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The surface quality of aluminum profiles directly affects the performance and safety of the final 

product. Efficient and accurate surface defect detection has become particularly important for 

ensuring product quality. In order to solve the low efficiency and low accuracy of traditional detection 

methods, on the basis of the original You Only Look Once version 5 algorithm, this study conducts 

surface defect detection on aluminum profiles and optimizes it from three perspectives: anchor box 

mechanism, data augmentation, and coordinated attention. To solve the poor defect detection effect of 

small target, the loss function is adjusted and the final optimization algorithm is obtained. The results 

showed that the mean average precision, recall, precision and F1 values of different types of ablation 

experiments were 0.99, 0.90, 0.94 and 0.91, respectively. The detection accuracy of the traditional 

CenterNet method was 94.5%, which was relatively high, but the number of parameters was large and 

the calculation speed was too slow, corresponding to 14.2M and 93.2%. Simulation analysis showed 

that the highest detection accuracy, false detection rate, and missed detection rate of the research 

method for 10 types were 99.2%, 1.3%, and 1.4%, respectively. The successful application of this 

method can provide reference for the surface defect detection in other materials, which has broad 

promotion value. 

Povzetek: Opisan je izboljšan algoritem globokega učenja za zaznavanje površinskih napak na 

aluminijastih profilih. Na podlagi algoritma You Only Look Once version 5 (Yolov5) je bil optimiziran 

sistem za zaznavanje napak z uporabo mehanizma sidrnih okvirov, bogatenja podatkov in koordinirane 

pozornosti.

1 Introduction 

In industrial production, aluminum profiles play a crucial 

role in many fields such as construction, transportation, 

aerospace, etc. due to their lightweight, corrosion 

resistance, and high strength characteristics. The surface 

quality of aluminum profiles directly affects its 

performance and application effectiveness. It is crucial to 

ensure that the aluminum profile surface is flawless 

during the production process. However, traditional 

manual detection methods have many shortcomings in 

terms of efficiency, accuracy, and consistency [1]. With 

the development of industrial automation and intelligent 

manufacturing technology, automated Surface Defect 

Detection (SDD) has become the key to improving the 

quality and efficiency of aluminum profile production [2]. 

Deep Learning (DL) has shown excellent performance in 

image processing and computer vision, providing new 

solutions for aluminum profiles SDD. DL methods can 

learn defect features from a large amount of image data, 

automatically identify and classify defects. This improves 

detection accuracy and efficiency, which also provides 

the possibility for further automated production [3]. The 

research aims to explore and develop a SDD method for 

aluminum profiles based on DL. DL methods are used for 

training and testing to achieve an efficient, accurate, and 

reliable defect detection system. It can automatically 

identify and classify various types of surface defects in 

actual production environments. The research contains 

four parts. The first part is a literature review, 

summarizing the current research achievements in defect 

detection based on DL. The second part is the research 

methodology. An SDD method based on improved 

Yolov5 is constructed. The third part is the result analysis, 

mainly conducting simulation analysis on the research 

method. The fourth part is the conclusion, summarizing 

the research results and shortcomings. The innovation of 

the research mainly lies in the following two aspects. The 

first is to optimize the You Only Look Once Version 5 

(Yolov5) through anchor box mechanism, data 

augmentation, and coordinated attention to improve the 

SDD accuracy for aluminum profiles. The second is to 

design an Enhanced Feature Pyramid Network (EFPN) to 

better preserve the semantic information of small targets. 

2 Related works 

DL has been widely applied in SDD for different objects. 

In recent years, there have been many innovations and 
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advancements. Chen et al. developed a low contrast SDD 

method based on DL to solve the low efficiency in 

ceramic curved parts. The fuzzy repair network was used 

to reduce the blurriness on surfaces. The multi-scale 

detail contrast enhancement was applied to highlight the 

feature information of defect areas. The research results 

indicated that the accuracy in identifying cracks and 

bulges in ceramic curved parts was 94.23% and 96.86% 

[4]. Lv and Song proposed a learning method that 

integrated a small number of lenses with AM to address 

the unsatisfactory performance of traditional DL methods 

in detecting surface defects on bars. Convolutional neural 

networks (CNNs) and relational networks were used to 

extract image features, calculate image similarity, and 

predict image categories, distinguishing pseudo defects 

from real defects according to the background 

information. The average detection accuracy was 97.36%, 

which was 7.81% higher than the traditional method [5]. 

Wei et al. developed a DL defect detection method based 

on fast region CNN to address the unsatisfactory 

performance of traditional computer vision methods in 

steel SDD. The interested region pool was weighted to 

eliminate region misalignment caused by quantization. 

Then it was combined with deformable convolution to 

adapt to different shapes. Simulation experiments showed 

that the accuracy of this method in detecting surface 

defects on steel was 97.3%, effectively improving the 

detection accuracy [6]. To improve the automatic 

detection accuracy, Block et al. designed a metal part 

surface imprinting defect detection and classification 

system based on Retina Net. The average detection 

accuracy was 76.3%. The detection accuracy and recall 

for severe defects were 90.3% and 92.4%, respectively, 

which were better than current detection methods [7].  

Many scholars have also used DL methods such as CNN 

to detect surface defects in materials such as ceramic tiles. 

Significant research results have been achieved. Wan et al. 

proposed a detection method based on improved 

YOLOv5s to address the difficulty of detecting surface 

defects on ceramic tiles. The Attention Mechanism (AM) 

module and small-scale detection layer were added to 

build a lightweight ceramic tile defect detection system. 

This method could compensate for the small texture 

features and insufficient information of ceramic tile 

defects, improving the ceramic tile SDD accuracy [8]. 

Akram et al. constructed an image detection method 

based on optical CNN to achieve automatic detection of 

photovoltaic module defects in electroluminescent images. 

The experimental results showed that this method had 

lower working environment requirements and faster 

image detection speed, which facilitated automatic 

detection of different defects [9]. Rahman et al. proposed 

an evaluation method based on semantic segmentation 

DL to address the low efficiency in surface corrosion 

detection of facilities. The red, green, and blue features 

were used to optimize the classifier. The research results 

indicated that this method could detect and evaluate 

infrastructure corrosion, improving the surface corrosion 

detection efficiency [10]. Hu et al. developed an 

unsupervised automatic defect detection method for 

fabrics based on deep convolutional generative 

adversarial networks to address surface defects in 

textured materials. The encoder component was used to 

reconstruct the query image. The residual image was 

created to highlight the defect area. The research results 

indicated that this method could effectively and 

automatically detect defects in fabrics. The overall effect 

was better than other conventional methods [11]. Based 

on the summary of the above literature, the specific 

contents are shown in Table 1. 

 

 
Table 1: Summary of literature results 

Author Years Research Contents Key indicator 

Lv and 

Song.[5] 
2019 

In this paper, a learning method that integrated a small 

number of lenses with attention mechanism is 

proposed. 

The average detection accuracy 

was 97.36%. 

Hu et al. [11] 2019 

An unsupervised fabric defect detection method based 

on deep convolution generation adversarial network is 

proposed. Encoders are used to query images and the 

defect areas are highlighted by creating residual 

graphs. 

/ 

Wei et al. [6] 2020 
A deep learning defect detection method based on fast 

regional convolutional neural network is designed. 

The detection accuracy was 

97.3%. 

Akram et al. 

[9] 
2020 

This paper proposes a method based on isolation deep 

learning and transfer deep learning. 

The average accuracy reached 

98.67%. 

Block et al. 

[7] 
2021 

A defect detection and classification system based on 

Retina Net is designed. 

The average detection accuracy 

was 76.3%, and the detection 

accuracy and recall value of 

severe defects were 90.3% and 

92.4%, respectively. 

Rahman et al. 

[10] 
2021 

A detection and evaluation method based on semantic 

segmentation deep learning is proposed, which uses 

The surface corrosion detection 

efficiency was improved. 
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red, green and blue features to optimize the classifier. 

Wan et al. [8] 2022 

This paper proposes a detection method based on 

improved YOLOv5s, adding a focus mechanism 

module and a small-scale detection layer to build a 

lightweight tile defect detection system. 

/ 

Chen et al. [4] 2023 

A low contrast defect detection method based on deep 

learning is proposed. The fuzzy repair network is used 

to reduce the fuzzy degree of the surface, and the 

multi-scale detail contrast enhancement algorithm is 

used to highlight the feature information of the defect 

area. 

The accuracy of crack and 

bulge defect identification for 

ceramic curved parts was 

94.23% and 96.86%, 

respectively. 

 

Based on the above research, DL models have relatively 

efficient, accurate, and reliable results in object SDD. In 

addition, the most advanced technology with the best 

performance in the above literature is based on Isolation 

Deep Learning and Transfer Deep Learning (BIDL-TDL). 

However, there are challenges in its ability to generalize, 

and it can perform better in one field or task. Therefore, 

in order to solve the limitations of generalization ability 

in the above detection methods, this study utilizes the 

high precision and consistency of DL to detect small or 

difficult to detect defects, and optimizes it from five 

aspects: anchor box mechanism, data enhancement, 

coordinated attention, loss function and structure. In turn, 

it will promote the development of industrial automation 

and intelligent manufacturing. 

 

3 SDD of aluminum profiles based 

on improved Yolov5 
The Yolov5 algorithm is used for SDD of aluminum 

profiles. To improve the defect detection accuracy, 

Yolov5 is improved, mainly from three aspects: anchor 

box mechanism, data augmentation method, and AM, to 

obtain the You Only Look Once version 5-Coordinated 

Attention (Yolov5-CA). To more accurately identify 

these small flaws, the loss function is adjusted to reduce 

sensitivity to the location of minor flaws, resulting in the 

You Only Look Once version 5-Coordinated  

Attention-Enhanced Feature Pyramid Network 

(Yolov5-CA-EFPN). 

 

 

 

3.1 SDD of aluminum profiles based on 

Yolov5-CA 
Aluminum profiles are extensively applied in industrial 

production. Its surface quality directly affects product 

quality and safety. With the continuous progress of DL 

technology, SDD algorithms for aluminum profiles have 

also ushered in broader application prospects. 

Single-stage object detection algorithm refers to 

combining target localization and classification into one 

task in object detection technology based on DL, which 

simplifies the entire detection process and improves 

detection efficiency [12]. The You Only Look Once 

(Yolo) series, as a representative of single-stage object 

detection algorithms, has vital significance in the 

development of object detection network models. Since 

the launch of Yolo, after multiple version iterations, each 

version has brought better solutions for object detection 

tasks. These improvements not only improve detection 

accuracy and efficiency, but also enhance the ability to 

process small targets and dense scenes [13]. In Yolov5, a 

comprehensive upgrade is made to the Yolo series, 

mainly involving input and output terminals. These 

upgrades have made Yolov5 one of the popular choices in 

the current object detection, as shown in Figure 1. 
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Figure 1: Yolov5 model structure 

 

To improve the defect detection accuracy, Yolov5 is 

improved, mainly from three aspects: anchor box 

mechanism, data augmentation method, and AM. The 

SDD requires selecting appropriate anchor boxes to 

obtain higher quality models. The original anchor boxes 

in Yolov5 are preset based on the Common Objects in 

Context (COCO) dataset with contextual information. 

However, there are significant differences between the 

aluminum profile surface defect dataset and the COCO 

dataset. Therefore, the preset anchor box is modified to fit 
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the current dataset [14]. Before determining the anchor 

box size, the aspect ratio of the dataset target is 

considered. The aluminum profile surface defect dataset 

used contains multiple types of defects. The average 

aspect ratio of 10 defects is calculated. The results show 

that the average aspect ratio of the dataset is about 9. In 

response to the original clustering method in Yolov5, 

1-Intersection over Union (1-IoU) replaces Euclidean 

distance to present the distance from the anchor box to 

the cluster center. This change helps to obtain the anchor 

box size of the aluminum profile surface defect dataset. 

The anchor box size based on (1-IoU) distance is 

displayed in Figure 2. 

 

Start

Calculate the aspect 

ratio of the dataset

Calculate (1- IoU) distance

Assign remaining anchor boxes to 

the nearest cluster center

Recalculate cluster centers based 

on anchor boxes in each cluster

Output Anchor 

Box

End

Has the cluster center changed?

Y

N
Randomly select 9 anchor 

boxes from all anchor boxes 

as the center of the cluster  

Figure 2: Calculation process of anchor box size based on (1-IoU) distance 

 

From Figure 2, the aspect ratio of the dataset is first 

calculated. Nine anchor boxes are randomly selected as 

cluster centers. The (1-IoU) distance from other anchor 

boxes to the cluster center is calculated. Then, based on 

the (1-IoU) distance, anchor boxes are classified until the 

cluster center stabilizes. The final anchor box can be 

obtained. Yolov5 uses the original 4-segment Mosaic 

(Mosaic-4) as the data augmentation method. By 

concatenating four defect images together, it can enrich 

the background information of object detection and 

improve the training speed. However, during the training 

process, the model performs feature extraction 

calculations on gray areas, resulting in a slower training 

speed. Therefore, the study uses an improved 9-segment 

data Mosaic (Mosaic-9). Nine different defective images 

are concatenated and cropped, effectively reducing gray 

areas, avoiding useless feature extraction calculations, 

and improving training speed. Mosaic-9 also enhances 

the effectiveness of small object detection, as the 

concatenated images increase the defect types, thereby 

enhancing small object detection. 

AM has important implications in DL models. This 

network model can focus on certain features of the input 

image and assign higher weights to them. Meanwhile, for 

irrelevant feature information, lower weights are assigned 

to ignore it. Coordinated Attention (CA) introduces 

positional information into the AM, integrating channel 

attention and spatial attention. CA decomposes channel 

attention into two parallel one-dimensional feature maps 

(FMs), namely, X  and Y , and then encodes them into 

two attention FMs. This effectively extracts long-range 

related features from the input FM in a spatial direction. 

CA can represent any intermediate vector 

 1 2, ,... cX x x x=  as a vector  1 2, ,... cY y y y=  with 

important feature information. In the CA, the first step is 

information embedding. This step processes the input 

feature map with a size of H W C   through Global 

Average Pooling (GAP) operation. The feature map is 

segmented in the spatial dimension to form a horizontal 

X  feature map and a vertical Y  feature map. For the 

X  feature map in the horizontal direction, after applying 

a pooling operation with size 1H  , the final FM size 

obtained is 1H C  . Similarly, the Y  feature map in 

the vertical direction becomes 1 W C   after 

undergoing 1 W  pooling operation. The calculation 

method is shown in equation (1). 

( ) ( )

( ) ( )

0
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,

1
,
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h
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i
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j

Z h x h i
W
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H

=

=


=



 =
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


 (1) 

In equation (1), ( )h

cZ h  and ( )w

cZ w  represent the GAP 

values in the horizontal and vertical directions. cx  refers 

to the input feature vector. W  represents the weight 

generated for each channel.   is the Sigmoid function 
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[15]. Then, the attention is generated. X  and Y  FMs 

are concatenated in the spatial direction. The 

1 1 -convolution operation is applied to reduce the 

dimensionality. An intermediate feature map f  with a  

 

size of ( )1
C

W H
r
  +  is obtained through the BN 

layer. The expression is shown in equation (2). 

( )( )1 ,h wf F z z  =    (2) 

In equation (2), 1F  represents the calculation result of 

the BN layer. Afterwards, f  is decomposed into FMs 

hf  and wf .   obtains attention weights 
hg  and 

wg  

in both horizontal and vertical directions. The dimensions 

are 1C W   and 1C H  , respectively, as shown in 

equation (3). 

( )( )

( )( )

h h

h

w w

w

g F f

g F f





 =



=


 (3) 

In equation (3), hF  and wF  respectively represent 

transforming 
hf  and 

wf  into transformation functions 

with the same dimension as the input. The next step is to 

modify the feature map of CA. The dimensions of 
hg  

and 
wg  are converted to C H W  . Combined with 

residuals, the input features are connected to obtain the 

final attention feature, as expressed in equation (4). 
h w

c cy x g g=    (4) 

In equation (4), cy  is the final attention feature. cx , 
hg  and 

wg  represent the elements corresponding to C , 

H , and W . Thus, the CA is introduced into the Yolov5 

model, resulting in the Yolov5-CA model, as shown in 

Figure 3. 

Input

Focus CBL

CSP1_1CBL

CSP1_3 CBL

SPPCSP2_1

 

Figure 3: Yolov5-CA model structure 

 

After introducing CA into the Yolov5 model, the Yolov5 

to extract important features is enhanced, which is more 

conducive to SDD. 

 

3.2 SDD of aluminum profiles based on 

Yolov5-CA-EFPN 

In response to the small defect detection, especially in 

situations where the single sample type and background 

contrast are not obvious, the Yolo algorithm continues to 

focus on improving accuracy. For the aluminum surface 

defect dataset, small defects including dirty spots and 

scratches are more common, as shown in Figure 4. 

 

(a) Spots (b) Abrasion mark (c) Orange peel (d) Bubble

 

Figure 4: Common surface defects of aluminum materials 

 

Figures 4 (a), 4 (b), 4 (c), and 4 (d) present dirty spots, 

abrasion marks, orange peel, and bubbles in the surface 

defects of aluminum materials. In addition, it also 

includes non-conductive, corner leakage, leakage, spray, 

paint bubbles, pitting, and discoloration. To more 

accurately identify these small flaws, the Yolov5-CA 

model is further improved, including adjusting the loss 

function to reduce sensitivity to the location of minor 

flaws and improve feature capture ability. After 

experiencing these improvements, the detection 

performance for small defects is improved. The loss 

function of Yolov5 mainly includes rectangular box loss 

CIoUL , target confidence loss objL , and category loss clsL . 

Yolov5 divides the feature map into grids. Each grid 

outputs a vector that includes position, target probability, 

and category prediction [16]. Based on these three parts, 

the loss is calculated, and then added together to obtain 

the total loss function, as expressed in equation (5). 
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( )
2 2 2

0 0 0 0 0 0 0

,
K S B S B S B

balance obj obj obj

loss p g k box kij CIoU obj kij obj box kij cls

k i j i j i j

L t t I L I L I L   
= = = = = = =

 
= + + 

 
     (5) 

In equation (5), pt  and gt  represent the vectors 

corresponding to the predicted box and the true box, 

respectively. K , 2S  and B  respectively represent the 

output feature map, grid, and anchor box on each grid. 
balance

k  is used to describe the weight of balancing the 

output FMs at each scale.   is the weight of the 

corresponding loss function. The rectangular box loss is 

represented by the Complete Intersection over Union 

(CIoU), which measures the error between the prediction 

box and the calibration box [17]. The target confidence 

loss is calculated by binary cross entropy using the target 

confidence op  of the prediction box and the 

corresponding IoU of the target box. The expression is 

shown in equation (6). 

( ) ( ), , ;sig

obj o IoU obj o IoU objL p p BCE p p w=  (6) 

In equation (6), ( )BCE   represents binary cross entropy. 
p  represents the center distance between boxes A and B. 

The category loss is similar to the confidence loss, 

calculated from the category score of the prediction box 

and the true category label of the target box, as expressed 

in equation (7). 

( ) ( ), , ;sig

cls p g cls p g clsL c c BCE c c w=  (7) 

In equation (7), c  is the diagonal length of the 

minimum enclosing rectangle. Based on equation (7), it 

can make the position difference of small target defects 

more sensitive, which affects the model accuracy in 

predicting target categories. The dataset of surface 

defects on aluminum profiles contains many small target 

defects. Most of them are not standard rectangles, causing 

the bounding box to carry some background information. 

Meanwhile, the target information is usually concentrated 

at the bounding box center, while the background 

information is located around the periphery [18-19]. To 

describe the weights of different pixels, a 

two-dimensional distribution is used to model the 

bounding box, with the center pixel having the highest 

weight and gradually decreasing to the boundary. 

( ),cx cy  stands for the center coordinate of the horizontal 

bounding box. w  and h  stand for the width and height 

of the bounding box. The inscribed ellipse of the 

bounding box is shown in equation (8). 

( ) ( )
2 2

2 2
1

2 2

x cx y cy

w h

− −
+ =

   
   
   

 (8) 

For a two-dimensional distribution, equation (9) displays 

the probability density function. 

( )
( ) ( )1

1

2

1
exp

2
,

2

T
X X

f X

 





− 
− −  − 
  =



 (9) 

In equation (9), X  is the coordinate ( ),x y  of the 

Gaussian distribution.   and   are the mean vector 

and covariance matrix. When ( ) ( )1 1
T

X X −−  − = , 

the probability density function can be expressed as an 

inscribed ellipse. Meanwhile, the horizontal bounding 

box can be modeled as a two-dimensional Gaussian 

distribution (2D-distribution) that satisfies ( ),N   . For 

the similarity calculation between bounding boxes, it can 

be regarded as the distance between corresponding 

Gaussian distributions. Assuming there are Gaussian 

distributions ( )1 1 1 1,N m =   and ( )2 2 2 2,N m =  , 

the distribution distance between the two is shown in 

equation (10). 

( )

2

2 1 1 2 2

2 1 2 1 1 2 2

2

, , , , , , , ,
2 2 2 2

T T
w h w h

W N N cx cy cx cy
    

=          

 (10) 

In equation (10), ( )
22

2 1 2 2
,W N N  represents the distance 

metric, which is transformed into exponential form to 

measure the similarity between Gaussian distributions. 

That is, the value of ( )
22

2 1 2 2
,W N N  is assigned to  0,1 , 

which is called NWD distance. The expression is shown 

in equation (11). 

( )
( )2

2 1 2

1 2

,
, exp

W N N
NWD N N

C

 
 = −
 
 

 (11) 

In equation (11), C  represents a constant related to the 

dataset. When detecting small defects, the accuracy of 

small object detection often decreases. This is because in 

deep neural networks, small features are often lost after 

multiple convolutions and pooling operations. The feature 

pyramid network constructs the pyramid structure of the 

feature map through a shrinking process and an 

expanding process. Feature fusion is performed at 

different levels to connect deep and shallow information 

[20]. However, a standard feature pyramid network may 

still result in small target information loss when handling 

multiple up sampling and down sampling processes. The 

EFPN improves this problem by introducing inter layer 

skip connections and multi-scale connections, thereby 

better preserving the semantic information of small 

targets. For the k -level scale features, the feature map 

received by the l -layer is calculated, as shown in 

equation (12). 



Surface Defect Detection Algorithm for Aluminum Profiles Based… Informatica 48 (2024) 1–14 7 

( )( )0 1,...,l l

k k kP Conv Concat P P −=  (12) 

In equation (12), Concat  represents the concatenation 

operation of FMs in the 1l −  layer. Conv  is a 

3 3 -convolution operation. Due to the increased 

network burden, parameter expansion, and gradient 

vanishing caused by the network model connection 

method, EFPN adopts a solution called 2log n  skip 

layer connection method to address these challenges. In 

all levels k , the l -th layer receives FMs from up to 

2log 1l +  advanced layers, as shown in equation (13). 

( )( )
02 2,...,

nl l l

k k kP Conv Concat P P− −=  (13) 

Based on equation (13), the complexity of the 2log n  

skip layer connection method can be reduced, which is 

more conducive to the deeper development of the 

network. EFPN uses Queen-fusion to achieve cross scale 

connections, while fusing features from the same and 

adjacent levels. The fusion process is shown in Figure 5. 

 

P4 P5 P6

Conv
1×1

Conv Conv

concat

P4' P5' P6'

1×1 1×1

 

Figure 5: The fusion process of EFPN 

 

From Figure 5, the down sampling results of P4 layer, the 

up-sampling results of P6 layer, and the features of P5 

layer and P4 layer after 1 1  convolution are fused into 

P5 layer. Up sampling is achieved using the bi-linear 

interpolation, while down sampling is achieved using 

max pooling. Based on the principle of EFPN, two skip 

layer connection methods and a cross scale Queen-fusion 

connection method are used to improve the small target 

defect detection accuracy. The PAN structure of the Neck 

module in Yolov5-CA is replaced with EFPN to form the 

Yolov5-CA-EFPN. Figure 6 shows the connection 

between Yolov5-CA backbone module and EFPN and the 

improvement process of YOLOV5-CA-EFPN model. 
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INPUT P1/2 P2/4 P3/8 P4/16 P5/32

(b) Process

Aluminum surface defect 

detection with original YOLOv5 

model

Improved surface defect 
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Data 
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Loss function 
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Structure optimization
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Strengthen the feature 

pyramid network
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Figure 6: Structure and flow of Yolov5-CA-EFPN model 
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From Figure 6, the Yolov5-CA-EFPN model adopts an 

alternative EFPN structure in the Neck module. This 

change may have an interesting impact on the 

performance and feature learning ability of the model, 

further affecting the detection accuracy and overall 

performance. 

 

4 Analysis of SDD for Aluminum 

Profiles Based on Yolov5-CA EFPN 
To verify the effectiveness of Yolov5-CA-EFPN, it is 

compared with other methods to validate its superiority. 

Furthermore, it is incorporated into the simulation 

analysis to prove the actual detection effect. 

 

4.1  Performance analysis of the improved 

algorithm 
The SDD analysis for aluminum profiles based on 

Yolov5-CA-EFPN first conducts performance analysis. 

The relevant parameters are set to ensure accuracy and 

effectiveness. Table 2 displays the specific parameter 

settings. 

 

 
Table 2: Parameter settings 

Number Project Case 

(1) Deep learning framework 1.8.0 

(2) Cuda 11.3 

(3) Python 3.8 

(4) Graphics card RTX3090 

(5) System Ubuntu 

(6) Batch_size 64 

(7) CPU i9-10920X 

(8) Defect image 640×640 

 

Based on the relevant parameter settings in Table 2, 

ablation experiments are first conducted. The Mean  

 

Average Precision (mAP), recall, precision, and F1 value 

(F1) are compared. Figure 7 displays the results. 
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Figure 7: Experimental results of ablation using three algorithms 

 

From Figure 7, the mAP values of Yolov5, YOLOV5-CA, 

and YOLOV5-CA-EFPN were 0.69, 0.89, and 0.99, 

respectively. The recall values of Yolov5, YOLOV5-CA, 

and YOLOV5-CA-EFPN were 0.65, 0.80, and 0.90, 

respectively. The precision of Yolov5, YOLOV5-CA, 

and YOLOV5-CA-EFPN were 0.78, 0.91, and 0.94, 

respectively. The F1 values of Yolov5, YOLOV5-CA, 

and YOLOV5-CA-EFPN were 0.71, 0.83, and 0.91, 

respectively. The improved Yolov5-CA-EFPN has the 

best performance. To enhance the persuasiveness, the loss 

and mAP change during the training process are 

compared. Figure 8 displays the results. 
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Figure 8: Comparison of training results for different algorithms 

 

Figures 8 (a) and 8 (b) respectively represent the loss 

change and mAP changes. From Figure 8, the loss values 

of the three algorithms almost overlapped in the first 160 

iterations. As the iterations increase, the loss of 

Yolov5-CA-EFPN is the lowest and tends to stabilize 

faster. When iterating 300 times, the loss values of 

Yolov5-CA-EFPN, Yolov5-CA, and Yolov5 algorithms 

were 0.0173, 0.0204, and 0.0288. The mAP values of the 

three algorithms in descending order were 

Yolov5-CA-EFPN, Yolov5-CA, and Yolov5. The mAP 

value of Yolov5-CA-EFPN stabilized faster. When the 

iteration was 300 times, the mAP values of Yolov5, 

YOLOV5-CA, and YOLOV5-CA-EFPN were 0.0986, 

0.0965, and 0.0721, respectively. The above results 

indicate that using NWD distance instead of IoU-based 

YOLO5-CA loss function in the Yolov5-CA-EFPN 

model can effectively reduce the sensitivity of small 

target position deviation. The training process of 

Yolov5-CA-EFPN is faster and more stable, with smaller 

loss values and the best overall performance, making it 

more suitable for SDD on aluminum profiles. 

Considering the training performance of 

Yolov5-CA-EFPN, the CPU usage during its operation is 

analyzed to comprehensively compare the algorithm 

performance. Figure 9 displays the CPU usage. 
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Figure 9: CPU usage during the training process of three algorithms 

 

From Figure 9, the CPU usage of Yolov5-CA-EFPN was 

relatively close to Yolov5-CA and Yolov5. The 

difference was not significant. When Yolov5-CA-EFPN 

had the lowest loss value and the highest mAP value, it 

did not increase more CPU usage. It indicates that 

Yolov5-CA-EFPN has the best comprehensive 

performance, which is more suitable for detecting surface 

defects on aluminum profiles. 
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To scientifically validate the performance of the proposed 

method, three mainstream deep learning methods are 

selected for comparative experiments, namely, CNN, 

CenterNet (CNT), and Single Shot Multi-Box Detector 

(SSMD). The performance results of SDD methods for 

different aluminum profiles based on deep learning are 

compared, as shown in Table 3. 

 

 
Table 3: Comparison of performance results of surface defect detection methods for different aluminum profiles based 

on deep learning 

Evaluating indicator CNN CNT SSMD Yolov5-CA-EFPN 

mAP/% 95.8 94.5 91.9 95.3 

Recall/% 88.6 89.6 88.1 93.2 

Precision/% 97.4 74.7 92.7 93.6 

FPS 25.6 48.7 128.1 262.4 

Parameter quantity/M 41.5 14.2 24.4 7.3 

 

From Table 3, the proposed method achieved the best 

comprehensive performance in terms of detection 

precision and detection speed, with corresponding mAP 

and recall of 95.3% and 93.2%, respectively. The 

simultaneous detection speed and parameter quantity 

were 262.4FPS and 7.3M, respectively. The CNT method 

had the best detection precision due to the maximum 

input image resolution, but the corresponding parameter 

quantity was large and the calculation speed was too slow, 

at 14.2M and 18.7FPS, respectively, which was not  

 

 

suitable for practical scene applications. The SSMD and 

the designed method had certain differences in precision 

and speed. Finally, in order to test the computational 

complexity of the designed method, the research is 

evaluated from the two indicators: time complexity and 

space complexity. The former is determined by the 

calculation amount of the method, and the latter is 

determined by the solving process. In addition, the study 

introduces the most advanced method for comparative 

experiment, namely the BIDL-TDL method. The results 

are obtained, as shown in Figure 10. 
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Figure 10: Comparison of computational complexity results for different methods 

 

Figure 10 (a) and Figure 10 (b) respectively show the 

time complexity and space complexity results for 

different methods. From Figure 10, with the continuous 

increase of time bandwidth product, the time complexity 

of the research method was smaller than that of other 

methods. In the later period, the time complexity curve of 

the research method tended to stabilize. However, the 

time complexity of the other methods increased 

continuously with the increase of the time bandwidth 

product. It indicates that the research method can 

effectively reduce the computation amount to a great 

extent. In addition, the spatial complexity of research 

method grew very slowly, which meant that the data 

stored by the research method was significantly reduced 

and had greater advantages. However, the spatial 

complexity of other methods continued to increase. When 

the time bandwidth product of BIDL-TDL method was 

micro 40Hz*s, the spatial complexity reached 1.5*104. 

The above results show that the calculation amount and 

storage space required by the research method are 

obviously reduced, and the computational complexity is 

optimized. In summary, the proposed method has good 

performance and feasibility, which is more suitable for 

deployment in practical application scenarios. 
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4.2  Simulation analysis 
In Windows 10, a Yolov5-CA-EFPN real-time detection 

system is designed in the PyQt5 environment. During 

system testing, an industrial camera AF12 provided by a 

certain technology company is used, which is fixed with a 

triangular stabilizing bracket. The system settings, as the 

core part of the deployment detection platform, include 

the following functions, such as importing model weight 

files, obtaining files to be detected, connecting industrial 

cameras, obtaining videos, and setting common 

parameters. The image/video detection visualization 

module compares the objects before and after detection, 

analyzes the results and records the type and quantity of 

defects currently detected. The detection accuracy bar is 

used to start and pause the detection. In the Windows 10 

environment, the camera is connected to the laptop using 

USB 2.0. The following laptops, aluminum profiles, 

cameras, and tripods are deployed to obtain a complete 

testing platform. Table 4 displays the specific parameter 

settings. 

 

 
Table 4: Specific parameter settings in the simulation experiment 

Number Camera parameters Parameter value Unit 

(1) Connecting line 

USB 2-meter all copper 

tape magnetic ring 

anti-interference shielding 

wire 

m 

(2) Sensor 
Samsung S5K2L8SX03 

CMOS sensor 
/ 

(3) Sensor Size 1/2.8'' / 

(4) Pixel size 1.28*1.28 um 

(5) Data format MJPG/YUY / 

(6) Focal length 3.97 mm 

(7) Dynamic frame rate 1920*1080/30FPS / 

(8) F/NO 1.7 / 

 

The OB1640L aluminum profile provided by a certain 

company is used for testing, with a thickness of 4.6mm 

and a weight of 1.25kg per meter. The aluminum profile 

itself has no defects. However, for the convenience of 

testing, some defects are artificially set, including 10  

 

types: non-conductive, scratches, corner leakage, orange 

peel, leakage, spray, paint bubbles, pitting, discoloration, 

and dirty spots, each with 20 defects. The research 

method is used to detect them. The results are shown in 

Figure 11. 
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Figure 11: Test results of Yolov5-CA-EFPN in different defect types 

 

From Figure 11, the Yolov5-CA-EFPN had high 

detection precision for 10 types. The highest and lowest 

values were 99.2% and 96.3%. The false detection rate 

and missed detection rate were both low. The highest and 

lowest false detection rates were 1.3% and 0.2%. The 

highest and lowest missed detection rates were 1.4% and 

0.2%, respectively. The Yolov5-CA-EFPN has a good 

effect, which is conducive to detecting surface defects of 

aluminum profiles and ensuring the integrity of defect 

detection. 

In addition, the Yolov5-CA-EFPN is used to test the 

confidence intervals of four typical defects and two other 

defects. The results are shown in Figure 12.
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(a) Scratches (b) Jet flow (c) Lacquer bubble

(d) Dirty spots (e) Orange peel (f) Variegated color

 

Figure 12: Confidence results based on the Yolov5-CA-EFPN model for detecting four typical defects and two other 

defects 

 

From Figure 12, the confidence intervals in the four 

typical detects of scratches, jet flow, lacquer bubble, and 

dirty spot were [80%, 90%], while the confidence 

intervals in the other two defects were all over 90%. This 

indicates that the proposed method is not only suitable for 

small target defect detection, but also has excellent 

application effects in overall dataset defect detection. 

Based on the above results, it can be concluded that the 

Yolov5-CA-EFPN model can effectively improve the 

detection performance of surface defects in aluminum 

profiles, which has strong robustness and generalization 

ability. 

 

4.3  Discussion 
As an important basic material industry, China's 

aluminum industry has developed rapidly in recent years, 

becoming a global aluminum production and 

consumption power. With the gradual recovery of the 

industry, aluminum downstream market is gradually 

active, and aluminum market demand will be driven by 

this substantial growth. According to the "2023-2029 

China Aluminum market analysis and Investment 

Prospects Research Report", the cumulative value of 

China's aluminum production in 2023 reached 63.034 

million tons, with a final total increase of 5.7% compared 

to the previous year. In addition, the sustained 

development of the Chinese economy and the 

improvement of household consumption levels will 

maintain a long-term growth trend in aluminum demand. 

Especially in new energy vehicles, rail transit, aerospace 

and other emerging fields, aluminum will play a greater 

role. However, in the actual production process, 

aluminum profiles are often affected by factors such as 

equipment and environment, inevitably resulting in 

surface defects that affect the aesthetic appearance of 

aluminum profiles. In severe cases, it can also affect 

product quality and subsequent use. It is of great 

significance to design a real-time and accurate detection 

method for aluminum profile surface defects for 

industrial development and product quality improvement. 

Therefore, the Yolov5-CA-EFPN model is proposed to 

improve the detection effect of aluminum profile surface 

defects. 

Firstly, in order to test the feasibility of using different 

modules for optimization, the ablation experiment is 

designed for evaluation. The results showed that the mAP 

values of Yolov5, YOLOV5-CA and 

YOLOV5-CA-EFPN were 0.69, 0.89 and 0.95, 

respectively. The recall values of Yolov5, YOLOV5-CA, 

and YOLOV5-CA-EFPN were 0.65, 0.80, and 0.90, 

respectively. The precision values of Yolov5, 

YOLOV5-CA, and YOLOV5-CA-EFPN were 0.78, 0.91, 

and 0.94, respectively. The F1 values of Yolov5, 

YOLOV5-CA and YOLOV5-CA-EFPN were 0.71, 0.83 

and 0.91, respectively. In addition, the loss values of the 

above three methods were almost consistent in the first 

160 iterations. With the increase of iterations, the loss 

value of Yolov5-CA-EFPN was the lowest and tended to 

stabilize faster. When iterated for 300 times, the loss 

values of YOLOV5-CA-EFPN, YOLOV5-CA and 

Yolov5 were 0.0173, 0.0204 and 0.0288, respectively. 

During the training process, the mAP values of the three 

algorithms were YOLOV5-CA-EFPN, YOLOV5-CA, 

and Yolov5 in order from high to low, and the mAP value 

of YOLOV5-CA-EFPN was stable faster. When the 

iteration was 300 times, the mAP values of Yolov5, 

YOLOV5-CA, and YOLOV5-CA-EFPN were 0.0986, 

0.0965, and 0.0721, respectively. According to the 

ablation experiment results, it can be found that the 
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optimized module designed in the study can significantly 

improve the performance of the Yolov5-CA-EFPN 

model. 

In order to further verify the performance of the research 

method, CPU usage experiments, detection precision, 

detection speed and computational complexity 

experiments are designed, and the following results are 

obtained. The CPU usage of YOLOV5-CA-EFPN was 

smaller than that of YOLOV5-CA and Yolov5, but the 

research method did not increase CPU usage at the 

minimum loss value and high mAP value. The mAP, 

recall, detection speed and parameter quantity were 

95.3%, 93.2%, 14.2M and 18.7FPS, respectively. The 

CNT method had the best detection precision because the 

input image resolution was the largest, but the 

corresponding parameter quantity was large and the 

calculation speed was too slow, which was 14.2M and 

18.7FPS respectively. It is not suitable for practical 

application scenarios. In addition, with the increase of the 

time bandwidth product, the time complexity of the 

research method was smaller than that of other methods, 

and the time complexity curve of the research method 

tended to be stable in the later period. However, the time 

complexity of the remaining methods increased 

continuously with the increase of the time bandwidth 

product. In addition, the growth rate of the spatial 

complexity of the research method was very slow, which 

meant that the amount of data stored by the research 

method was significantly reduced had greater advantages. 

However, the spatial complexity of other methods 

continued to increase. When the time bandwidth product 

of BIDL-TDL method was micro 40Hz*s, the spatial 

complexity reached 1.5*104. The above results indicate 

that this research method can effectively reduce 

computational complexity to a large extent, and the 

amount of data to be stored is significantly reduced, 

which has greater advantages. Finally, the detection 

precision of 10 types of defects was simulated, and the 

highest and lowest values of the research method were 

99.2% and 96.3%, respectively. 

In summary, the research method can overcome the 

shortcomings of traditional detection techniques, which 

has far-reaching significance for the development of 

aluminum profile industry, and plays a huge role in new 

energy vehicles, aerospace and other emerging fields. 

However, there are still shortcomings in the research 

method. In the research, hyper-parameters are determined 

through genetic algorithms and used for evolutionary 

selection of hyper-parameters. The specific sensitivity 

analysis and mechanism of action of hyper-parametric 

image performance are still unclear. In future research, 

other advanced technologies can be used for sensitivity 

analysis. 

5 Conclusion 

With the continuous development and optimization of DL 

technology, SDD for aluminum profiles based on DL is 

expected to become one of the key technologies to 

improve industrial production quality and efficiency. To 

improve the detection accuracy and more accurately 

identify small defects, the anchor box mechanism, data 

augmentation method, and AM are improved relying on 

the Yolov5. The loss function is adjusted and the Neck 

structure is optimized to obtain the Yolov5-CA-EFPN 

detection model. The results show that compared with 

Yolov5, YOLOV5-CA-EFPN had the best performance, 

and its mAP, recall, precision and F1 value were 

increased by 26%, 25%, 16% and 20% respectively. 

Compared with Yolov5 and Yolov5-CA, the 

Yolov5-CA-EFPN had the lowest loss value and tended 

to stabilize faster. The results showed that 

Yolov5-CA-EFPN had a detection precision of over 

96.3% for 10 types, with false detection and missed 

detection rates below 1.4%. Yolov5-CA-EFPN can 

accurately and efficiently detect surface defects on 

aluminum profiles, greatly improving the efficiency and 

accuracy of defect detection, and helping to improve 

product quality and production efficiency. In addition, 

this algorithm can reduce reliance on manual inspection 

and lower production cost. It is of great significance to 

the aluminum profile production industry, providing new 

technological solutions and ideas for the intelligent 

manufacturing. There are still some shortcomings in this 

study, such as the failure to identify defect types based on 

detection. Future research will start from this aspect to 

better improve the process flow and repair defects. 

Meanwhile, the functionality of the research method is 

scalable. In future research, testing visualization and 

dataset generation functions can be added to improve 

efficiency in the industrial field, and other real-time 

application scenarios can be actively explored. 
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