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As one of the important causes of mine fires, predicting the distribution of gas content in mines is of 

great value. In order to predict the gas content in mines, a method combining Back Propagation (BP) 

network and Genetic Algorithm (GA) is proposed. This algorithm is used to optimize the structure and 

weight of BP neural network. It updates the network weights of BP by crossing and mutating, making it 

more adaptable and avoiding local extreme values. The results showed that the prediction error of 

BP-GA was about 0.5%, and the maximum error was 0.6%, which was lower than that of single BP and 

GA. In addition, the predicted value of the BP-GA was closer to the actual value, with a margin of error 

of 17.62 m³/t. In the mine gas prediction system, the BP-GA showed high accuracy. The prediction error 

range was 7.62 m³/t to 28.46 m³/t, the data transmission rate was between 80-89 Mbps, the response 

time was 180 ms-270 ms, and the fast data transmission was realized. Therefore, the system proposed in 

the study can stably predict the gas content in mines. 

Povzetek: V članku je opisana povezava povratne propagacije in genetskega algoritma za napoved 

vsebnosti plinov v rudnikih v smislu ocene nevarnosti požara. Nova metoda izboljšuje stabilnost in 

prilagodljivost ter povečuje varnost pri preprečevanju požarov. 

 

1 Introduction 
Due to China’s high demand for coal resources, a large 

number of mining operations will occur. However, 

mining is a high-risk job, with a closed mine 

environment and poor air quality, which can easily 

lead to accidents that threaten the safety of workers. 

Gas is harmful and explosive, posing significant health 

risks. Moreover, the high content of gas can easily 

cause explosions and fires in mines, leading to mine 

collapse. Therefore, predicting the gas content in 

mines has important value [1]. The traditional 

prediction of gas content in mines adopts two methods: 

constructing mathematical models and empirical 

prediction. The mathematical models generally use 

qualitative comparison methods and linear analysis 

methods to predict gas content by evaluating 

geological conditions, with low prediction accuracy. 

The empirical prediction method has strong 

subjectivity [2]. Therefore, this study proposes a new 

method for predicting the gas content in mines. The 

study proposes a combination of Back Propagation 

(BP) network and Genetic Algorithm (GA) to predict 

gas content by analyzing factors that affect gas content 

in mines. Both BP neural networks and GA have 

strong data analysis capabilities and strong 

inclusiveness for multi-source data processing. 

However, a single BP is prone to falling into local 

extrema, and the GA convergence is unstable.  

 

Therefore, the GA is used to optimize the structure of the 

BP neural networks to improve its predictive performance 

[3]. Then apply the optimized algorithm to the system to 

achieve the actual prediction function of the algorithm. In 

order to meet the above research content, the article is 

divided into five parts. The first part is the introduction of 

the research direction and content of the article. The 

second part is a literature review, summarizing the current 

research status of BP neural networks, GAs, and gas 

prediction in mines used in the study. The third part is the 

research method, which includes two sections. The first 

section is the basic principles of GA and BP neural 

network. The second section is their optimization process 

and system design research. The fourth part is the result 

analysis. The result analysis is divided into three sections. 

First, the data are preprocessed, then BP-GA performance 

is analyzed, and finally, the application effect of the 

prediction system under the algorithm is analyzed. Finally, 

there is a summary of the article, summarizing the 

research results and development. 

2 Related works 
BP is a back propagation neural network that utilizes 

error feedback. The network structure is divided into 

multiple layers and has high data processing capabilities, 

making it widely used in different fields. In ocean 

warning, Wang et al. used a MEA-BP hybrid strategy to 

predict wave heights. This method combined the local 
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search ability of BP and the global search ability of 

MEA, reducing the probability of improper 

convergence of the algorithm. Results showed that the 

hybrid strategy had high accuracy in predicting wave 

height [4]. Due to the impact of ultra-short-term solar 

radiation on the accuracy of photovoltaic power 

generation prediction, Hu et al. constructed a cloud 

movement prediction method using BP and GA. After 

training with a large amount of data, the method could 

achieve a prediction accuracy of 96% and could be 

suitable for cloudy climate environments [5]. Wan et al. 

proposed using a BP neural network to predict the 

oxygen concentration and temperature of coal powder 

in order to explore methods for suppressing coal 

powder spontaneous combustion and constructed a 

prediction model for coal powder low-temperature 

oxidation. The experimental results indicated that this 

method could achieve a good degree of fitting and 

complete the prediction [6]. 
The GA is an algorithm that simulates the 

evolution process of biological genes and 

chromosomes. It can achieve random search of data 

and search for the optimal solution based on similar 

natural elimination rules. This algorithm has high 

adaptability and therefore has a wide range of 

application value. Sun et al. improved the BP neural 

network using GA and constructed a prediction model 

for road surface skid resistance. The model first input 

asphalt pavement data in 3D format, then used a 

pendulum friction tester to obtain the friction 

coefficient of the pavement, and finally processed the 

data. Results showed that the prediction error of this 

algorithm was 12.1%, and it had high accuracy in this 

field [7]. Yang et al. designed a variable spacing array 

method using GA, which could compress the channel 

and cost of phased arrays and had strong global 

computing power. Results showed that this method 

could reduce the grating split level below -15.9 dB in a 

phased array with 52 sub arrays [8]. Cao et al. conducted 

an analysis of the fluid flow in a 600 kW asynchronous 

traction motor based on fluid mechanics to investigate the 

heat dissipation problem. Based on the analysis results, a 

mathematical model based on the GA was constructed. 

Results indicated that it could predict motor temperature 

and obtain the optimal optimization method [9]. 
Due to the diversity of gas forms, high variability in 

physical and chemical properties, and the risk of 

flammability and explosion in some gases, predicting 

gases in different scenarios has certain practical 

significance. Moreover, gases have different properties, 

so they can also be used for technological development. 

To predict the production of shale gas, Wang and Jiang 

combined linear and nonlinear prediction models to 

predict the content of shale gas. This model used two 

improved algorithms, NMGM-ARIMA and 

ARIMA-ANN, to predict the shale gas content in 

Pennsylvania and Texas. Results showed that 

NMGM-ARIMA algorithm error was within 4.31%, 

while the error of NMGM-ARIMA was within 3.16% 

[10]. Wang et al. constructed an insulation diagnosis 

method using residual CNN based on the insulation 

properties of gases. Firstly, this method characterized 

target data domain features. Secondly, a domain 

adversarial training strategy was used to transfer features 

and achieve adaptation between features and labels. 

Finally, the gradient convergence of the algorithm was 

accelerated. Results showed that the diagnostic accuracy 

of insulation defects using this method was 99.15% [11]. 

Chen et al. built an experimental platform and improved 

core experiments to predict the recovery rate of ultra-deep 

carbonate gas. The improved experiment included three 

representative pore network models and visualized the 

gas flow state in the pores. Results showed that the 

predicted recovery rate of this method was 72.24% [12]. 

Table 1 summarizes the research work.

 

Table 1: Summarizes the research work. 

Year Authors Research Method Advantages Disadvantages 

2018 
Wang et 

al. [4] 

BP neural network optimized by 

mind evolutionary algorithm 

High accuracy in predicting 

ocean wave heights 

Limited to ocean wave 

height prediction 

2022 
Hu et al. 

[5] 

BP neural network and GA for 

cloud motion prediction 

96% prediction accuracy in 

cloudy weather conditions 

May not be applicable 

to non-cloudy 

conditions 

2020 
Wan et 

al. [6] 

BP neural network for coal 

powder oxidation prediction 

High fitting degree for 

predicting coal powder 

oxidation 

Limited to coal powder 

oxidation scenarios 

2021 
Sun et al. 

[7] 

GA improved neural network for 

asphalt pavement friction 

coefficient prediction 

12.1% prediction error, high 

accuracy 

Specific to asphalt 

pavement friction 

coefficient 

2022 
Yang et 

al. [8] 

GA for sub-array grating lobe 

suppression 

Strong global computing ability, 

reduced grating lobe level 

Limited to sub-array 

grating lobe suppression 

2023 
Cao et al. 

[9] 

GA for optimization of stator 

ventilation structure of traction 

motor 

Effective temperature prediction 

and optimization methods 

Specific to high-speed 

rail traction motors 

2019 

Wang 

and Jiang 

[10] 

Linear and nonlinear prediction 

techniques with NMGM-ARIMA 

and ARIMA-ANN 

Low prediction error (4.31% 

and 3.16%) 

Focused on specific 

regions (Pennsylvania 

and Texas) 
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2021 
Wang et 

al. [11] 

Residual CNN for insulation 

diagnosis 

99.15% accuracy in insulation 

defect diagnosis 

Limited to insulation 

diagnosis 

2021 
Chen et 

al. [12] 

Experimental platform and core 

experiments for gas recovery rate 

prediction 

72.24% gas recovery prediction 

accuracy 

Focused on ultra-deep 

carbonate gas reservoirs 

 

In summary, BP neural networks and GA, as 

advanced intelligent algorithms, have been widely 

applied with different functions. At the same time, 

there is already some research combining the two and 

conducting experiments. The prediction of gas mainly 

focuses on the prediction of gas mining output with 

economic value, but the research on the prediction of 

gas content that threatens safety is rare. Therefore, this 

study proposes to use a combined BP neural network 

and GA to predict the gas content in mines, aiming to 

reduce the risk of mine fires caused by gas explosions. 

 

3 Improved BP-GA application in 

mine gas prediction 
Due to the high risk of fire accidents when the gas 

content reaches a certain concentration, gas has always 

been an important cause of mine fires. In order to 

effectively reduce the risk of mine fire accidents 

caused by gas, this study proposes to construct a gas 

prediction model using BP and GA and apply it to the 

system to achieve intelligent gas content prediction. 

This section includes two sections. The first section 

introduces the construction of the BP-GA prediction 

model. The second section is the research on system 

design under the predictive model. 

3.1 Theoretical research on BP and GA 

BP is a unidirectional artificial neural network model 

and one of the earliest neural networks applied to 

practical problems. Due to the fact that the BP neural  

 

 

network is a supervised learning algorithm, it is mainly 

used to solve problems such as classification and 

recognition prediction. The structure of this network 

consists of three layers, namely input, hidden, and output 

layers [13]. Among them, the input layer is activated 

using the sigmoid function, the hidden layer operates on 

the network weights as the main connection between 

nodes, and the hidden and output layers transmit data by 

introducing a linear function. Assuming that the input 

node is  1 2, ,..., nX x x x= , the hidden layer is m  

neurons, and the hidden layer node is 
iy , the output 

nodes of the hidden layer can be obtained as shown in 

Equation (1). 

i ij j i

j

y f W X 
 

= − 
 
     (1) 

In Equation (1), ( )f   is the sigmoid activation 

function. 
ijW  is the input weight. 

i  is the input node 

threshold. At the same time, there are different weights 

between nodes that are connected to the input and output 

layers, and the output value of the output layer is 
lO . The 

expression of 
lO  is shown in Equation (2). 

l ij j l

i

O F T y 
 

= − 
 
     (2) 

In Equation (2), ( )F   is a linear function. 
ijT  is 

the output weight. 
l  is the output node threshold. There 

is a close connection between BP neural networks for 

calculating input data, as shown in Figure 1. 
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Figure 1: The BP operational flowchart. 

 

Figure 1 shows the BP operational flowchart. 

Firstly, the BP initial learning frequency is set to 

0k = . Then natural numbers with smaller values are 

randomly selected to initialize the input weights and 

thresholds. The initialized parameter range is shown in 

Equation (3). 
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
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

 −
  −

     (3) 
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In Equation (3), ( )ijW k , ( )ijT k , ( )i k , and 

( )l k  are the initial input weight, output weight, 

input threshold, and output threshold, respectively. 

Given an input value of X  and a target calculation 

value of P , then the results of the hidden layer and 

output layer in the network structure are calculated. 

The results of the hidden layer are shown in Equation 

(1), and the results of the output layer are shown in 

Equation (2). The error between the output result and 

the target value is calculated, and whether the error 

meets the preset value is determined. The formula for 

calculating the error value of the sample is shown in 

Equation (4). 

( ) ( )

1 1

n n
k k

k l

k l

e P O
= =

= −     (4) 

In Equation (4), ( )k
P  is the target output value 

and ( )k

lO  is the actual output value. 
ke  is the sample 

error value. If 
ke  satisfies the error within the 

operating range, the deviation is determined. If either 

deviation or error fails, it is necessary to calculate the 

parameter error during the calculation process, adjust 

the input value based on the results, and perform the 

calculation again until the calculation error requirements 

are met. The calculation formula for parameter error is 

shown in Equation (5). 

( ) ( )

( ) ( )

( ) ( )

1

1

1

l l l l

il il l i

l l l

P o o o

T k T k y

k k





  

= −   −


+ = +
 + = +

   (5) 

In Equation (5), 
l , ( )1liT k + , and ( )1l k +  are 

error modification values, weight errors, and threshold 

errors, respectively.   is the error parameter. 
lo  is the 

output node. BP neural network can modify samples by 

adjusting weights and thresholds. Although this method 

has high computational accuracy, its convergence speed 

is slow and it is easy to fall into local minima [14]. 

Therefore, in order to improve the performance of the 

algorithm and apply it to mine gas prediction, this study 

proposes the fusion of BP and GA to expand the 

algorithm’s data parallel processing ability and fault 

tolerance ability. Because GA can compensate for BP 

local defects. 
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Figure 2: Operational flowchart of GA. 

 

Figure 2 shows the GA operational flowchart. 

Firstly, convert the actual problem into different 

encoding forms, form the encoding into bit string form, 

and form the initial population. The operation of GA is 

essentially to construct a fitness function and calculate 

the fitness values of individual populations. Due to the 

algorithm selecting values with higher fitness values as 

genetic parents, the function values tend to be more 

inclined towards larger values. When the fitness value 

meets the requirements, the output population is the 

result. When the requirements are not met, it enters the 

core parts of GA, namely selection, crossover, and 

mutation [15]. Selection refers to using the 

proportional method to select the data with the highest 

fitness value as the parent, so the probability of an 

individual becoming a parent is directly proportional to 

the fitness value. The calculation of selection 

probability is shown in Equation (6). 

1

/
M

si i i

j

P f
=

=        (6) 

In Equation (6), 
siP  is the probability that an 

individual is selected as the parent. 
i  is the fitness 

value of the individual population. M  is the population 

size. Crossing refers to the generation of new individuals 

that meet the characteristics of their parents by selecting 

individuals from two populations to cross. After 

completing the algorithm search through selection and 

crossover, mutation is used for global search. Until the 

individual search for the optimal fitness value is 

completed and a suitable population is output. A single 

GA has an immature convergence state, although it can 

perform global search. Therefore, the fusion of BP and 

GA can compensate for the shortcomings of the two 
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single algorithms, making the algorithm’s adaptability 

more excellent. 

3.2 Design and research of mine gas 

prediction system based on improved 

BP-GA 

The study of 3.1 reveals that both single BP neural 

networks and GAs have inherent limitations. However, 

their respective advantages and disadvantages can be seen 

to complement each other. Therefore, integrating the two 

algorithms can improve the algorithm’s global search 

ability and accurately select the optimal individual 

through error screening conditions. 
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Figure 3: Improved operational flowchart for BP and GA. 

 

Figure 3 shows the operational flowchart of the 

improved BP and GA. Firstly, an initial population 

 1 2, ,..., nX x x x=  is randomly generated based on 

existing individuals, where the ownership value of any 

ix  in X  will form an individual. Then the individual 

is train and their fitness values are calculated. The 

fitness value expression at this point is shown in 

Equation (7). 

( )
1 1

1

1

2

i m n

pk pk

p k

V T



= =

=

−
    (7) 

In Equation (7), 
i  is the fitness value of the 

individual i . m  counts learning samples. 
pkV  is 

the output value of the k -th node of the 
pkT -th 

individual. G is the expected output value. Then select 

the individual, and the selection probability can be 

calculated using Equation (6). Then perform individual 

crossover and mutation calculations for the improved 

algorithm, and the individual crossover rate 
cp  at this 

time is shown in Equation (8). 

( )( )'

1 2 max

1

max

1,

c c

c

c avg

c avg

p p f f
p

p f f

p f f

 − −
 −

= −




 (8) 

In Equation (8), 
avgf  and 

maxf  are the average and 

maximum fitness values of the population, respectively. 

1cp  and 
2cp  are the individual’s maximum and 

minimum crossover rates, respectively. 'f  is the 

maximum fitness value among crossover individuals. The 

formula for calculating the individual’s mutation rate 
mp  

is shown in Equation (9). 

( )( )1 2 max

1

max

1,

m m

m

avgm

m avg

p p f f
p

f fp

p f f

− −
−

−= 
 

 (9) 

In Equation (9), 
1mp  and 

2mp  are the maximum 

and minimum individual variation rates, respectively. 

Then calculate the updated individual error and fitness 

values again. Moreover, globally search for the individual 

with the optimal fitness value. If the calculation range of 

the individual is within the expected range, output the 

result. Otherwise, recalculate the fitness value. Finally, 

the optimal individual output is decoded to obtain the 

optimal weight value, and then the input data is processed 

using the BP algorithm with it until the operation is 

completed [16]. 

The above content constructs a prediction model that 

improves the BP-GA. Applying this model to the actual 

prediction of mine gas is beneficial for reducing the 
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pressure of mine fire prevention and extinguishing. 

The process of monitoring the concentration of gas in 

coal mines is referred to as gas prediction. This 

monitoring allows for the accumulation of gas to be 

predicted, thus enabling the implementation of 

appropriate protective measures. According to the 

system design principles and network implementation, 

this study adopts the B/S system as the basic architecture. 

The system under this architecture is divided into a client 

front-end and a server back-end. The hardware 

architecture of the gas content prediction system is shown 

in Figure 4. 
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Figure 4: Hardware architecture of gas content prediction system. 

 

USER

Data management

System initialize

Data entry

Sample training

Data prediction

Coal mine water inrush prediction system

 

Figure 5: Structure diagram of gas prediction module. 

 

Figure 4 shows the hardware architecture of the 

gas content prediction system. The client, as the 

starting end, sends task requirements, which are then 

executed through the web layer, business layer, data 

layer, and database to meet customer needs, and 

ultimately feedback the results to the client. Among 

them, the business layer is the core of executing task 

requirements, and the improved BP-GA is applied to 

the data prediction module in the business layer. The 

database contains all geological information in the 

mine and is monitored and managed by the system 

[17-19]. When the system performs prediction tasks, it 

needs to first input the actual conditions of the mine, 

including geological conditions, mining conditions, 

and structural conditions. Then select the trained 

improved BP-GA prediction model to process the data 

and use the model’s mapping ability to predict the gas 

content in the mine. The specific prediction model 

structure is shown in Figure 5. 

Figure 5 shows the structure diagram of the gas 

prediction module. Firstly, administrators can add user 

information and assign different permissions to users 

through the user management function. Then, a data 

table is established through the MySQL database for 

data management. Users can make changes to the data 

table to provide data for training the prediction model. 

Before entering the training module, it is necessary to 

initialize the data. After initialization, the default 

prediction model of the system is the optimization model, 

and the parameters cannot be changed [20]. The 

expression of the system initialization module is shown in 

Equation (10). 

 

( )

1, 1, 2, 2

, 1, ' tan si ', , ' '

w b w b

initff P S g t purelin=

  (10) 

In Equation (10), 1w  and 1b  represent the input 

layer connection weight and connection threshold, while 

2w  and 2b  represent the hidden layer connection 

weight and threshold, respectively. 1S  counts hidden 

layer neurons. P  is the input data. tan sig  and 

purelin  are tangent S-type functions and linear 

functions, respectively. After initialization, the model can 

be trained by inputting different parameter values. The 

data entry function enables modifications to the sample 

data necessary for training, input of data into the module 

controls, and subsequent programming of the data to be 

entered. This allows for training of the model based on 

the already entered data. Finally, in the prediction module, 

the trained model predicts the target sample data. Based 

on results, gas content in the mine is predicted to make 
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timely firefighting decisions. 

4 Mine gas prediction algorithm and 

system application performance 

analysis based on improved 

BP-GA 
In order to achieve intelligent prediction of mine gas 

content, a prediction model was designed by 

combining BP and GA, and the model was applied to a 

computer system. To verify the predictive performance 

and system application effectiveness of BP-GA, 

corresponding experiments were designed and 

analyzed in this section. SQL Server 2005 database, 

AMD Turion(tm) 64X2 mobile edition, 2GB central 

processor and Windows 2011 operating system are 

selected for the experiment. The BP neural network is 

configured as follows: the input layer is activated using 

the Sigmoid function and contains multiple input 

nodes. The output layer transmits data by introducing 

linear functions. The initial learning frequency is set to 

0.03. Small natural numbers are randomly selected to 

initialize input weights and thresholds. The expected 

error is set at 0.001. The experiment modify the 

sample by adjusting the weights and thresholds. The 

training data set selects the actual data of a mine in 

China, with a sample size of 110, including 91 training 

data and 19 test data. The GA parameters are as 

follows: the population size is 150 and the maximum 

number of iterations is 250. The fitness function uses a 

formula to calculate the fitness value, and the data with 

the highest fitness value is used as the parent. 

4.1 Data preprocessing 

Data acquisition in mine environment may be affected 

by many factors, such as equipment error, 

environmental change, etc. These noises will affect the 

accuracy of prediction model. As the concentration of 

gas in mines is affected by a variety of complex factors, 

there may be systematic deviations in the collected 

data, such as geological conditions and mining 

methods. These are not adequately reflected in the data. 

Therefore, the normalization of data can reduce the 

difference between different data dimensions and 

improve the training effect of the model. The 

utilization of filtering technology serves to eliminate 

extraneous noise from data, thereby enhancing the overall 

quality of the data and, consequently, the precision of the 

model prediction. Due to the complex types of factors 

that affect gas content in the mine environment, there 

were significant dimensional differences. Therefore, data 

were normalized. The improved BP-GA in this study used 

the sigmoid function as the activation function. In order 

to normalize the input data, the input range can be set 

between (0,1), and all logical data can be expressed in the 

form of 0 or 1. Numerical data, on the other hand, 

adopted linear transformation to unify dimensions.  

4.2 Performance analysis of improved 

BP-GA 

The study fused BP and GA, trained the fused algorithm, 

and conducted performance comparison tests based on the 

results. The training dataset selected actual data from a 

certain mine in China, with a sample size of 110, 91 

trained data, and 19 tested data. Simulation experiments 

were set up to analyze the performance of the algorithm, 

with a learning rate of 0.03 and an expected error of 0.001. 

The number of sample training sessions was divided into 

4000 and 8000. Performance analysis was performed 

using a single BP neural network and GA as a 

comparison algorithm. The simulation experimental 

environment is shown in Table 2. 

 

Table 2: Simulation experiment environment. 

Experimental Platforms Visio studio 2005 

Experiment Language C# 

Database SQL Server 2005 

Hardware environment 
AMD Turion(tm) 64 X2 

Mobile 

CPU 2GB 

Operating System Windows 2011 

 

Table 2 shows the simulation experiment 

environment table. In the operation system of BP neural 

network, the selection of operators adopted proportion, 

with a population size of 150 and a maximum number of 

iterations of 250. The performance of the three algorithms 

was analyzed according to the above computing system 

and experimental environment to testify the performance 

of BP-GA. 
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Figure 6: Performance of different algorithms with different training sessions. 
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Figure 7: Prediction accuracy with different algorithms. 

 

Figure 6 shows different algorithms performance 

under different training times. Among them, Figures 6 

(a) and (b) show the algorithm performance under 

4000 and 8000 training cycles, respectively. It can be 

concluded that compared to training 4000 times, the 

algorithm performance at 8000 times was closer to the 

convergence value. This indicated that as training 

sessions increased, the algorithm performance became 

more stable. As the number of iterations increased, the 

BP-GA can gradually converge to a stable state, 

indicating that there was no interference from local 

extremum in BP-GA, which can make it more stable and 

reach the expected value. 

Figures 7 (a), (b), and (c) show the prediction 

accuracy of BP, GA, and BP-GA, respectively. The error 

between the BP and GA and the expected prediction 

value was relatively large, as both algorithms had local 

search extremum, which affected the algorithm prediction 

accuracy. BP-GA can effectively avoid local extremum, 

thus making the prediction accuracy closer to the true 

value. Therefore, the BP-GA was more in line with the 

expected values. 
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Figure 8: Test errors for different algorithms. 
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Figure 9: Three-dimensional map of mine gas content prediction. 

 

Figure 8 shows the testing errors of different 

algorithms. The prediction error of the BP neural 

network was above 2.0%, with a maximum of 2.3%. 

That of the GA was also at a maximum of 2.3%, while 

that of BP-GA was around 0.5%, with a maximum of 

only 0.6%. BP-GA can use the global search of GA to 

avoid local minimum values in BP algorithm, and can 

also achieve complete and stable convergence. 

Therefore, this algorithm had stronger adaptability and 

can make the prediction results within a certain low 

error range. 

4.3 Performance analysis of mine 

prediction system based on BP-GA 

The training of the model was completed according to 

4.2 and apply the trained prediction model to the mine 

gas content prediction system. An area with a radial 

length of 600 m and a lateral length of 150 m were 

selected as the prediction area in the mine, and 30 

points were selected as experimental prediction points 

in the prediction area. The real-time data of the 

detected prediction points were input into the system 

and gas content prediction was performed on them. 

Figure 9 shows a three-dimensional prediction of 

mine gas content. The gas content in the blue purple area 

in the figure was the lowest. Moreover, as it extended 

towards the surrounding environment, the gas content 

gradually increased. In the yellow green area, the gas 

content was in a transitional state from low to high, 

ultimately forming a range circle with high gas 

concentration. In the range of radial length from 410 m to 

450 m and lateral length from 40 m to 60 m, the gas 

content was the highest, with an overall gas content range 

of approximately 21.02 m3·t-1-28.46 m3·t-1. The overall 

gas content of the mine detection points is shown in Table 

3. 

Table 3 shows the gas content values at the detection 

points of the mine. The predicted gas content at 30 

detection points showed significant differences. Within 

the range of detected mines, the content of gas varied 

from 7.627.62 m3·t-1 to 28.467.62 m3·t-1. The predicted 

gas content values at different detection points were close 

to the true values, with an error range of around 17.62 

m3·t-1. The implementation of multiple detection points in 

the system was beneficial for technical personnel to 

promptly identify risk points or triggering points during 

protection or accident analysis. Therefore, using the 

BP-GA prediction system to predict the gas content in 

mines had high accuracy and practical application value. 

 

Table 3: Gas content data of mine testing points. 

Serial number Predicted value (m3·t-1) Real value Serial number Predicted value (m3·t-1) Real value 

1 23.56 23.62 16 26.62 26.45 

2 24.66 24.48 17 18.68 18.23 

3 21.65 21.3 18 21.49 21.02 

4 16.79 16.51 19 26.68 26.13 

5 15.34 15.12 20 25.68 25.01 

6 22.42 22.01 21 28.46 28.38 

7 13.14 13.62 22 25.14 24.68 

8 9.87 9.72 23 23.16 22.69 

9 7.62 7.51 24 19.57 19.19 

10 21.95 21.43 25 15.31 15.95 

11 20.79 20.42 26 14.27 14.16 

12 19.58 19.13 27 13.64 13.97 

13 17.46 17.14 28 20.16 20.35 
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14 18.59 18.26 29 21.84 21.02 

15 14.06 14.95 30 22.39 21.68 
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Figure 10: Performance diagram of BP-GA gas prediction system. 

 

Table 4: Performance comparison results of each prediction algorithm on three data sets. 

Method 
SQL Server 2005 

database 
Kaggle data set 

UCI machine Learning 

Library 

Research method 
Accuracy 0.92 0.91 0.89 

AUC value 0.95 0.91 0.90 

Literature [4] 
Accuracy 0.87 0.88 0.85 

AUC value 0.89 0.86 0.83 

Literature [5] 
Accuracy 0.89 0.86 0.82 

AUC value 0.90 0.84 0.82 

Literature [7] 
Accuracy 0.90 0.89 0.88 

AUC value 0.91 0.86 0.81 

 

 

Figure 10 shows the performance diagram of the 

BP-GA gas prediction system. Among them, Figures 

10 (a) and (b) show the data transmission rate and 

response time performance of the system, respectively. 

In six parallel experiments, the data transmission 

efficiency of the system remained stable between 

80-89 Mbps, and the response time ranged from 180 

ms to 270 ms. This indicated that the prediction system 

can achieve fast data transmission efficiency in a 

relatively short time. Therefore, the research and 

design of the BP-GA system had certain practical 

application value. The prediction accuracy, and AUC 

value of the proposed BP-GA prediction method were 

compared with those in the literatures [4], [5], [7] on 

different data sets. The results are shown in Table 4. 

Table 4 shows that the accuracy of the research 

method in SQL Server 2005 database is 0.92, and the 

AUC value was 0.95. The accuracy and AUC values of 

the Kaggle dataset were both 0.91. The UCI machine 

learning library had an accuracy of 0.89 and an AUC 

value of 0.90. In contrast, the algorithms in literature 

[4], [5] and [7] performed poorly. The research method 

performed better than the literature method on all data 

sets. Especially on the AUC value, it showed its 

advantages in recognition accuracy and stability, 

indicating that it has strong generalization ability and 

robustness. Moreover, it is suitable for different data 

sets and application scenarios. 

5 Discussion 
Wang et al. [4] combined the local search capability of 

BP and the global search capability of MEA. It used the 

MEA-BP hybrid strategy to predict the wave height, 

reducing the probability of improper convergence of the 

algorithm. Using BP and GAs, Hu et al. [5] proposed a 

cloud motion prediction method with a prediction 

accuracy of 96%, which was suitable for cloudy climates. 

Wan et al. [6] used BP neural network to predict oxygen 

concentration and temperature of pulverized coal. The 

study built a prediction model for low-temperature 

oxidation of pulverized coal, and the results showed a 

good fit. Sun et al. [7] improved BP neural network by 

GA to build a prediction model of pavement skid 

resistance with a prediction error of 12.1%. After 8000 

training, the prediction error of the research algorithm 

was stable at about 0.5%, showing high accuracy and 

effectively avoiding the limitations of a single algorithm. 

The error of the improved BP-GA in predicting mine gas 

content was significantly reduced (the maximum error 

was only 0.6%), while the error of the traditional BP or 

GA was larger (the maximum error was 2.3%). In general, 

the performance of the hybrid algorithm combining BP 

and GA was better than that of the single algorithm in 

various fields, especially in the prediction accuracy and 

convergence stability. 
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6 Conclusion 
As one of the important energy sources, coal has been 

extensively exploited in many countries. However, 

high concentrations of gas are easily accumulated in 

mines generated by coal mining. Gas is flammable and 

explosive gas, which threats workers safety in enclosed 

my spaces. Therefore, predicting the gas content in 

mines has high research significance. This study was 

proposed to optimize BP using GA, input it into GA, 

calculated the network weight of BP structure through 

the cross-mutation operation of GA, and updated it. 

The updated BP structure performed operational 

analysis on the normalized preprocessed data, in order 

to input the operational results and complete data 

prediction. The experimental results showed that the 

BP optimized by GA achieved stable performance 

after training 8000 times, and the prediction error was 

only about 0.5%. By predicting the experimental mine, 

it could be concluded that the gas content range of the 

mine was between 7.62 m3·t-1 and 28.46 m3·t-1. The 

data transmission efficiency of the system using this 

algorithm was between 80-89 Mbps, and the response 

time was within the range of 180 ms-270 ms. 

Therefore, the algorithm proposed in the study not 

only has stable performance, but also can achieve 

efficient system application effects. Further research 

can be conducted on the universality of prediction 

systems by expanding the types of mines in the future. 
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