
https://doi.org/10.31449/inf.v48i15.6167 Informatica 48 (2024) 91–106 91 

Design of Intelligent Management Technology for Hotel Air 

Conditioning Based on Coupling Model and Deep Neural Network 

 
Yunzi Gu 

Tourism and Management Department, Wuhan College of Foreign Language and Foreign Affairs, Wuhan 430205, 

China 

E-mail: collencollencollen@163.com 

Keywords: deep belief network, VAV, temperature and humidity prediction control, building heat transfer 

characteristics, hotel air conditioning 

Received: May 9, 2024 

Variable air volume air conditioning systems have the advantages of low energy consumption and easy 

control, making them an important object in the field of air conditioning. This study uses deep belief 

networks to predict and control the temperature and humidity of variable air volume air conditioning 

systems in hotel buildings. It analyzes the heat transfer characteristics of building envelope structures 

by constructing mathematical models and optimizes deep belief network models to improve prediction 

accuracy. By using the proportional integral control algorithm, the system dynamically adjusts the air 

valve based on the difference between the predicted indoor temperature and the set target temperature, 

achieving precise control of the indoor environment. The results showed that indoor temperature could 

quickly adapt to outdoor temperature changes, and the average absolute relative error of the deep 

belief network model was 1.555%, with a determination coefficient of 0.9975. In practical applications, 

the room temperature successfully reached the predetermined target within 300 minutes, maintaining 

stability even in the presence of interference. The research results provide an efficient intelligent 

control method for building energy management. 

Povzetek: Študija se osredotoča na načrtovanje inteligentne tehnologije upravljanja hotelske klimatske 

naprave z uporabo modela spajanja in globokih nevronskih mrež. Prispevek izboljšuje napovedovanje 

temperature in vlažnosti ter omogoča učinkovito upravljanje notranjega okolja.

1 Introduction 

With the increasing global energy consumption, building 

energy consumption has become an important component, 

among which Heating, Ventilation, and Air Conditioning 

(HVAC) systems account for a significant share of 

building energy consumption [1]. Especially in large 

public buildings such as hotels, the energy consumption 

problem of Air Conditioning Systems (ACS) is 

particularly prominent due to their special usage needs 

and complex spatial structures [2]. Traditional air 

conditioning control methods often rely on fixed 

parameter settings, which are difficult to adapt to the 

changing load demands and environmental changes 

inside hotels, resulting in energy waste and a decrease in 

indoor environmental comfort [3]. The Temperature and 

Humidity (T&H) control strategy for a single area cannot 

effectively address the complexity of multi-area ACSs in 

actual operation, especially in large hotel buildings where 

there are significant differences in air conditioning 

demand and environmental response in different areas. In 

addition, traditional methods often find it difficult to 

achieve precise control when dealing with nonlinear, 

strongly coupled, and large lag ACSs. There are problems 

such as debugging difficulties and slow response in 

practical applications [4-5]. Therefore, this study  

 

proposes a hotel air conditioning Intelligent Management 

Technology (IMT) based on a coupled model and Deep  

Neural Network (DNN). By establishing a T&H coupling 

model for multi-area Variable Air Volume (VAV) Air 

Conditioning System (VAV-ACS) in buildings, it is 

possible to more accurately simulate and predict changes 

in the indoor environment. The innovation of the research 

lies in combining coupled models with deep learning 

techniques, which can improve the accuracy and response 

speed of ACS control. This study also introduces Fuzzy 

Clustering Algorithms (FCA), with the objective of 

enabling the ACS to adaptively adjust its operating 

strategy to adapt to the constantly changing indoor and 

outdoor environments and user needs. 

The study consists of four parts. Part 1 is a summary 

of existing research. Part 2 is the analysis of the 

characteristics of hotel building ACSs and the IMT study 

of DNN. Part 3 is the analysis and experimental 

verification of the temperature control effect of the 

VAV-ACS based on FCA. Part 4 summarizes the entire 

text. 

2 Related works 

Scholars such as He et al. proposed a new parameter 

tuning method that combines machine learning and 
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improved Particle Swarm Optimization (PSO) to address 

the difficulty in optimizing MPC controller parameters in 

VAV-ACS. The method established the relationship 

between parameters and performance indicators through 

machine learning, and then used PSO for parameter 

optimization to improve system response. Meanwhile, the 

PSO algorithm had been improved through population 

decay and event triggering, effectively reducing 

computation time [6]. Zhao et al. explored the feasibility 

and economic benefits of combining DOAS with 

ventilation system renovation while retaining the original 

VAV system. They also compared the performance of 

VAV-DOAS with traditional VAV under the multi-space 

equation strategy. The experiment showed that 

VAV-DOAS could save 16% and 21% energy in winter 

and summer seasons in Dalian area [7]. Nassif and 

Ridwana explored the potential of dual VAV systems in 

building energy efficiency and proposed a new control 

strategy to effectively distribute cooling loads by using 

the heating ducts of the system as dedicated outdoor air 

units. This system could significantly reduce fan power 

and heating energy consumption by simulating the 

performance of single-duct and double-duct VAV 

systems in different building scenarios, while having a 

relatively small impact on refrigeration load [8]. Zhao et 

al. compared constant and variable Outdoor Air Flow 

Ratio Strategies (OAFRS). The results showed that both 

strategies had the same effect on indoor air quality 

control, but the variable strategy could better adapt to 

changes in occupancy. In terms of energy consumption, 

the strategy based on multiple space equations saved 

6.76% and 9.88% in heating and cooling seasons, 

respectively, compared to the maximum OAFRS [9]. 

Zhao et al. analyzed the distribution and mutual 

interference of pressure and airflow in pipeline networks 

under DP and FF strategies through MATLAB simulation. 

Compared to DP strategy, FF could reduce damper 

position changes, reduce pressure and airflow fluctuations 

[10]. 

Researchers such as Jornet-Monteverde and 

Galiana-Merino designed a controller module and a node 

module to communicate with the touch screen interface 

through the MQTT protocol. They constructed a Wi-Fi 

network using the CC3200 micro-controller, TI-RTOS 

system, and Raspberry Pi. The system could save energy 

by 75% -94% when used in a single area and 44% when 

used in a whole house, significantly improving energy 

efficiency and user comfort [11]. Wei et al. developed a 

VAV system model predictive control framework based 

on Artificial Neural Networks (ANN). Through the 

collaborative work of ANN controller and PI controller, 

the control of regional temperature, dampers, and Air 

Supply Volume (ASV) had been optimized. By using the 

Lagrangian variational method for online optimization, 

the energy efficiency of the system was improved by 

6.12% after considering the wind turbine control signal 

[12]. Yu et al. proposed a control algorithm based on 

multi-agent deep reinforcement learning and attention 

mechanism to address the issue of high energy 

consumption in HVAC systems in commercial buildings. 

It transformed the problem of minimizing energy costs 

into a Markov game, which can be operated without prior 

knowledge or building thermodynamic models. 

Simulation showed that this algorithm could effectively 

reduce energy costs while ensuring thermal comfort and 

indoor air quality [13]. Zhao et al. explored the 

application of data mining technology in building energy 

systems through a comprehensive literature review. This 

study divided data mining techniques into two categories: 

supervised and unsupervised, which were respectively 

used for energy load forecasting, fault diagnosis, and 

operation mode recognition [14]. 

 

 

 

Table 1: Summary table of related work 

Authors Methodology Application Results Limitations 

He et al. [6] 
Machine Learning + 

Improved PSO 

VAV System 

Controller 

Parameter 

Optimization 

Enhanced system 

response, reduced 

computation time 

Specific application 

scenarios or actual 

effects not 

mentioned 

Zhao et al. [7] 
Integration of VAV and 

DOAS 

Ventilation 

System 

Retrofitting 

Energy savings of 

16% in winter and 

21% in summer 

Study limited to 

Dalian area, may not 

be generalizable 

Nassif and Ridwana 

[8] 

Dual VAV System 

Control Strategy 

Building Energy 

Conservation 

Reduced fan power 

and heating energy 

consumption, 

minimal impact on 

cooling load 

Impact on indoor 

comfort levels not 

mentioned 

Zhao et al. [9] 
Multi-zone Equation 

Strategy 

Indoor Air 

Quality Control 

Significant energy 

savings, equivalent 

indoor air quality 

control as constant 

strategy 

Research may be 

limited to specific 

building types and 

climate conditions 
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Jornet-Monteverde 

and Galiana-Merino 

[11] 

MQTT Protocol, 

CC3200 

Micro-controller, etc. 

Wi-Fi Network 

Control 

Energy savings of 

75%-94% in 

single-zone, 44% in 

whole-house 

Long-term stability 

and scalability not 

mentioned 

Wei et al. [12] 
ANN Model Predictive 

Control Framework 
VAV System 

6.12% increase in 

system efficiency 

Need further 

verification of the 

algorithm's 

performance in 

different building 

environments 

Yu et al. [13] 
Multi-agent Deep 

Reinforcement Learning 

Commercial 

Building HVAC 

System 

Effectively reduced 

energy costs, 

ensured thermal 

comfort and indoor 

air quality 

Algorithm 

complexity may 

require substantial 

computational 

resources 

Zhao et al. [14] Data Mining Techniques 
Building Energy 

Systems 

Energy load 

prediction, fault 

diagnosis, etc. 

Literature review 

study, no specific 

application case 

provided 

 

 

 

In summary, there are still shortcomings in the 

parameter optimization, system response speed, energy 

consumption, and control strategy flexibility of 

VAV-ACS in existing research. Despite the application 

of machine learning and optimization algorithms, the 

parameter optimization process still faces challenges in 

adaptability and efficiency. The existing system has 

limited performance in quickly responding to 

environmental changes to maintain indoor comfort. In 

addition, although some studies have shown 

energy-saving potential, energy consumption remains 

high in multiple regions and large public buildings [15]. 

The existing control strategies need to improve their 

adaptability and flexibility to cope with complex and 

ever-changing building load demands. Therefore, this 

study introduces IMT based on coupled models and 

DNNs to improve prediction accuracy, accelerate 

response speed, reduce energy consumption, and enhance 

the flexibility of control strategies. The aim is to provide 

significant technological progress for the field of building 

energy management. 

 

 

 

 

 

3 Analysis of ACS characteristics in 

hotel buildings and IMT study of 

DNN 
This chapter describes the ACS characteristics of hotel 

buildings, including room structure and T&H control in 

public areas, and establishes a mathematical model to 

simulate the indoor environment. Additionally, it presents 

the IMT of the VAV system based on DNN, which 

enables precise control of the air conditioning supply 

volume through the construction of predictive models and 

the optimization of control strategies. This results in 

enhanced energy efficiency and improved indoor 

comfort. 

 

3.1 Establishment of a coupled model for 

indoor air parameters in hotels 
This study focuses on the ACS of hotel buildings, where 

the room sizes are relatively consistent and the 

environmental parameters of public corridors are easy to 

measure, with standard rooms accounting for the majority, 

as shown in Figure 1. 
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(b) Air conditioning air supply area division map

 

Figure 1: Typical room mathematical model and air conditioning ASA division diagram 

 

In Figure 1 (a), the hotel room consists of six 

interfaces. One external wall is in direct contact with the 

outside world, including walls and windows. The inner 

wall is adjacent to the corridor and usually has doors. The 

ceiling and floor form the upper and lower sides. On both 

sides are walls that connect with adjacent rooms. The 

VAV-ACS terminal equipment is installed inside the 

room. As shown in Figure 1 (b), before establishing a 

single room T&H coupling mathematical model, this 

study assumes that the air in the room can be simplified 

into a particle, facilitating the application of energy 

balance theory. Meanwhile, walls and floors can be 

considered as multi-layer structures, with the Heat 

Capacity (HC) and resistance concentrated on specific 

particles to establish an Energy Balance Equation (EBE). 

A mathematical model is constructed to analyze the heat 

transfer characteristics of the hotel ACS. To simplify the 

calculation, the heat transfer coefficient is assumed to be 

constant, although this may be affected by environmental 

changes. Sensitivity analysis is used to evaluate the 

potential impact of this assumption on the accuracy of the 

predictions. The model further refines the heat transfer 

simulation of the multi-layer structure of the wall and 

floor, and adopts an RC network model to improve the 

simulation accuracy. Using the RC network model, the 

walls and floors of the enclosure structure are divided 

into two layers, each consisting of four EBEs. The EBE 

for the outer surface of the wall is equation (1). 

2 ,

, ,

4 ( )

( ) 0

wa wa wa wa out

wa wa out out wa out

A K T T

A K T T

− +

− =
   (1) 

In equation (1), waA , waK , 2waT , and ,wa outT  

represent the area of the wall, Heat Transfer Coefficient 

(HTC), second node temperature, and outer Surface 

Temperature (ST). ,wa outK  represents the HTC between 

the outdoor air and the surface area of the wall. outT  

represents the outdoor air temperature. The EBE for the 

first node of the wall is equation (2). 
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In equation (2), waρ , waδ , and waC  are the density, 

thickness, and HC. The EBE for the wall’s second node is 

equation (3). 
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Finally, the EBE for the inner surface is equation 

(4). 

( )

( )

1 ,

, ,

4

0

wa wa wa wa in

wa wa in inr wa in

A K T T

A K T T

− +

− =
     (4) 

In equation (4), ,wa inT  represents the inner ST, and 

inrT  represents the air temperature in the return air area. 

The air balance equation for indoor work areas is 

equation (5). 
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In equation (5), aC  and aC  represent the air HC 

of the blowing-in area and the working area. inwT  and 

,adj iT  are the air temperature in the indoor workspace and 

adjacent rooms. ,fl inK  represents the HTC between the 

inner surface of the roof and the indoor air. ,fl wA  and 

,fl inT  are the area of the roof and the internal ST. saG  is 

the air supply mass flow rate. saT  represents the supply 

air temperature. aρ  represents the air density in the 

workspace. laK  and laT  are the HTC and temperature 

of the indoor heat source. The indoor air humidity and 

enthalpy balance equation is equation (6). 
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  (6) 

In equation (6), sah  and inwh  are the enthalpy 

values of the supply air and indoor air. The humidity 

balance equation for indoor work areas is equation (7). 

( )

, ,

,

inw

inw a sa sw ins sa sw inw

a adj adj i inw

i

dM
V ρ G M G M

dt

ρ V R M M

= −

+ −
(7) 

In equation (7), inwM  and insM  represent the air 

humidity in the indoor work area and indoor Air Supply 

Area (ASA). ,sa swM  represents the humidity of the air 

supply from the ASA to the work area. ,sa swG  represents 

the air supply quality flow rate between the ASA and the 

work area. inwV  represents the volume of the workspace. 

In hotels with corridors, the first floor often has a 

spacious lobby, which is typically supplied with air by 

multiple Variable Air Volume Boxes (VAVB). These 

VAVBs will interact with each other during operation, 

leading to coupling of air flow. The working area of the 

air conditioner is shown in Figure 2. 

 

Tins1 Tins2 Tins3

Gsa1,sr1 Gsa1,sw2

Gsa1,sw1
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Tinw1 Tinw2
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Gsa2,sw1 Gsa2,sw3 Gsa3,sw2 Gsa3,sw2

Gsa2,sw2 Gsa3,sw3

Gsa2,sw2,r Gsa2,sw2,l
Gsa3,sw3,r Gsa3,sw3,l

Direction fair-flow

Zone1 Zone2 Zone3

Gsa1 Tsa1 Gsa2 Tsa2 Gsa3 Tsa3

Wall

Floor
The work zone

The air-

return zone

Tinv2Tinv1

The air-supply 

zone

 

Figure 2: Air-conditioned work area 
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In multi-zone rooms, air typically flows between 

spaces through windows and doors. During this process, 

indoor air exchanges energy and mass with the 

surrounding environment, following the principle of mass 

conservation, and the total air flowing in and out of each 

room remains constant [16-17]. Therefore, this study 

divides the building into N  areas. Considering the 

diversity of room structures, it is assumed that every 

room owns M  interfaces, which means there have 

multiple shared interfaces in the entire building. For any 

two regions i  and j , the air flow exchange between 

them is equation (8). 

( )i j i jq f P− −=           (8) 

 

Taking any area i  within a multi-area building, 

according to the law of conservation of mass, equation (9) 

is obtained. 
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In equation (9), im  and iρ  represent the air 

quality and air density in region i . kρ  indicates the air 

density within the adjacent area k  of i . iV  is the i ’s 

volume. 
i kq −

 represents the air permeability through the 

k -th wall of i . ( ),k if ρ ρ  is the density value function. 

For multi-area buildings, each room also satisfies the 

Mass-action law, as shown in equation (10). 

( ) 0IF P =            (10) 

According to the coupling model, the air flow in 

each area of a large space room with multiple VAVB can 

be solved for indoor air flow coupling [18]. The 

mathematical model of single room T&H coupling is 

equation (11). 
'CX AX BU= +         (11) 

 

In addition, it can be assumed that the walls and 

floors are divided into two layers, and the room can be 

divided into supply air area, work area, and return air area 

according to the function of ACS to more accurately 

simulate and control the indoor environment. VAV-ACS 

consists of five core components, including intelligent 

automatic control system, Air Handling Unit (AHU), air 

conveying unit, ventilation duct, and air conditioning 

terminal device. These components work together to 

achieve efficient operation of the system, and the specific 

structural layout can be seen in Figure 3. 

T T T

Air handling unit M

M
Exhaust valve

Fresh air valve

Return air valve

Return air fan

Temperature 

Controller

Air 

conditioned 

room

Terminal 

device

 

Figure 3: Schematic diagram of VAV-ACS 

 

ACS consists of multiple key components, including 

air handling equipment located at the top of the building, 

which is responsible for adjusting fan speed to control air 

supply and meet room requirements. Air conveying 

equipment ensures effective air distribution by adjusting 

the opening of the air supply valve and providing 

circulating power. As a ventilation duct, the air duct 

system needs to have appropriate strength and 

air-tightness to prevent air leakage and noise. The air 

conditioning terminal device directly affects Indoor 

Temperature (InT) and comfort, and maintains the ideal 

indoor environment by adjusting the ASV. Finally, as the 

core of VAV-ACS, the automatic control system ensures 

comfort and improves energy efficiency by monitoring 

and controlling various parameters. These components 

work together to ensure efficient and energy-efficient 

operation of ACS. 

 

3.2 Air conditioning airflow analysis and 

IMT based on DNN 
VAV system, also known as VAV-ACS, is a solution that 

utilizes all air conditioning to regulate indoor 

environments. The system adjusts the amount of air sent 

into the room to meet the heat load and humidity 

requirements of different areas, ensuring that the indoor 

environment meets the predetermined comfort standards 

[19-20]. The VAV system can dynamically adjust the fan 
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speed and valve opening of the end device based on 

actual load changes, while transmitting operating data 

and control feedback information to the air conditioning 

control system. The VAV control diagram is shown in 

Figure 4. 

 

System 

workstation

Air handling 

equipment

DDC 

controller

VAV 

controller

VAV BOX
Control 

network

Wind pressure 

transmitter

P
Air duct system

Control 

network

Control 

network  

Figure 4: VAV control char 

 

In VAV-ACS, the air conditioning unit controls the 

ASV by adjusting the variable frequency current to meet 

the needs of different rooms. The VAV BOX terminal 

device is carefully arranged in various rooms, and the Air 

Volume (AV) of the air supply outlet is controlled by 

adjusting the air valve opening, achieving precise 

management of indoor T&H. These devices can respond 

to changes in the indoor environment and automatically 

adjust the air supply to maintain a set level of comfort. In 

the air conditioning design of the hotel, each room is 

equipped with a temperature regulator, which achieves 

temperature regulation and detection through VAV BOX 

end devices. When there is a deviation between the InT 

and the preset value, the end device will measure the 

difference and adjust the ASV to correct it. The detection 

function of VAV BOX can also monitor the ASV to 

ensure it is consistent with the set value. If there is any 

deviation, it can be corrected by adjusting the intake 

valve. VAV BOX consists of a casing, controller, and 

actuator to ensure the efficient operation of ACS. 

To build a predictive model for VAV Supply Air 

Volume (VAV-SAV), it is necessary to first create a 

training dataset. This dataset takes the actual VAV-SAV 

at a specific time t as the output, and includes the SAV at 

the same time in the previous time and day, Outdoor 

Temperature (OuT) at the same time and its data from the 

previous day and two days, solar radiation and 

atmospheric humidity on that day as input features. These 

features together form the training set S. Then the 

training set S is input into the Deep Belief Network 

(DBN) model. The training of DBN adopts a 

layer-by-layer pre-training and fine-tuning strategy. In the 

pre-training stage, the Contrastive Divergence algorithm 

is used, which is a first-order form of contrastive 

divergence. The Restricted Boltzmann Machine (RBM) is 

trained layer by layer in an unsupervised manner. In the 

fine-tuning stage, the Back Propagation (BP) algorithm is 

used to perform supervised fine-tuning on the entire 

network. To predict VAV-SAV in the new dataset D, the 

test samples are input into the trained DBN model, which 

will output the predicted ASV y. In the training phase of 

DBN, the initial restricted RBM first generates a feature 

vector in the input layer, which is then passed to the 

hidden layer. Through this process, the network can 

attempt to reconstruct the data of the input layer. The 

training process of DBN is detailed in Figure 5. 

...

...

...

...

Input data

Label data

output data

Feedforward propagation

Backpropagation

RBM1 RBM2 BP

 

Figure 5: DBN training process 
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To ensure the accuracy of the prediction results, the 

research model makes detailed parameter adjustments to 

the network structure. The model design includes two 

hidden layers and employs empirical formulas to 

optimize performance, as shown in equation (12). 

 
n

i

M

i

C k            (12) 

 

In equation (12), n  represents the number of 

neurons in the input layer, M  represents the number of 

neurons in the hidden layer, and k  represents the 

number of samples. If i M , then 0i

MC = , equation 

(13) can be obtained. 

( )
1/2

M n m a= + +         (13) 

 

In equation (13), m  represents the number of 

neurons in the output layer, and a  represents the 

constant between [0,10] , which leads to the equation 

(14). 

( )

2

1/2

logM n

M mn

=


=

         (14) 

 

According to equation (14), the final expression of 

M  can be derived, as shown in equation (15). 

 

( )
1/2

20.43 0.12 2.54 0.77 0.86

M

mn m n m

=

+ + + +
(15) 

 

According to equation (15) and continuous 

debugging of the number and learning rate of hidden 

layer neurons during the simulation process, 14 neurons 

are selected for the first layer and 7 neurons for the 

second layer. This study uses FCA to optimize the model, 

and the optimized model is displayed in Figure 6. 

PI algorithm Air valve

Room

Continue training

Stop training

Fuzzy clustering algorithm

spT

( )pT 

cS
Q ( )T 

0.6E 

+

-

Yes

No

( )1T  −

( )1d  −

( )1u  −

+
-

 

Figure 6: Predictive control model of room temperature time-delay system based on FCA 

 

In Figure 6, spy  is the set temperature value. 

( ) ( ) ( ) ( )1 1 1 1u τ y τ y' τ d τ− − − −, , ,  are the first 

derivative and disturbance of the input, output, and output 

of the system at time 1τ −  of the model. py  is the 

predicted value of room temperature. Q  is the ASV of 

the room. E  is the deviation between the predicted InT 

and the set value. Sc  is the control period. After 

training to 0.6E  , FCA can describe the dynamic 

features of delayed time system. In the study, the InT 

predicted by the network model is used as input for the 

control cycle to replace the actual room temperature 

output. These predicted values are used for the next round 

of system iteration. The system adjusts the opening of the 

air valve through PI control algorithm based on the 

difference between the predicted temperature and the 

target temperature to maintain InT. During the 

implementation process, the system regularly collects key 

parameters such as valve position and fan speed, and then 

uses FCA to predict room temperature. Based on the 

prediction results, the valve is adjusted in real-time to 

accurately control the indoor environment. 

 

4 Analysis and experimental 

verification of temperature control 

effect of VAV-ACS based on FCA 
This study conducts simulation experiments based on the 

developed single room T&H coupling model. These 

experiments exclude the impact of indoor personnel 

activities and focus on analyzing the effect of building 
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envelope structures on indoor environmental loads. In the 

experiment, the VAV-ACS optimized by DBNs sets an 

InT target of 22℃. The initial setting of the air valve 

opening is 30%, and dynamic adjustment of the indoor 

and outdoor temperature deviation is carried out every 5 

minutes according to the PI algorithm. The system 

components include an air handling unit with a rated air 

volume of 1500 m3/h and conveying equipment. 

Real-time monitoring of key operating parameters is 

implemented, and FCA is used to optimize the adjustment 

of air valves to adapt to environmental changes. The 

experiment is conducted under stable outdoor 

temperature conditions, with an approximate mean of 

25℃, from 10:00 PM to 3:00 PM each day. This ensures 

consistency in the experimental environment. Prior to the 

experiment, the room temperature is set at 20℃ and 

maintains for 20 minutes. The key hyper-parameters 

include a learning rate of 0.01, batch size of 64, iteration 

count of 1000, as well as 500 neurons in the first hidden 

layer and 250 neurons in the second layer of the network 

structure. During the training process, a cross entropy 

loss function and a stochastic gradient descent method 

with a momentum of 0.9 are used to optimize network 

performance and generalization ability. To validate the 

model, this study simulates two different operating 

conditions in MATLAB software. The building envelope 

structure parameters and corresponding indoor and 

outdoor environmental conditions for these working 

conditions are detailed in Table 2, aiming to observe and 

compare the dynamic changes of indoor T&H under 

different conditions. 

 
Table 2: Building envelope parameters and indoor and outdoor data of environment 

Different parameters Working condition one Working condition two 

Wall HTC ( )20.5 /waK W m C=   ( )21.2 /waK W m C=   

HTC of inner surface of wall ( )2

, 5 /wa inK W m C=   ( )2

, 6.5 /wa inK W m C=   

Roof HTC ( )22 /flK W m C=   ( )21.2 /flK W m C=   

Window HTC ( )23 /winK W m C=   ( )23.2 /winK W m C=   

Wall outer ST , 0wa outT C=   , 6wa outT C= −   

HTC of wall outer surface ( )2

, 12 /wa outK W m C=   ( )2

, 12.5 /wa outK W m C=   

Roof outer surface HTC ( )2

, 6 /fl outK W m C=   ( )2

, 6.5 /fl outK W m C=   

Roof exterior ST , 0fl outT C=   , 6fl outT C=   

Figure 7 shows the temperature response curves under operating conditions 1 and 2.
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Figure 7: Response curves under different temperature conditions 
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In Figure 7, this study observed the changes in 

building structure (including walls and floors) and Indoor 

Air Temperature (IAT), with no heat source and no 

heating provided indoors. In Figure 7 (a), under operating 

condition one, the initial IAT was 5 °C, which dropped to 

0 °C after 800 seconds, which was equal to the OuT. The 

temperature nodes of the walls and roofs also reached the 

OuT within the same time. In Figure 7 (b), in operating 

condition 2, the initial IAT was slightly higher at 7 °C, 

but it also dropped to -6 °C after 800 seconds, consistent 

with the OuT. Therefore, regardless of operating 

conditions 1 or 2, the temperature nodes of IAT and the 

building structure reached the same temperature level as 

the outdoor environment after 800 seconds. This 

indicated that in the absence of internal heat sources and 

heating, IAT would quickly adjust to the OuT. To verify 

the effectiveness of the research model, actual air supply 

data and outdoor meteorological data of a large 

VAV-ACS were collected for predictive analysis. The 

comparison of prediction errors of different neural 

network models is shown in Figure 8. 
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Figure 8: Comparison of prediction errors of different neural network models 

 

In Figure 8, the DBN model had a significant 

advantage in prediction accuracy, showing higher 

stability and accuracy in hourly air supply prediction, 

effectively avoiding the local convergence and 

over-fitting problems that traditional neural networks 

may encounter. The Mean Absolute Relative Error 

(MARE), root mean square relative error, and coefficient 

of determination reached 1.555%, 0.789%, and 0.9975, 

respectively. Therefore, the DBN model had the smallest 

error and more stable volatility compared to BP, Elman, 

and fuzzy models, providing the best predictive 

performance. This study selected three rooms from a 

certain hotel for actual measurement. Table 3 shows the 

VAV-ACS electromechanical equipment data. 

 

 
Table 3: VAV-ACS electromechanical equipment parameters 

Device name Specification (AV) 

AHU 1500 m3/h; Rated cooling capacity: 10 kW 

Ventilator 1500 m3/h; Rated power: 5kW 

Terminal control device 1 0-315 m3/h 

Terminal control unit 2 0-315 m3/h 

Terminal control 3 0-315 m3/h 

 

Considering the differences in the enclosure 

structures of the three rooms in the experimental platform, 

this study chose Room 1 and Room 3 as the experimental 

subjects. To ensure the stability of the experimental 

conditions and avoid interference from outdoor 

environmental changes, the experiment was scheduled to 

be conducted between 10:00 pm and 3:00 pm every day. 

Before the experiment begins, assuming that the 

temperature inside the laboratory and the end SAV 

remained constant for a certain period of time. The PI 

algorithm was used to control the VAV-ACS chilled 

water valve to maintain the supply air temperature within 

the preset range. During the dynamic adjustment process 

of VAV-ACS, the opening of the end air valve in the 

same room was kept consistent to accurately observe and 

analyze the dynamic response. The effect of VAVB 
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damper adjustment on the temperature of three rooms is displayed in Figure 9. 
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Figure 9: Effect of VAVB damper adjustment on the temperatures of three rooms 

 

Figure 9 showed the effect of VAVB damper 

adjustment on the temperature of three rooms in different 

seasons. In Figure 9 (a), during summer, the starting 

temperatures of rooms 7, 8, and 9 were 33 °C, 33.5 °C, 

and 32.5 °C, respectively. The damper opening increased 

from 30% to 100% at 20min, causing a significant 

decrease in room temperature at 24min and stabilizing at 

40min. When the air door opening decreased to 30% at 

100 minutes, the room temperature increased 

significantly at 104min, and by 120min, the temperatures 

in the three rooms dropped to 27 °C, 27.5 °C, and 26.8 °C, 

respectively. In Figure 9 (b), the winter situation was 

similar, with room starting temperatures of 7 °C, 7.5 °C, 

and 6.5 °C. The adjustment of the damper opening also 

caused a significant change in room temperature at 24min 

and stabilized at 40min. The readjustment of the damper 

opening was carried out at 100min, resulting in a rapid 

change in room temperature after 104min. Finally, at 

120min, the temperatures of the three rooms were 

adjusted to 15.2 °C, 15.8 °C, and 14.6 °C, respectively. 

The data showed that there was a delay of approximately 

4min in the response of InT to the adjustment of air door 

opening. The control effect of FCA is shown in Figure 

10. 
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Figure 10: Room temperature control effects in different rooms 

 

Figures 10 (a), (b), and (c) showed the room 

temperature control effects of rooms 7-9. Room 7 and 8 

initially had temperatures of 30.8 °C and 29.5 °C, 

respectively, with their set temperatures set at 25 °C and 

22 °C. After 300 minutes of VAV-ACS operation, the 

temperatures in both rooms had successfully reached the 

predetermined standards. Especially room 8, its 

temperature had dropped to 22 °C after about 45min. The 

room 9’s original temperature was also 30.8 °C, and its 

target was set at 25 °C. The AV and End Damper Control 

Effects (EDCE) of different rooms are shown in Figure 

11. 
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Figure 11: AV and EDCEs in different rooms 

 

Figure 11 (a) showed the effect of AV control and 

end air valve adjustment in room 7. After 300 minutes of 

VAV system operation, the room temperature 

successfully reached the set target. Room 7 firstly 

reached the set temperature within approximately 30min, 

but subsequently, due to changes in the indoor 

environment and fluctuations in the supply air static 

pressure, the fan speed was adjusted, resulting in 

fluctuations in the room temperature. Figure 11 (b) 

showed the air flow control situation in room 8. FCA 

demonstrated accurate temperature prediction ability, 

effectively reducing the frequency and amplitude of air 

valve fluctuations, and maintaining stable InT. This study 

intentionally opened the room 9’s doors and windows 

between 120 and 180 minutes to increase the heat load, as 

shown in Figure 11 (c). Despite the sudden increase in 

InT caused by this, FCA was still able to quickly adjust 

and accurately predict InT, and adjust the opening of the 

air valve in a timely manner to change the ASV. Through 

this real-time adjustment, the FCA control model 
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ultimately helped room 9 achieve the set temperature 

target. 

5 Discussion 

This study has achieved significant results in the 

intelligent management of VAV-ACS, especially in the 

improvement of parameter optimization, response speed, 

energy consumption reduction, and control strategy 

flexibility. Through the application of DBN models and 

FCAs, this study achieved lower average absolute relative 

error and higher coefficient of determination compared to 

other models in existing literature. Compared with the 

machine learning combined with improved PSO method 

proposed by scholars such as He N, the DBN model in 

this study avoided local optimization problems in 

parameter optimization and improved generalization 

ability. The improvement of system response speed was 

attributed to the accurate description of dynamic 

characteristics and real-time adjustment ability of FCA. 

In terms of energy consumption, the precise control in 

this study reduced energy waste and exhibited better 

energy-saving effects compared to the dual VAV system 

proposed by scholars such as Nassif N. The flexibility of 

control strategies benefited from the algorithm's ability to 

quickly adapt to changes in indoor and outdoor 

environments and user needs. The predictive ability of the 

DBN model and the real-time adjustment ability of the 

FCA were the main reasons for the breakthrough in 

MARE and determination coefficient in this study. This 

provides an efficient and accurate intelligent control 

method for building energy management. 

The proposed solution demonstrates novelty in the 

field of building energy management by combining a 

coupled model with DNN. The coupled model improves 

the accuracy of input data, enabling DNN to capture the 

complex relationship between building thermodynamic 

characteristics and indoor environmental changes, 

thereby significantly reducing prediction errors. 

Compared with traditional control strategies, the FCA 

enhances the adaptability and robustness of the system, 

effectively handling the time-varying input and system 

dynamics, and achieving more stable and accurate control. 

The optimized DBN model network structure and 

parameter adjustment result in enhanced performance. 

The application of FCA provides a novel approach to 

VAV system control, particularly in the context of 

uncertainty and fuzziness. 

6 Conclusion 

In modern architectural environments, ACS is a key 

facility for maintaining indoor comfort and air quality. 

This study applied DBN to optimize hotel VAV-ACS and 

constructed a mathematical model to analyze heat transfer 

to improve DBN prediction accuracy. The system 

dynamically adjusted the air valve based on the predicted 

temperature difference to achieve precise control of the 

indoor environment. Simulation experiments showed that 

InT could be quickly adjusted to OuT, and the DBN 

model was superior to other neural network models in 

predicting ASV, with an MARE of 1.555% and a 

determination coefficient of 0.9975. Actual tests had 

shown that the room temperature successfully reached the 

set target within 300 minutes, and FCA performed well in 

adjusting the air valve and controlling room temperature, 

maintaining stability even under interference conditions. 

These results provided effective intelligent control 

strategies for building energy management. This study 

mainly focuses on specific working conditions and hotel 

building environments, which may not fully represent all 

types of buildings and climate conditions. Further 

experiments can be conducted in more places. 
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