the classification accuracy of the model for current affairs, economy, 

culture, and social public opinion categories was 94.33%, 96.24%, 94.89%, and 98.98%, respectively. 

In terms of prediction accuracy, when the target error value was 0.5, the average training times of the 

prediction model was only 49 times, and the average error value of the model was 0.1853. When the 

target error value was 0.1, the model was trained an average of 94 times and the average error value 

was 0.0725. The experiment shows that the detection system can quickly identify and locate negative 

public opinion in large-scale data, and accurately predict its dissemination trend, providing a new 

warning information and response strategy for relevant management departments. 

Povzetek: Študija uvaja model za zaznavanje negativnega spletnega mnenja med študenti s 

kombinacijo Sooty Tern optimizacijskega algoritma in SVM, s tem pa učinkovito napoveduje trend 

širjenja negativnih mnenj.

1 Introduction 

The process of the information society has made the 

internet an important component of people's daily life and 

social interaction, especially among college students who 

have a high usage rate and a wide coverage area [1-2]. 

Due to the popularity of social media and online 

platforms, the use of the internet as a medium by college 

students to obtain information, express opinions, and 

participate in social activities has become the mainstream 

trend [3]. However, this also brings new challenges to the 

management of Negative Online Public Opinion (NOPO). 

Negative Public Opinion (NPO) involving college 

students, such as inappropriate speech, false information, 

and online violence, poses a huge threat to their mental 

health, campus harmony, and social stability [4]. College 

students are particularly vulnerable to the adverse effects 

of NOPO due to their developmental stage, susceptibility 

to peer influence, and high engagement with social media 

platforms. The impact of NOPO can lead to severe  

 

consequences, including increased stress, anxiety,   

depression, and even suicidal tendencies among students. 

Moreover, the spread of such negative sentiments can 

disrupt the educational environment, affecting the overall 

academic performance and well-being of the student 

community [5]. To address the aforementioned 

challenges, numerous researchers have explored 

advanced algorithms and technologies aimed at 

improving the efficiency and accuracy of Online Public 

Opinion (OPO) management. In this context, the Sooty 

Tern Optimization Algorithm (STOA) has gradually 

gained widespread attention and demonstrated its 

application potential in multiple fields due to its superior 

global search ability and adaptability. STOA 

demonstrates remarkable global search capacity and 

adaptability, and has been extensively utilized in the 

domains of engineering optimization, machine learning, 

and data science. B. Muthazhagan et al. proposed a new 

STOA for image examination in lung cancer. This 

algorithm first used image segmentation techniques to 
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segment the denoised X image, and then used deep 

learning techniques to extract the structural features of 

nodules and enhance the texture features of the image. 

Finally, it applied STOA to distinguish between normal 

small cell lung cancer and cancer from X-ray images [6]. 

J. Wang et al. established a nonlinear optimization 

mathematical model for Mine Ventilation (MV) network 

to reduce energy consumption of MV system, and 

proposed an improved STOA based on this model. The 

model adopted uniform reverse, fitness distance balance 

selection, and mutation strategies to optimize the 

algorithm, which could reduce the total energy usage 

amount of the mine by about 35.06% [7]. H. Jia et al. 

proposed a hybrid model based on STOA to perfect the 

Support Vector Machine (SVM) and recognize the 

optimal feature set for effective data preprocessing. The 

hybrid model combined the STOA and differential 

evolution to rise search efficacy and convergence velocity. 

It has been proven to have good recognition performance 

in experimental tests on 12 datasets [8]. J. He et al. 

proposed an improved STOA to address the difficulty in 

finding the global optimal solution. This algorithm 

combined multiple search guidance approaches and 

location update modes, designing average individuals and 

randomly selected individuals to instruct the search. They 

also proposed 6 position update modes, including an 

enhanced scaling mode with extended spiral radius and 5 

other modes built on offset operation [9]. J. Zhang et al. 

proposed an optimized Variational Mode Decomposition 

(VMD) fault diagnosis method based on STOA to 

address the problem of difficult identification of fault 

characteristics in planetary gearbox vibration signals. 

This approach first utilized STOA to optimize the VMD 

parameters, then decomposed the signal using the VMD 

method, and finally analyzed the reconstructed signal 

using a 1.5-dimensional envelope spectrum [10]. 

NOPO has several characteristics, including 

diversity in dissemination, immediate suddenness, crowd 

fragmentation, and sustained repetition. Many scholars 

have conducted in-depth studies on OPO management in 

today's complex network situation. After analyzing the 

network behavior of online social networks such as Sina 

Weibo, M. Liu and L. Rong established a dynamic OPO 

model that takes into account erroneous information and 

Public Opinion Dissemination (POD). This model 

introduced the characteristics of online communication, 

developed multiple dimensions of opinion interaction 

schemes, and comprehensively considered other public 

opinion influencing factors. Through simulation 

experiments, the intervention effects of different official 

responses were determined [11]. Y. Li and J. Wang 

constructed a conceptual model grounded on the 

structural features of a Dual Layer Online Social Network 

(DLOSN) and designed a cross-network propagation 

model for OPO. Their propagation characteristics were 

discussed through numerical simulation. DLOSN had a 

strong promoting effect on the POD, and intervention 

should be carried out in the early stages of POD under 

this model [12]. B. Peng et al. proposed a method for 

identifying and evaluating online rumors using 

intuitionistic fuzzy language sets and integration methods. 

The method first used non-additive measures and integral 

to calculate the comprehensive evaluation of OPO, and 

then used generalized functions to determine attribute 

weights. The example of OPO risk in haze indicated that 

this method had good performance in identifying and 

evaluating network rumors, and could be applied to 

emergency management of OPO [13]. C. Li et al. 

proposed a new OPO emotion analysis model based on 

asynchronous networks to analyze the evolution 

characteristics of OPO emotions in complex 

environments. Subsequently, using graphic evaluation 

and review techniques for expansion, a model-based 

sentiment analysis algorithm was designed. This model 

extended previous static models and provided a method 

for extracting viewpoint evolution patterns in complex 

environments [14]. Y. Dong et al. proposed a public 

opinion dynamics model for the interaction mechanism 

between online and offline social networks. The analysis 

conditions for consensus formation in the public opinion 

reform model were studied, and the dynamic impact of 

online agents on public opinion formation was simulated. 

This model reduced the number of opinion clusters while 

shortening the steady-state time, and smoothed out the 

changes in opinion dynamics [15]. Finally, the research 

areas, indicator testing results, and limitations of the 

literature review are summarized, as shown in Table 1. 

 
Table 1: Literature summary 

Authors Year Algorithms/Methods used Key results Limitations 

B. Muthazhagan et 

al. [6] 
2023 Sooty-LuCaNet 

The average 

classification accuracy of 

lung cancer detection and 

classification: 99.16% 

Limited to medical 

image processing 

J. Wang et al. [7] 2024 mSTOA 
Reduced energy 

consumption by 35.06% 

Specific to mine 

ventilation systems 

H. Jia et al.[8] 2021 STOA-DE 

Minimum run time:7.09s 

Malicious detection 

accuracy: 99.73% 

Limited application 

in feature selection 

J. He et al. [9] 2023 ESTOA Improved global search Complexity in 
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capability implementation 

J. Zhang et al. [10] 2022 
STOA-VMD for fault diagnosis 

in planetary gearboxes 

Effective fault 

characteristic 

identification 

Limited to fault 

diagnosis 

applications 

M. Liu and L. Rong 

[11] 
2022 

Multi-dimensional opinion 

dynamic model with 

misinformation diffusion 

Effective intervention 

simulation 

Focused on 

misinformation 

diffusion 

Y. Li and J. Wang 

[12] 
2022 

Cross-network propagation 

model for public opinion 

Promoted early-stage 

intervention 

Specific to 

dual-layer online 

social networks 

B. Peng et al. [13] 2022 
Fuzzy language sets for online 

rumor identification 

High performance in 

rumor detection 

Focused on 

emergency 

management 

C. Li et al. [14] 2023 
Asynchronous network-based 

sentiment analysis model 

Accurate emotion 

evolution analysis 

Limited to 

sentiment analysis 

Y. Dong et al. [15] 2021 
Public opinion dynamics model 

in social networks 

Reduced opinion 

clusters, stabilized 

dynamics 

Older model, may 

need updates 

 

Combined with Table 1, it is of great significance to 

manage and control NOPO for college students. Many 

scholars have studied the STOA and the management of 

NOPO. Some progresses are made, but most of them 

focus on the impact analysis of a single factor. 

Traditional public opinion monitoring methods face 

challenges such as large data volume and fast information 

update. In addition, there is a gap in the existing literature 

in the comprehensive classification and prediction of 

OPO management, especially in the trend propagation 

data and the prediction of OPO development trends. The 

majority of extant studies have not fully addressed the 

dynamic and multi-faceted nature of college students' 

OPO. Furthermore, they have not integrated a variety of 

advanced strategies to improve accuracy and efficiency. 

Therefore, this study combines STOA with SVM and 

proposes a public opinion classification algorithm based 

on STO-SVM. By introducing the Tent Chaos Mapping 

(TentCM), Adaptive t-Distribution Variation Factor 

(AtDVF), and Random Walk (RW) strategies into the 

original STOA, and combining them with Elman Neural 

Network (ElmanNN), an improved STOA-based NPO 

influence prediction model, namely ISTOA, is proposed. 

It aims to improve the efficiency and accuracy of public 

opinion monitoring and make temporal predictions of the 

development trend, providing more accurate and efficient 

solutions for the identification and prediction of NOPO. 

2 Methods and materials 

This study first combines STOA with SVM and proposes 

the NOPO classification model, STOA-SVM. Searching 

for the optimal Penalty Factor (PF) and Kernel Function 

(KF) of SVM through STOA can improve the 

convergence speed and accuracy while avoiding 

overfitting of the model. Secondly, in response to the 

significant impact of Elman's initial weights, STOA is 

introduced and improved on the original STOA using 

TentCM, AtDVF, and RW. An improved ElmanNN NPO 

prediction model, ISTO-E, is proposed. 

 

2.1 Construction of NOPO recognition and 

classification model based on improved sooty 

tern optimization algorithm 
Similar to the seagull optimization algorithm, STOA is a 

biomimetic metaheuristic algorithm developed by 

scholars such as Gaurav based on industrial engineering, 

which simulates the migration and hunting behavior of 

the black tern population. It simulates migration and 

foraging behavior to solve optimization problems [16]. 

Compared to traditional optimization methods like ant 

colony algorithm and Particle Swarm Optimization (PSO), 

STOA has stronger global search ability, higher solution 

accuracy, and faster convergence speed. It can provide 

excellent technical support in type recognition and trend 

prediction of NOPO [17]. The specific structure of the 

algorithm is shown in Figure 1. 
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Figure 1: STOA structure diagram 

 

In Figure 1, STOA mainly classifies two parts, 

namely migration behavior and attack behavior, 

corresponding to the global search and local optimization 

stages, respectively. Migration exploration behavior 

mainly includes three steps: conflict avoidance, group 

gathering, and location updating. Firstly, in the conflict 

avoidance step, it is necessary to calculate the position 

after collision avoidance to avoid collisions with other 

terns. Secondly, during the migration process, the black 

tern will approach the optimal position among adjacent 

black terns, and continuously update its position as it 

moves towards the optima. While avoiding conflicts, the 

calculation of the collision avoidance position is equation 

(1) [18]. 

 
max

( )

( / )

st A st

A f f

c S p Z

S C Z C Z

 = 


= −
 (1) 

In equation (1), stc  represents the movement 

position of the crow tern after avoiding position collision. 

AS  represents the new position variable under collision 

avoidance conditions. stp  represents the current 

location of the black tern. Z  refers to the number of 

iterations. maxZ  is the maximum Z . fC  represents a 

constant used to adjust AS . Subsequently, the movement 

of the crow tern towards the optimal solution position is 

calculated using equation (2). 
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
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In equation (2), stm  is the process by which the 

current position stp  approaches the optimal position. 

bestp  is the optimal solution position. ( )bestp Z  is the 

optimal location for the tern. BC  is a random variable, 

which can increase the random factor in the search space. 

 0,1andR   is a random number. The trajectory update 

calculation towards the optimal solution position is 

equation (3). 

 st st std c m= +  (3) 

In equation (3), std  represents the trajectory 

approaching the optimal solution from the current 

position. During the migration process, the black tern will 

continuously adjust its flight speed and attack angle 

through a spiral hovering method. The expression of its 

hovering motion in the air is equation (4). 
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R u e
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  = 


 = 
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 (4) 

In equation (4), x , y , and z  are spatial 

coordinate values. adiusR  is the radius of each helix. 

 0,2i   is the angle variable. e  represents the 

natural logarithmic basis. u  and v  are the helix angle 

parameters, set to 1. After calculating the approach to the 

optimal solution, the iterative formula for the global 

optimal solution is equation (5). 

 ( ) ( ( )) ( )st st bestp Z d x y z p Z  =  + +   (5) 

Based on a series of calculations on migration 

behavior and attack behavior, the implementation process 

of the STOA is shown in Figure 2. 
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Figure 2: The process of STOA 

 

In Figure 2, the first step is to set the maximum 

iterations, population size, and other related parameters, 

and generate several initial solutions. Subsequently, the 

fitness of each solution is calculated, followed by the 

migration and attack behavior of the black tern. Then the 

fitness value based on the new location is recalculated 

and the global optimum is recorded. Finally, if the current 

iteration reaches the maximum iterations, run and output 

the result are stopped. Otherwise, the individual fitness is 

recalculated. This study selects SVM from numerous 

machine algorithms that can classify and recognize 

NOPO, which can be used for numerical prediction and 

classification tasks of linear and nonlinear data. An 

STOA-SVM classification algorithm is proposed by 

combining STOA with SVM. SVM mainly includes 

Linear Separable-SVM (LS-SVM) and Nonlinear 

Separable-SVM (NS-SVM), as shown in Figure 3 [19]. 
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Figure 3: SVM schematic diagram 

 

Figures 3 (a) and (b) show LS-SVM and NS-SVM, 

respectively. LS-SVM effectively classifies different 

samples by searching for the largest edge hyperplane in 

the feature library space [20-21]. Assuming the existence 

of dataset D, i.e., 1 1 2 2( , ),( , ), ,( , )
D D

X y X y X y , where 

iX  represents the training tuple, iy  represents the class 

label, and iy  has a value of +1 or -1. The expression of 

the separation hyperplane is equation (6) [22]. 

 ( ) 0w x b + =  (6) 

In equation (6), w  is the weight vector, which is 

the method vector of the hyperplane. b  represents a 

scalar. The PF and KF can directly affect the 

classification performance of SVM, and the expression of 

the PF is equation (7) [23]. 
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= +   (7) 

In equation (7), C  represents the PF. Due to the 

fact that NOPO is a nonlinear data, according to the 

Lagrange formula, the abstract problem planning 

expression is equation (8) [24]. 
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1

1
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M
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i
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s t a y
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= = =

=


−


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 


(8) 

In equation (8), i  represents the Lagrange 

multiplier. From this, the classification decision function 
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can be obtained, as shown in equation (9) [25]. 

2

2
1

( ) ( exp( ) )
2

M
i

i i

i

x x
f x sign y b

g
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=

−
= − + (9) 

In equation (9), g  represents the KF parameter. 

Using STOA to optimize the selection of PF C  and KF 

g  can improve the Classification Accuracy (CA) and 

convergence speed of SVM while avoiding overfitting. 

Therefore, based on the above calculations, the proposed 

STO-SVM model flow for identifying NOPO is shown in 

Figure 4. 
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Figure 4: STO-SVM model process 

 

In Figure 4, the first is to initialize the population 

parameters of the black tern and set the maximum 

iterations, population size, and parameter optimization 

boundary. Secondly, the population is initialized to obtain 

the initialized individuals of the black tern, and their 

fitness is calculated through SVM. Then, the individuals 

of the black tern are sorted according to their fitness. The 

optimal and worst individuals are identified, and the 

initial optimal solution and position are determined. 

Subsequently, the black tern is used to search the entire 

world and obtain the global optimal solution and location. 

Furthermore, a local search on the population of black 

terns is conducted to determine the local optimal solution 

and location. Boundary detection is performed again to 

search for the position of each individual. Finally, if the 

maximum iterations is reached at this point, SVM 

determines the optimal PF C  and KF g , outputs the 

results, trains the model to classify and recognize public 

opinion, and recalculates the individual fitness of the 

black tern. 

2.2 Construction of elman's OPO prediction 

model based on improved sooty tern 

optimization algorithm 
After constructing an NOPO classification and 

recognition model based on STOA, this study attempts to 

predict the development trend of OPO from the time 

dimension. Traditional neural networks perform well in 

handling static data, however, NOPO prediction is a 

dynamically changing data stream with strong nonlinear 

characteristics and temporal correlation. To achieve good 

temporal performance in NOPO prediction, an Elman 

dynamic feedback neural network is introduced to reflect 

the dynamic process of the system. ElmanNN is similar 

to feed-forward neural networks, but has more powerful 

computing power, with associative memory ability while 

optimizing computation. Its architecture is shown in 

Figure 5. 
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Figure 5: ElmanNN architecture 

 

In Figure 5, ElmanNN mainly contains layers of 

input, hidden, connection, and output. Compared to 

back-propagation neural networks, it has an additional 

layer of connection layer used to form the local feedback 

part. The transfer function of the connection layer is a 

linear function. With the increase of delay units, the 

connection layer can remember past states and use them 

as inputs to the hidden layer along with the network at the 

next moment. This feature endows the network with 

dynamic memory function, stronger sensitivity to 

historical data, and extremely high applicability to event 

sequence prediction problems. The model process 

formula is equation (10). 

( )

1 3

2

( ) ( 1) ( 1)

( ) ( ( 1) ( ) )

( ( ) )

c c

c n

y

x k x k h k

h k f w u k w x k b

y k g w h k b

 =  − + −


= − + +
 = +

(10) 

In equation (10), k  is the iteration time step. 

 0,1   is the self-connected feedback gain factor. 

( )cx k  and ( )h k  are the output values and quantities of 

the model's connecting layer and hidden layer at time k . 

nb  and yb  are the threshold vectors of the hidden and 

the output layers. ( )y k  is the output vector at time k . 

( )g   and ( )f   are the activation functions of the output 

and the hidden layer neurons. ( )f   is generally a linear 

function. ( )g   is a nonlinear function. 1w  represents 

the weight between the output layer and the hidden layer. 
2w  is the weight between the layers (hidden/output). 
3w  represents the weight between the hidden layer and 

the receiving layer. The feed-forward connection block 

composed of input, hidden, and output layers can adjust 

its weight, that is, 1w  and 2w  can be updated through 

correction. However, the recursive part composed of the 

hidden and the connecting layers cannot be corrected by 

weight, that is, the 3w  value is fixed. Traditional 

ElmanNN usually uses gradient descent back-propagation 

algorithm for training, following error correction learning 

rules. The input layer inputs data to the hidden for 

processing, and then the output layer propagates the 

results forward for the input signal [26]. When the error 

between the actual output of the output layer and the 

expected output is large, error back-propagation is 

adopted, which means that the error signal is 

back-propagated to the neurons in each layer. By using 

such methods, the weights and threshold matrices of 

neurons are updated and corrected [27]. The training error 

function of ElmanNN is equation (11) [28]. 

1
( )( ) ( ( ) ( )) ( ( ) ( ))

2

TE W k y k y k y k y k= − − (11) 

In equation (11), ( )y k  represents the actual value 

output at step k  during the training process. ( )y k  is 

the expected output value. Finding the appropriate W   

and ( ) min ( )E W E W =  is achieved through continuous 

iterative calculations. Finding the weight matrix that 

minimizes the objective function value is the purpose of 

network learning [29]. The formula for updating the 

weight matrix is equation (12) [30]. 

 

W W W

E
W

W


= + 



 = −



 (12) 

In equation (12), W  represents the error function 

and   represents the learning rate. By searching for the 

minimum matrix, error correction learning can be 

transformed into a classic optimization problem. 

However, in practical applications, Elman has the 

drawback of having a significant initial weight impact 

and being prone to falling into local optima. Therefore, 

this study also introduces STOA and improves the 

original STOA by using three strategies: TentCM, 

AtDVF, and RW, to improve its computational time and 

later search convergence efficiency. Firstly, the TentCM 

is used to enhance population diversity in the initial stage 

of the algorithm. It replaces the originally randomly 

generated individuals with individuals initialized by 

chaotic mapping, which can effectively increase the 

diversity and diffusion of the initial population. The 

TentCM function is equation (13). 

1

2 , 0 0.5

2(1 ) , 0.5 1

k k

k

k k

z z
z

z z
+

 
= 
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 (13) 

In equation (13), 0,1,2,...k =  represents 1 mapping 

degree. kz  represents the function value of the k -th 
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mapping. Replacing the original randomly generated 

individuals of the black tern with those initialized by 

TentCM can effectively increase the population diversity. 

This mapping function can ensure that the initial 

population points are more evenly distributed, prevent 

premature convergence, and enhance global search 

capabilities. Subsequently, AtDVF is introduced during 

the global search phase of individuals, which can 

effectively break out of local optima and solve for new 

fitness values. The AtDVF adjusts the search strategy 

according to the population distribution to ensure a 

balance between exploration and exploitation. Its 

probability density function expression is shown in 

equation (14). 

12

2
( 1/ 2)

( ) (1 )
( / 2)

n

t

n x
P x

nn n

+
− +

=  +


(14) 

In equation (14),   represents the gamma function. 
n  represents the degree of freedom. x  represents the 

random variable, and ( )tP x  represents the probability 

function value of the random variable under the 

t-distribution with n  degrees of freedom. Finally, the 

optimal solution random walk strategy further enhances 

the optimization process by introducing random motion 

in the search space. This strategy updates the position of 

the optimal value and generates a new position after the 

individual searches for the local optimal value. Its 

expression is shown in equation (15). 

 1

( )

0, (2 ( ) 1),.., (2 ( ) 1)n

X t

cussum r t cussum r t

=

− −
(15) 

In equation (15), t  represents the step size of 

individual RW. cussum  is the total sum of individuals 

during their wandering process. ( )X t  represents the set 

of steps. This strategy updates the position of the optimal 

value and generates a new position after the individual 

searches for the local optimal value, compares it with the 

current optimal solution, and replaces it if it is better. 

This strategy allows individuals to perform random walks, 

which helps to escape from local optima and ensure a 

robust search process. ISTOA is used to optimize 

ElmanNN, and an NOPO prediction model based on 

ISTO-E is proposed. The process is shown in Figure 6. 
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Figure 6: ISTO-E model process 

 

In Figure 6, the first step is to construct the original 

dataset and then construct the corresponding NOPO 

impact prediction indicator set based on the dataset. 

Secondly, the data is normalized and the population 

parameters of the black tern are initialized, with the 

maximum iterations, population size and parameter 

optimization boundaries, and adjustable parameters set. 

Subsequently, the population is initialized through 

chaotic mapping, and the fitness of the initialized 

individuals is calculated and sorted. The next step is to 

identify the individuals with the best and worst fitness, 

determine the initial optimal solution and its position, and 

then conduct a global search to obtain the global optimum 

and its position. Further local search of the population is 

conducted to determine the local optimum and location. 

The upper and lower boundaries obtained from boundary 

detection are compared, and if they are greater than, they 

are updated to the corresponding boundaries. Then, the 
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fitness of the entire population is calculated and ranked. 

If the optima in the sequence surpasses the global optima, 

it is replaced. Otherwise, iteration continues until Elman's 

optimal weight threshold parameter is obtained. Finally, 

Elman uses the optimal value, which is the optimal 

weight threshold parameter, to train and obtain the 

prediction model. 

3 Results 

To verify the effectiveness of improving the NOPO 

classification and prediction model, this study first 

establishes a suitable experimental environment and 

cleans and preprocesses the experimental data. Part of the 

data is utilized for model training, while the other part is 

used for testing different indicators of model performance. 

The first section tests the performance of the STO-SVM 

classification method, while the second section conducts 

experiments on the NOPO trend prediction performance 

of ISTO-E. All models in the experiment use the same 

dataset and parameters to ensure the accuracy of the 

experiment. 

 

3.1 Performance testing of STO-SVM public 

opinion classification model 

To test the performance of the STO-SVM in NOPO 

classification, this study used a Windows 10 system with 

an Intel (R) CPU of Intel Core i7 and 16GB of memory, 

and the experimental software was Matlab. SVM, 

PSO-SVM, and STO-SVM were introduced for 

comparative testing. The experiment adopted the 

commonly used UCI machine learning standard test 

dataset, which includes 148 datasets with different 

instances, features, and categories. The first step was to 

test the CA of the three algorithms on different datasets, 

which covers different fields including medical diagnosis, 

image recognition, text classification, etc. The study 

selected libras_movement, balance, blood, and mean 

datasets, and deleted missing or inconsistent data entries 

to ensure the integrity of the dataset. Then the feature 

values were scaled to a standard range to prevent larger 

range features from dominating the learning process. 

Finally, relevant features were identified and retained to 

reduce dimensionality and improve model performance. 

The study set the optimal penalty factor C  to 494.36 

and the kernel function g  to 10.95, the step size is set to 

0.5. The population size was set to 40, with 100 iterations. 

Ten experiments were conducted on each dataset, and the 

results are shown in Figure 7. 
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Figure 7: Comparison of CA of classifiers 
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Figures 7 (a) to (d) show the CA test results of three 

classifiers on the libras_movement, balance, blood, and 

mean datasets, respectively. In Figure 7 (a), STO-SVM 

has the highest CA with all above 80% and has the 

highest stability. The average CA of SVM and PSO-SVM 

are 64.58% and 69.75%, respectively. In Figure 7 (b), the 

10 tests of STO-SVM all show a CA of over 90%, with 

the optimal CA. The average CA of SVM and PSO-SVM 

are 68.86% and 70.24%, respectively. In Figure 7 (c), the 

CA of STO-SVM is significantly better than other 

comparison models, with an average CA of 77.83%, 

79.80%, and 95.87%. The accuracy of PSO-SVM is 

slightly higher than the SVM. In Figure 7 (d), the average 

CA of SVM, PSO-SVM, and STO-SVM classifiers on 

the dataset blood are 75.84%, 80.39%, and 89.57%, 

respectively. The CA of PSO-SVM is the most stable in 

ten experiments, fluctuating around 80%. To reflect the 

variability of CA of different models, the 95% 

Confidence Interval (CI) of each indicator is calculated. 

Table 2 shows the CA of each model on different data 

sets and its 95% CI. 

 
Table 2: Confidence level calculation results 

Dataset CA of SVM (%) CA of PSO-SVM (%) CA of STO-SVM (%) 

Libras_movement 64.58 ± 2.14 69.75 ± 1.87 80.23 ± 1.23 

Balance 68.86 ± 2.31 70.24 ± 2.12 91.15 ± 1.05 

Blood 75.84 ± 1.89 80.39 ± 1.76 89.57 ± 0.98 

Mean 77.83 ± 1.54 79.80 ± 1.42 95.87 ± 0.85 

 

Table 2 shows the calculation results of the 95% CI 

of the three classifiers, SVM, PSO-SVM, and STO-SVM, 

on different data sets. The CI provides information about 

the variability of the performance of each classifier. On 

the libras_movement data set, the CA of STO-SVM is 

80.23%, and its 95% CI is ±1.23. This means that the 

95% CI of STO-SVM on this dataset ranges from 79.00% 

to 81.46% CA. Secondly, the Precision-Recall (PR) 

curves of the three classifiers on the same dataset are 

shown in Figure 8. 
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Figure 8: Comparison of classifiers PR curves 

 

Figures 8 (a) to 8 (d) show the PR curves of three 

classifiers on the libras_movement, balance, blood, and 

mean datasets, respectively. The PR curve is a commonly 

used graphical tool in machine learning to evaluate the 
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performance of binary classification models, which can 

intuitively reflect the performance of classifiers. If the 

curve of a classifier completely surrounds the curves of 

other classifiers, it indicates that the classifier 

performance is better. In Figure 8, the STO-SVM curve 

completely envelops the PR curves of SVM and 

PSO-SVM in all datasets, while the PSO-SVM curve 

completely envelops the SVM curve. This proves that the 

performance of STO-SVM is the best among compared 

classifiers, while the PSO-SVM is lower than STO-SVM 

and better than traditional SVM. Therefore, STO-SVM 

has good CA and performance. Subsequently, the study 

uses web crawler data to crawl OPO data from Sina 

Weibo. The dataset includes posts and comments related 

to various public opinion topics from June 2022 to 

January 2023. The dataset contains approximately 

100,000 entries, each of which includes text content, 

timestamp, user information, and related public opinion 

categories, such as current affairs, economy, culture, and 

society. At the same time, the study preprocesses the data 

to eliminate noise and irrelevant information, such as 

advertisements and spam. Three text normalization 

techniques, tokenization, stop word removal, and stem 

extraction, are applied to preprocess the data for 

subsequent analysis. The top 100 OPO events are selected 

as the test dataset, with a ratio of 8:2 between NPO and 

non-NPO events. Table 3 shows the multi-indicator test 

data for four models. 

 

 
Table 3: Metrics test results for different algorithms 

Index 
Algorithm 

SVM PSO-SVM STO-SVM 

P/% 68.48 84.57 92.86 

R/% 64.82 68.91 93.75 

F1/% 55.97 75.83 93.82 

Resource consumption rate/% 21.58 37.66 18.63 

Average detection time/s 9.3 14.5 9.1 

 

In Table 3, the classification model based on 

STO-SVM algorithm achieves test results of 92.86%, 

93.75%, and 93.82% in accuracy, recall, and F1 values 

for 100 public opinion events, respectively, which are 

superior to other comparative models. In terms of 

resource consumption rate, STO-SVM is 18.63%, which 

is lower than a single SVM model. The resource 

consumption rate of PSO-SVM is 37.66%, which is the 

highest among all models. In terms of model computation 

time, the average time of SVM, PSO-SVM, and 

STO-SVM classifiers is 9.3s, 14.5s, and 9.1s, respectively. 

PSO-SVM takes the longest running time, followed by 

SVM, slightly higher than STO-SVM. Therefore, 

STO-SVM has significant comprehensive advantages 

compared to comparative models. Similarly, to analyze 

the resource consumption and average detection time of 

each model in detail, the confidence intervals of each 

model are shown in Table 4. 

 
Table 4: Confidence level calculation results 

Index SVM PSO-SVM STO-SVM 

P/% 68.48±2.13 84.57±1.85 92.86±0.95 

R/% 64.82±2.08 68.91±2.01 93.75±0.88 

F1/% 55.97±1.93 75.83±1.78 93.82±0.92 

Resource consumption rate/% 21.58±0.85 37.66±1.23 18.63±0.65 

Average detection time/s 9.3±0.2 14.5±0.3 9.1±0.1 

 

Table 4 shows the CI calculation results of each 

model under different indicators. The resource 

consumption rate indicates the computing resource 

occupancy rate required by the model for classification. 

The table shows that the STO-SVM can effectively 

reduce the use of computing resources when processing 

large amounts of data. The CI of the resource 

consumption rate of ±0.65 further illustrates the 

consistency and reliability of STO-SVM in multiple 

experiments. The average detection time refers to the 

average time required for the model to complete the 

classification task. The fast detection time of STO-SVM 

can be attributed to its optimized global and local search 

strategies, which make it more efficient when processing 

large-scale data. The CI of the detection time of ±0.1 also 

shows the stability of STO-SVM in different tests. Finally, 

to verify the model feasibility in classifying public 

opinion types, this study set up three models to test the 

recognition accuracy of four different public opinion 

topics: current politics, economy, culture, and social 

public opinion, as shown in Figure 9. 
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Figure 9: CA for different public opinion topics 

 

Figure 9 shows the CA of three models for current 

affairs, economy, culture, and social public opinion 

categories. Among the four different OPO categories, 

STO-SVM has the best CA. In the classification of 

current political public opinion, the CA of SVM, 

PSO-SVM, and STO-SVM are 88.62%, 90.87%, and 

94.33%. In the classification of economic public opinion, 

STO-SVM holds the best accuracy, with SVM and 

PSO-SVM having CAs of 73.51% and 83.57%. In 

cultural public opinion, SVM's CA is superior to 

PSO-SVM, and the STO-SVM model still holds the 

optimal accuracy. In terms of social opinion classification, 

the CA of SVM, PSO-SVM, and STO-SVM are 78.34%, 

90.04%, and 98.98%. In summary, STO-SVM has 

stronger OPO recognition and classification capabilities, 

and excellent computational efficiency, which can 

achieve more efficient OPO detection. 

 

3.2 Comparison experiment of ISTO-E 

public opinion trend prediction model 
This study further conducts experimental testing on 

ElmanNN based on ISTOA, with the same experimental 

environment as the previous section. To verify the 

performance of ISTOA, nonlinear unimodal and 

nonlinear multi-modal functions are first selected as 

benchmark test functions to test the convergence and 

global optimization capabilities. The specific information 

of the functions is listed in Table 5. 

 
Table 5: Detailed information of test functions 

Function Formula Parameter range Dimension 

Unimodal 

function 

1F  
1

2 2 2

1 1

1

( ) 100( ) ( 1)
n

i i i

i

f x x x x
−

+

=

 = − + −    100,100−  30 

2F  
2

2

1

( )
n

i

i

f x x
=

=   100,100−  30 

Multi-modal 

function 

3F  
2

3

1

( ) 10cos(2 ) 10
n

i i

i

f x x x
=

 = − +    5.12,5.12−  30 

4F  
2

4

1 1

( ) cos( ) 1
4000

NN
i i

i i

x x
f x

i= =

= − +    600,600−  30 

 

In Table 5, the selected unimodal functions are 1F  

and 2F , which can evaluate the algorithm's development 

ability, i.e. convergence performance. The multi-modal 

test functions are 3F  and 4F , which can evaluate 

whether the algorithm has the ability to jump out of local 

optimum, that is, the global optimization ability. In the 

experiment, the dimensions of each function are 30, the 

population is 30, and the maximum iteration is 500. PSO, 

Whale Optimization Algorithm (WOA), and ISTOA are 

selected for comparative testing, as shown in Figure 10. 
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Figure 10: Comparison of algorithm convergence curves 

 

Figures 10 (a) to 10 (d) are the convergence curves 

of three algorithms on four standard test functions 1F , 

2F , 3F , and 4F . On the unimodal functions in Figures 

10 (a) and 10 (b), ISTOA quickly converges to find the 

global minimum and the curve oscillates less. PSO and 

WOA algorithms exhibit slow convergence speed and 

large curve oscillations. The convergence speed of WOA 

algorithm is slightly better than PSO, but there is a gap 

compared to ISTOA. On the multi-modal functions in 

Figures 10 (c) and 10 (d), ISTOA also shows a fast 

convergence trend, with a better convergence curve than 

PSO and WOA. WOA exhibits maximum oscillation in 

the early stage of convergence on multi-modal functions, 

and reaches convergence state after 364 and 298 

iterations on 3F  and 4F  functions. The PSO curve 

oscillates less and reaches convergence after 92 and 284 

iterations on the 3F  and 4F  functions. In summary, 

ISTOA has excellent convergence speed and accuracy, 

with significant improvements in both global search and 

local exploration. On the basis of verifying the good 

performance of ISTOA, this study further verifies the 

performance of the ElmanNN NPO prediction algorithm 

based on ISTOA. This study introduces traditional Elman, 

Output-Input Feedback Elman (OIF-Elman), and ISTO-E 

neural networks for comparative experiments. The OPO 

event dataset is used, and the error results of the three 

models repeating 500 simulation experiments on the 

dataset are listed in Table 6. 

 

 
Table 6: Average prediction experiment values for different models 

Error target Model 
Training 

frequency 

Training 

error 
RMSE MSE MAPE 

Success 

rate 

Error<0.5 

Elman 68 1.0215 0.8574 0.1458 4.57 42.90 

OIF-Elman 57 0.8564 0.8354 0.1136 3.39 49.68 

ISTO-E 49 0.1853 0.6054 0.0876 1.77 86.95 

Error<0.1 

Elman 128 0.1458 1.2586 0.1477 6.58 22.98 

OIF-Elman 119 0.0849 1.0239 0.0823 5.87 29.34 

ISTO-E 94 0.0725 0.852 0.0687 2.21 37.85 
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Table 6 shows the average results obtained by three 

models on the public opinion event dataset after 500 

repeated experiments. The smaller the values of Root 

Mean Square Error (RMSE), Mean Square Error (MSE), 

and Mean Absolute Percentage Error (MAPE), the better 

the predictive performance and the closer the predicted 

values match the true values. When the error target is less 

than 0.5, the success rates of Elman, OIF-Elman, and 

ISTO-E are 42.90%, 49.68%, and 86.95%, respectively. 

The ISTO-E model has the best average error value and 

requires the least average number of times for model 

training. When the error target is less than 0.1, the error 

values of the three models increase to different degrees. 

The RMSE, MSE, and MAPE values of the ISTO-E 

model are the smallest among the comparison models, 

and the success rate is the best. Subsequently, a certain 

public opinion event is extracted from the 100 OPO event 

datasets used in the previous section and tested for 

practical prediction applications. The test results are 

displayed in Figure 11. 
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Figure 11: Prediction of public opinion influence over time 

 

Figures 11 (a) to (c) show the predicted and actual 

impact of public opinion predicted by the Elman, 

OIF-Elman, and ISTO-E models 10 hours after a certain 

public opinion event occurs. Figure 11 is that the 

predicted curve of the ISTO-E is closest to the actual 

influence value, indicating that the actual difference 

between the predicted and actual values is small. The 

Elman model has the lowest fit between the the two value 

curves, resulting in poor predictive performance. The 

difference between the two values of the OIF-Elman 

model is between the two, and the prediction effect is 

average. The maximum prediction error values of Elman, 

OIF-Elman, and ISTO-E models are 1.57, 1.18, and 0.48. 

Finally, 15 events from the public opinion event set are 

randomly selected, and the impact of the events is 

predicted 5 hours after their occurrence. Table 7 shows 

the relevant results. 
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Table 7: Prediction results of public opinion events 

Sample 
Actual value of 

influence 

Predicted value Error value 

Elman OIF-Elman ISTO-E Elman OIF-Elman ISTO-E 

1 63.2 63.84 63.42 63.24 0.64 0.22 0.04 

2 65.8 66.31 66.42 65.82 0.51 0.62 0.02 

3 72.9 71.47 71.98 72.87 -1.43 -0.92 -0.03 

4 48.1 48.73 49.82 48.53 0.63 1.72 0.43 

5 57.4 58.50 58.22 57.51 1.10 0.82 0.11 

6 58.9 60.34 59.87 59.03 1.44 0.97 0.13 

7 76.8 74.25 75.33 76.48 -2.55 -1.47 -0.32 

8 72.1 71.26 72.07 72.09 -0.84 -0.03 -0.01 

9 62.0 62.78 62.34 62.21 0.78 0.34 0.21 

10 59.7 60.54 60.28 60.01 0.84 0.58 0.31 

11 55.5 53.97 55.58 55.46 -1.53 0.08 -0.04 

12 49.3 50.36 51.58 49.77 1.06 2.28 0.47 

13 78.4 78.08 78.04 78.05 -0.32 -0.36 -0.35 

14 58.2 59.88 59.84 58.46 1.68 1.64 0.26 

15 66.4 65.33 65.52 66.38 -1.07 -0.88 -0.02 

 

Table 7 shows the true values of public opinion 

influence and the predicted values and prediction errors 

of the three models within the 5th hour after 15 public 

opinion events occurred. Among all events, the ISTO-E 

model has the smallest prediction error value, the best 

prediction accuracy among the three models, and the 

prediction error value in the eighth public opinion event 

is only 0.01. The single Elman model has the highest 

prediction error in most events, which is higher than the 

other improved OIF-Elman and ISTO-E models. 

Therefore, the ISTO-E prediction model has better 

prediction accuracy and better monitoring value in 

practical applications. 

4 Discussion 

The current NOPO monitoring and prediction system for 

college students faces difficulties in extracting numerical 

features in complex network environments, and the time 

dimension design of numerical analysis systems is not 

comprehensive. This study focused on the dissemination 

trends and values of public opinion events on social 

media such as the internet. By combining STOA with 

SVM, an NOPO recognition model based on the 

STO-SVM fusion model was proposed. At the same time, 

taking into account the periodicity of POD, STOA has 

been improved from three aspects. Combined with the 

ElmanNN model, an ISTO-E neural network model for 

predicting the trend of public opinion influence has been 

proposed. In the testing of the STO-SVM public opinion 

classification model, the CA of STO-SVM reached 

95.87%, significantly better than the accuracy (84.57%) 

of the PSO-SVM model proposed by J. Wang et al. [7] 

for optimizing energy consumption in MV systems. In 

addition, the STO-SVM model also showed significant 

advantages in resource consumption rate and average 

detection time, with a resource consumption rate of 

18.63% and an average detection time of 9.1 seconds. 

The resource consumption rate of the PSO-SVM was 

37.66%, and the mean detection time was 14.5s. This was 

because the PSO-SVM introduced uniform reverse 

strategy, fitness distance balance selection strategy, and 

mutation strategy, and its complex structure might lead to 

a decrease in computational efficiency in large-scale 

datasets. Relatively speaking, the STO-SVM model 

maintained high accuracy while achieving higher 

computational efficiency, demonstrating better 

practicality. In the tests of current affairs, economy, 

culture, and social public opinion, the CA of STO-SVM 

were 94.33%, 95.83%, 95.06%, and 98.98%, respectively. 

This was because introducing STOA in a single SVM to 

search for the optimal PF and KF could effectively 

improve the convergence speed and accuracy of SVM. 

In the performance testing of the ISTO-E prediction 

model, the improved ISTOA showed a rapid convergence 

trend on unimodal and multi-modal test functions, 

demonstrating excellent global and local search 

capabilities. Its performance was also better than 

algorithms in other literature. In the improved STOA 

proposed by J. He et al. [9], although the model 

performed well in local and global searches, the 

prediction error in practical applications was still slightly 

higher than the ISTO-E model in this study. This was 

because the study introduced the theory of POD trends in 

the ISTO-E model, which could ensure high predictive 

accuracy and actual response speed over time. In the 

testing of 15 public opinion events, the ISTO-E had the 

smallest prediction error value, the best prediction 

accuracy among the three models, and the prediction 

error value in Public Opinion Event 8 was only 0.01. 

These results show that the STO-SVM model can more 

efficiently utilize computing resources when processing 

large-scale data and can provide fast responses in 

real-time applications. This has important practical 

significance for application scenarios that require fast 

processing and real-time analysis, such as social media 

public opinion monitoring and real-time data analysis. In 

comparison with existing studies, the research method 

demonstrates significant advantages. For example, in the 
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SVM models based on PSO and genetic algorithm 

commonly used in the literature, there are usually certain 

limitations in CA and optimization efficiency. The 

STO-SVM model proposed in this study effectively 

solves these problems and significantly improves the 

performance of the model by introducing a variety of 

optimization strategies. In addition, compared with the 

traditional SVM model, STO-SVM shows stronger 

robustness and stability when processing complex data 

sets and large-scale data, which further verifies the 

effectiveness and practicability of this research method. 

In summary, this study proposes an efficient and 

accurate NOPO classification and prediction system by 

combining STOA with SVM, ISTOA with ElmanNN. 

Research results show that the improved model is 

superior to existing traditional methods in many aspects, 

especially in terms of classification accuracy, resource 

utilization, and time efficiency. This not only provides 

new ideas and technical means for future public opinion 

detection and prediction of college students, but also has 

a positive impact on promoting the healthy and civilized 

development of the internet. Although the STO-SVM and 

ISTO-E models proposed in the study perform well in 

many aspects, they still have some limitations. Although 

the introduced TentCM, AtDVF and RW strategies have 

significantly improved the optimization effect, these 

improvements may still have limitations in some specific 

scenarios. For example, model performance may be 

limited for certain highly complex and nonlinear data sets. 

Furthermore, while the STO-SVM demonstrates efficacy 

in terms of resource utilization and time efficiency, the 

practical deployment and application of the model may 

still encounter obstacles when computing resources are 

severely constrained. 

5 Conclusion 

To improve the monitoring effect of NPO among college 

students, this study combined the STOA and SVM, 

ISTOA and ElmanNN to build a classification STO-SVM 

and prediction model ISTO-E for NOPO. The results 

indicated that the model significantly improved the 

classification and prediction performance of NOPO. In 

the experiment, the STO-SVM model showed the best 

convergence speed and accuracy in different test datasets, 

and demonstrated the best performance in PR curve, CA, 

Recall, and F1 value. Simultaneously, it held the highest 

CA in the classification of four different categories of 

public opinion. In the ISTO-E prediction model 

experiment, ISTOA showed good convergence 

performance on unimodal and multi-modal test functions. 

In practical applications, the ISTO-E model required 

lower average training times, errors, RMSE, MSE, and 

MAPE than the comparison model. In the time series 

testing of public opinion events, the error between the 

predicted impact value and the true value was minimized, 

achieving the optimal prediction effect. Finally, through 

comprehensive experimental investigation, the superior 

performance of the STO-SVM and ISTO-E models in 

multiple indicators was substantiated, and the advantages 

of these models in terms of resource consumption and 

time efficiency were elucidated. It offers a valuable point 

of reference for subsequent research and demonstrates 

that the STO-SVM and ISTO-E models have significant 

potential for practical applications. According to the 

limitations observed in the study, subsequent research can 

further investigate and improve the STOA in quantum 

mechanics in the STO-SVM model, and conduct further 

experiments on the model in conjunction with large-scale 

computing equipment. In addition, future research can 

focus on introducing more complex and diverse features, 

such as semantic analysis, sentiment analysis, and 

network analysis, to improve the model's ability to detect 

and predict subtle trends in public opinion. Finally, 

research can enhance the interpretability of the model by 

developing visualization tools and user-friendly interfaces, 

particularly for non-expert users. This will facilitate 

broader adoption and comprehension of classification and 

prediction outcomes. 
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