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To further improve the experience of visiting tourist attractions and promote their long-term healthy 

development, this study analyzes the short-term passenger flow prediction of tourist attractions. The 

traditional long and short-term memory network is selected as the basis of the prediction framework. 

Then the grey wolf optimization algorithm is used to optimize the hyper-parameters of the long and 

short-term memory network, and the differential evolution algorithm is used to improve the 

shortcomings of easily falling into the local optimum. Finally, a passenger flow prediction model is 

constructed based on intelligent optimization and deep learning. The experiment outcomes denote that 

the differential evolution improvement strategy designed in the study is beneficial for improving the 

global optimization of the grey wolf evolutionary algorithm. The average optimization values of 

different test functions are closest to the global minimum, effectively improving the population fitness. 

In the parameter optimization, the maximum value of hypervolume can reach 0.91. The minimum value 

of the inverse generation distance converges to 0.09, and the quality of the Pareto front solution is 

relatively high. The Spacing and Spread values are both above 0.8, indicating better diversity in the 

solution set. The improved prediction model has the lowest values in terms of mean absolute 

percentage error, root mean square error, and mean absolute error, and the minimum value of the error 

is only 0.0693. The maximum R2 value can reach 0.945, indicating good prediction accuracy and 

goodness of fit. The prediction results of this prediction model have high accuracy in predicting 

passenger flow at different time periods. The accuracy and F1 values are close to 0.95 and the 

precision and recall are higher than 0.90 on different datasets. This study enriches the theoretical 

basis for optimizing and improving traditional time series models, improves the accuracy of predicting 

tourist flow in tourist attractions, and helps promote the healthy development of the tourism industry. 

Povzetek: Predstavljen je sistem za napovedovanje potniškega toka turističnih znamenitosti, ki 

združuje diferencialno evolucijo in optimizacijski algoritem sivega volka (GWO) z LSTM mrežo. Model 

dosega visoko točnost napovedi s povprečnim R² do 0,945, kar prispeva k izboljšanju načrtovanja 

turističnih obiskov in razvoju turizma.

1 Introduction 

With the transformation and upgrading of the national 

industrial structure, the tourism industry takes a pivotal 

part in economic development. The tourism industry has 

emerged as a significant contributor to regional economic 

development, bringing in a large amount of economic 

income while also driving the development of other 

related industries [1]. But with the booming development 

of the tourism, the passenger flow of tourist attractions 

(TAs) continues to increase. Moreover, travelers are 

mostly concentrated at holiday nodes, leading to an 

imbalance in the allocation of tourism resources in terms 

of time and space. These types of problems seriously 

interfere with the safety management of scenic spots, 

affect the travel experience of tourists, and bring negative 

impacts to the development of TAs [2-3]. Thus, it is 

significant to forecast the passenger flow data of TAs  

 

through effective methods, help scenic spots to make 

reasonable planning and adjustments in resource 

allocation, personnel allocation, service quality, etc., 

formulate reasonable flow limiting measures to avoid 

overcrowding and resource waste, and promote the 

long-term sustainable development of the tourism [4]. At 

present, research on predicting the passenger flow of TAs 

mostly comes from the analysis of annual and monthly 

tourism data, and the prediction results have a strong lag, 

making it difficult to provide effective and reasonable 

guidance for scenic area management and tourist travel 

[5-6]. Today, in the context of "Internet plus", advanced 

computer, big data and other technologies and 

information systems have greatly promoted the upgrading 

and transformation of intelligence and informatization of 

tourism. However, the management of smart tourism 

services is still in the exploratory stage, and the 

construction of technology and infrastructure still needs 
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to be further strengthened [7-8]. In view of this, to further 

enhance the intelligence and scientificity of tourism 

industry management, deep learning algorithms are 

introduced into the problem of tourism passenger flow 

prediction (PFP), and a corresponding framework is built 

grounded on long and short-term memory networks 

(LSTM). Moreover, the grey wolf optimization (GWO) 

algorithm is introduced to optimize the hyperparameters 

of LSTM. The introduction of differential evolution (DE) 

algorithm during the optimization improves the 

shortcomings of GWO. 

The innovation of the research is mainly reflected in 

three aspects. Firstly, it further improves the level of 

intelligent management in the tourism industry. Secondly, 

it enriches the theoretical research level of time series 

prediction models and introduces intelligent optimization 

algorithms (IOAs) to achieve parameter optimization. 

Thirdly, it expands the application fields and potential of 

IOAs. The research is broken into four parts. Part 1 

illustrates the current research conditions of prediction 

problems and IOAs. Part 2 constructs a PFP model with 

LSTM. Part 3 conducts testing experiments on the 

effectiveness of the prediction model. The fourth part 

summarizes the main conclusions of the study and future 

work. This study is expected to strengthen the 

intelligence level of the entire tourism industry 

management and enrich the travel experience of tourists. 

2 Related works 

Predictive research is related to decision-making 

problems in many fields and is an important research 

direction in computer and artificial intelligence, receiving 

widespread attention from scholars. At present, the traffic 

prediction methods for TAs are mostly limited to raw 

traffic data and road networks. Gao et al. 

comprehensively considered the urban road network, 

scenic spot popularity, accessibility, and traffic volume, 

and used multiple historical data sources to learn the 

traffic dependence of multiple scenic spots through 

multi-graph convolutional networks and gated recurrent 

units for TAs traffic volume prediction. The experimental 

results indicated that the model can utilize integrated data 

for traffic flow prediction [9]. Holiday tourism 

requirement predication is a critical part of the tourism 

transportation system’s planning and management. Li et 

al. designed an improved spatiotemporal related LSTM 

model to predicate tourism demand by combining the 

spatiotemporal related history of passenger flow, weather, 

time, Internet search index and other data. Empirical 

analysis and verification of actual passenger flow data in 

suburban TAs in Beijing indicated that in contrast with 

other conventional prediction models, this model has 

better ability to capture spatiotemporal correlation of 

traffic flow and higher prediction accuracy [10]. The 

existing solutions for PFP are mostly based on regional 

prediction, with limited prediction capabilities. Sáenz et 

al. constructed a prediction framework based on graph 

neural networks, which integrates multi-source 

heterogeneous tourism data related to national mobility 

and infrastructure characteristics. The graph neural 

network was integrated into the graph model, and the 

experiment findings indicated that the model’s F1 value 

was higher than 0.7 [11]. Short-term PFP is the key to the 

operation and scheduling decisions of urban rail transit. 

To avoid potential threats caused by massive passenger 

flows, Xu conducted PFP research on the subway system 

and designed a multi-stage urban rail transit short-term 

PFP model that integrates convolutional neural networks, 

LSTM, support vector machines, and wavelet transform. 

The experimental outcomes indicated that the integrated 

model is superior to the baseline model in accuracy and 

efficiency, and the values of various error evaluation 

indicators are better than classical prediction techniques 

[12]. 

The spatial clustering of tourist quantity sequences 

limits the accuracy of tourist flow prediction models. Xue 

et al. designed a multimodal deep learning method for 

predicting hourly tourist flow in scenic spots based on 

spatial aggregation. This method effectively utilized 

search engine data to extract daily features of scenic spots, 

and utilized social media and tourist quantity data to 

explore spatial aggregation relationships. The empirical 

results showed that this method is superior to existing 

advanced baseline models, with a significance level of 

1%. Compared with the optimal baseline model, this 

method achieved a maximum reduction of 50.0% in error 

values [13]. To provide better personalized itinerary 

management for TAs and effectively avoid peak travel 

hours, Sun et al. designed a convolutional block attention 

module with deep learning for predicting tourism demand. 

This method first extracted a passenger flow grid graph 

from mobile signaling data, then constructed a 

convolutional block attention module using a 

multi-channel spatiotemporal grid graph constructed from 

multiple continuous passenger flow grid graphs, and 

finally predicted the demand for TAs. The findings of the 

experiment indicated that the mean absolute percentage 

error (MAPE) of this method is 8.11%, which is superior 

to that of other deep learning models [14]. 

IOA is a type of solving algorithm based on natural 

phenomena and biological inspiration, and different 

intelligent algorithms are broadly applied in different 

fields. Lu et al. conducted research on the optimization 

analysis of genetic algorithm, particle swarm 

optimization (PSO) algorithm, GWO algorithm, and 

sparrow search algorithm (SSA), in support vector 

regression. The optimized machine learning method was 

used to forecast the geological displacement generated by 

tunnel excavation. The fitness function analysis results 

showed that the GWO algorithm and SSA have high 

accuracy, efficiency, and stability [15]. Wang et al. 

designed a new multi-objective marine predator 

combination strategy for wind speed combination 

probability prediction. The experiment outcomes 

indicated that this method overcomes the deficiencies of 
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traditional multi-objective optimization algorithms and 

effectively measured and minimized the uncertainty in 

the prediction process [16]. To predict the uniaxial 

compressive strength of the novel rubber sand concrete 

material, Mei et al. selected PSO, fruit fly optimization, 

lion swarm optimization, and SSA to enhance the 

backpropagation neural network. The verification results 

of six performance evaluation indicators showed that the 

lion swarm optimization algorithm had the best 

performance [17]. Abdullaev et al. optimized the 

customer churn prediction model based on bidirectional 

LSTM using the chicken swarm optimization algorithm. 

Experiment outcomes indicated that the optimized 

prediction model performs better than other prediction 

techniques [18]. To improve the problem of poor 

trajectory accuracy and susceptibility to local optima in 

inland ship trajectory prediction models, Zheng Y et al. 

improved the SSA using sine chaotic mapping and 

utilized it to strengthen the weight and threshold of the 

prediction model. Experiment outcomes indicated that 

this method improves the prediction model’s accuracy 

and stability [19]. 

In summary, both domestically and internationally, 

the PFP in TAs mainly relies on traditional time series 

models, machine learning algorithms, or deep learning 

algorithms, and the prediction problem has made good 

research progress. The main methodology, dataset, 

assessment indicators and key findings of the study are 

shown in Table 1. However, these classic time series 

prediction methods require a large amount of 

computation and a longer training time. There is still 

some room for improvement in the model's predictors. At 

present, IOAs have been widely used for optimizing 

various model parameters or solution spaces, the use of 

IOAs to improve the performance of prediction models 

has become a popular trend, and the problem of tourism 

traffic prediction needs to be solved. Moreover, research 

also attempts to introduce IOAs to raise the performance 

of traditional time series prediction models. 

 

 
Table 1: Summary of existing research reviews 

Literature Main methods Dataset 
Evaluation 

indicators 
Main conclusions 

[9] 

Graph convolutional 

network, gated 

recurrent unit 

Integrate geographic 

data and historical 

traffic data 

Accuracy 

The prediction 

accuracy is better 

than several 

classical and recent 

methods 

[10] 

An improved 

spatiotemporal 

correlation LSTM 

model 

Historical data of 

the tourist flows, 

and the auxiliary 

data including 

meteorological data, 

temporal data, and 

Internet search 

index 

Prediction accuracy 

Better ability to 

capture 

spatiotemporal 

correlation of flow 

with higher 

prediction accuracy 

[11] 
Graph neural 

network 

Heterogeneous 

tourism data 
F1 value F1 value above 0.7 

[12] 

Integrated 

convolutional neural 

network, LSTM, 

support vector 

machine and 

wavelet transform 

Historical data of 

urban subway 

system 

MAPE, RMSE, 

mean square error, 

R2, and accuracy 

The prediction 

model is better than 

the baseline model 

in accuracy and 

efficiency, and the 

evaluation index is 

better than the 

classical prediction 

technology 
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[13] 
Multimodal deep 

learning methods 

Real-time tourist 

quantity dataset for 

different scenic 

spots in Beijing 

MAPE, RMSE 

The Diebold 

Mariano test is 

superior to 

state-of-the-art 

baseline models at 

the 1% level, with 

significantly 

reduced error values 

[14] 

Deep learning 

model based on 

convolutional block 

attention module 

Beijing and Xiamen 

mobile signaling 

data 

MAPE 

The MAPE of this 

method is 8.11%, 

which is better than 

other deep learning 

models 

[15] 

Genetic algorithm, 

PSO, GWO and 

SSA optimize the 

machine learning 

prediction model 

Soil pressure 

balance shield 

tunnel excavation 

construction data 

Pearson correlation 

coefficient 

The GWO 

algorithm and SSA 

have high accuracy, 

efficiency, and 

stability 

[16] 

Combined 

probability 

prediction of wind 

speed based on 

multi-target marine 

predator 

combination 

strategy 

Two wind speed 

data sets 
Prediction accuracy 

Improve wind speed 

prediction accuracy, 

effectively measure 

and minimize 

forecast 

uncertainties 

[17] 

PSO, fruit fly 

optimization, lion 

swarm optimization, 

and SSA to enhance 

the backpropagation 

neural network 

Uniaxial 

compression test 

data from RSC 

laboratory 

RMSE, correlation 

coefficient, 

coefficient of 

determination, 

MAE, mean square 

error, and sum of 

squares of error 

Lion swarm 

optimization 

enhance the 

backpropagation 

neural network 

better than the other 

three mixed models 

[18] 

Bidirectional LSTM 

prediction model 

based on chicken 

flock optimization 

algorithm 

Customer 

information data set 
/ 

The performance is 

better than other 

prediction 

techniques 

[19] 

Sinusoidal chaotic 

mapping improved 

SSA to optimize the 

prediction model 

Data of ship 

automatic 

identification 

system in the 

Yangtze River 

Accuracy and 

stability 

This method 

improves the 

accuracy and 

stability of the 

prediction model 

 

3 A tourist flow prediction model for 

tourist attractions based on 

improved LSTM 
Predicting the passenger flow of TAs helps optimize 

tourism products and services, improve tourist 

satisfaction and experience. The study selects LSTM 

from deep learning algorithms to construct a prediction 

model framework, and introduces IOAs to optimize the 

model parameters. 
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3.1 Distribution characteristics of passenger 

flow in tourist attractions and construction 

of LSTM prediction framework 
 

The PFP of TAs can be broken into medium and 

long-term PFP and short-term PFP. Medium and 

long-term passenger flow refers to the number of tourists 

over a relatively long period of time, usually evaluated 

based on the passenger flow of statistical years or 

quarters. It is influenced by factors such as economic 

conditions, scenic area facilities and service levels, and 

tourism policies. Short-term passenger flow refers to the 

passenger flow within a relatively short time range, 

usually daily, weekly, or monthly. It has many 

influencing factors and fluctuates greatly [20-21]. The 

study focuses on analyzing PFP, and the process of 

analyzing passenger flow characteristics and building a 

prediction framework is shown in Figure 1. 
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Figure 1: Flow of passenger traffic characterization and predication framework construction 

 

The study summarizes the influencing factors and 

distribution characteristics of tourist flow in TAs by 

reviewing relevant materials, literature, and yearbook 

reports related to scenic area management and passenger 

flow analysis. According to research, the main factors 

affecting tourist flow in TAs include weather, season and 

holiday influences, public opinion, and word-of-mouth. 

Factors such as weather comfort, rainfall, and 

temperature can affect the travel comfort of tourists. 

Under the current vacation system in China, holidays 

usually have a significant influence on the passenger flow 

of TAs. In addition, the promotion and publicity activities, 

positive public opinion, and good reputation of the scenic 

area will also attract tourists to travel. Overall analysis 

shows that the distribution characteristics of passenger 

flow in TAs are influenced by various factors, showing 

significant fluctuations during peak and valley periods. 

On weekends and holidays, the increase in passenger 

flow is more pronounced. Therefore, the passenger flow 

data has non-linear characteristics and obvious 

periodicity, showing differences between centralized 

distribution and decentralized distribution. 

The influencing factors of passenger flow are 

collected, they are transformed into trainable predictive 

model features, and feature selection and dimensionality 

reduction are performed to reduce redundant information 

between data, reduce data dimensions, and improve the 

model's generalization ability and interpretability. The 

feature selection method adopted in the study is the 

filtering method, which filters features by setting a 

threshold. The method employed for the reduction of 

dimensionality is principal component analysis (PCA). 

PCA applies the covariance matrix of data to map the 

original features to a new feature space, preserving the 

original information and reducing data correlation. The 

expression of the covariance matrix is shown in equation 

(1). In equation (1), m  represents the feature dimension 

of the sample. x  represents matrix elements. 

1

1 m T

i ii
x x

m =
=    (1) 

The study uses recurrent neural networks (RNNs) in 

deep learning as the technical foundation for prediction 

models. Traditional artificial neural networks rely on 

nonlinear mapping relationships to achieve predictive 

outputs, lacking the ability to capture the relationship 

between data and time. RNN is suitable for processing 

sequential data, memorizing the information learned 

during training, and applying it to the learning and 

computation of the current task. The network structure of 

RNN is denoted in Figure 2 [22]. 
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Figure 2: Schematic diagram of recurrent neural networks 

 

After inputting the sequence data into the RNN, the 

hidden state is iteratively calculated at each time step, and 

the output is predicted with the hidden state. The nodes 

between the hidden layers (HLs) are interconnected and 

jointly determine the output of the next moment. The 

operation process of RNN is shown in equation (2), 

wherein ( )h t  and ( )o t  represent the outputs of the 

HL and output layer (OL), respectively. t  represents a 

time series. ( )s t  means the memory of the sample at 

time t . ( )f  and ( )g  represent nonlinear activation 

functions. ( )g , W , V  represent the weight matrices 

of input layer, HL, and OL, respectively. 

( ) ( ) ( )
( ) ( )( )
( ) ( )( )

- -h t Ux t 1 Ws t 1

s t f h t

o t g Vs t

 = +


=
 =

 (2) 

The complexity of the structural composition of 

RNNs increases over time, and information is lost during 

transmission. RNNs face problems such as vanishing or 

exploding gradients. To avoid such phenomena, the 

improved structure LSTM of RNN is used in the study 

[23]. LSTM replaces the hidden neurons of RNN with 

structures with LSTM, including memory cells, input gate 

(IG), output gate (OG), and forget gate (FG). The 

different parts control the memory and forgetting of 

information through learning parameters, thereby 

determining the updating of cell states and the calculation 

of hidden states. Among them, the FG determines the 

information forgotten from the cell state, the IG 

determines the addition of input data to the cell state, and 

the OG calculates the hidden state based on the current 

input and cell state [24]. Compared to RNN, LSTM can 

capture and retain important information, better handle 

long-term dependencies and long-range correlations in 

sequences. The schematic diagram of LSTM structure is 

denoted in Figure 3. 
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Figure 3: Schematic diagram of LSTM network 
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The expression for the internal state tS  and HL 

state ty  of LSTM is shown in equation (3). In equation 

(3), tf , ti , and tO  correspondingly denote FG, IG, and 

OG. tS  denotes the intermediate state of the current 

internal state. 

( )
1     

tanh    

tt t t t

t t t

S f S i S

y O S

−
 =  + 


=
 (3) 

The expression for the FG is shown in equation (4). 

In equation (4), fW  means the weight of the FG. fb  

means forgetting gate bias.   represents the activation 

function. The FG can effectively filter out abnormal and 

redundant data. 

 ( )1,t f t t ff W y x b −= +  (4) 

The IG determines the addition of input data to the 

cell state, and the calculation process is denoted in 

equation (5). In equation (5), iW , ib , and oW , ob  

correspond to the weight matrix and bias of the IG and 

OG. 

 ( )
 ( )

1

1

,

,

t i t t i

t o t t o

i W y x b

O W y x b





−

−

 = +


= +

 (5) 

 

3.2 Design of improved LSTM prediction 

model based on DE and GWO 
Traditional LSTM networks involve the selection of 

many parameters, including the amount of HL nodes, 

initial learning rate, iteration times, etc. When the amount 

of HL nodes is small, the model cannot capture detailed 

patterns and relationships, which is prone to underfitting. 

When there are many HL nodes, it may lead to overfitting 

of the model. The size of the learning rate influences the 

speed and direction of network parameter updates, and 

affects the convergence ability of the model. The number 

of iterations is related to the model's learning of data 

features, which affects the model's fitting ability. In 

summary, the LSTM model involves many parameters, 

and the selection of parameters requires repeated training 

and adjustment based on actual tasks and data. To find 

reasonable and effective LSTM network parameters, the 

study chose to introduce GWO, an IOA, for 

hyperparameter optimization. Three hyperparameters, the 

number of HL nodes, the batch size and the initial value 

of the learning rate of the LSTM network, were selected 

for optimization. The range of the number of HL nodes 

was set to [1, 250], the range of the batch size was set to 

[1, 64], and the range of the initial value of the learning 

rate was set to [0.001,0.5]. The hyperparameters obtained 

from intelligent optimization were input into the test set 

for validation, and the hyperparameters were considered 

optimal when the mean square error of the prediction 

model was minimized. The total number of parameters of 

LSTM network included IG, OG, FG and candidate state, 

and the parameters of LSTM were simplified into two 

matrices, which map the input and output respectively, 

one of which has the dimension of *hidden input , and 

the other has the dimension of *hidden hidden , and the 

total number of parameters was namely 

4 * *hidden input hidden hidden hidden+ +（ ）. The input 

feature dimension of the LSTM network is defined as n , 

the length of the input sequence as T , the dimension of 

the hidden state as m , and the time complexity of the 

LSTM network as 
2 )4 4(O Th Tnh+ . The introduction of 

the GWO algorithm will somewhat increase the 

computational complexity of the LSTM network. 

The GWO algorithm is a natural heuristic algorithm 

that simulates the predatory social behavior of grey wolf 

groups. According to the mechanism of hunting 

cooperation in grey wolf groups, it achieves the goal of 

problem optimization and solution. GWO has been 

widely used in neural network optimization, various 

scheduling, control, and combination problem solving. 

Compared to other optimization algorithms, GWO 

possesses the following attributes: simplicity, ease of 

implementation, robust global search capabilities, and 

rapid convergence speed. [25-26]. 

Usually, there is a strict hierarchical system in a grey 

wolf pack, which is generally divided into four levels: 

first-level  , second-level  , third-level  , and 

fourth-level  . Based on the hierarchy of the grey wolf 

pack, high-level grey wolves have absolute dominance 

over low-level grey wolves. When designing GWO 

models, it is necessary to first construct a hierarchical 

model of the grey wolf pack. It calculates the fitness 

values of individual populations separately, and labels the 

grey wolf level based on the fitness size. Grey wolf   

is the leader of all wolf packs, which is responsible for 

commanding activities such as hunting, gathering, and 

escaping. Grey wolf   is responsible for assisting grey 

wolf   in decision-making, supervising and leading 

other groups to implement actions, and providing 

feedback on suggested information to grey wolf  . 

Grey wolf   and   are responsible for obeying and 

executing orders, safeguarding the safety of the wolf pack, 

and ensuring the balance within the grey wolf pack. The 

hierarchical system and hunting mechanism of grey 

wolves are shown in Figure 4 [27-28]. 
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Figure 4: Grey wolf hierarchy and hunting mechanisms 

 

As shown in Figure 4, the population system of grey 

wolves takes a pivotal part in the hunting process. Grey 

wolves search and track their prey through group 

activities, and then surround them from different 

directions. Grey wolf   commands grey wolf   and 

  to launch an attack on their prey, while grey wolf   

is responsible for containment, achieving the 

transformation and movement of the entire encirclement. 

The process of the group surrounding the prey is shown 

in equation (6), wherein D  indicates the distance 

between the grey wolf and the prey. C  represents a 

constant, oscillation factor. ( ) ( ),
p t

X X t  represents the 

positions of prey and grey wolf at the t  iteration. 

( ) ( )p t
D C X X t= −   (6) 

The calculation of the oscillation factor C  is 

indicated in equation (7), where 2r  represents a random 

constant between [0,1]. 

22C r=   (7) 

The position update of the grey wolf is indicated in 

equation (8), where A  represents the convergence 

factor. 

( ) ( )1 pX t X t A D+ = −  (8) 

The calculation of the convergence factor is 

indicated in equation (9), where a  represents a linear 

decrease from 2 to 0 as the iterations rises. _Max it  

represents the max number of iterations set. 1r  

represents a random constant between [0,1]. 

12

2 2
_

A ar a

t
a

Max it

= −



= −


  (9) 

The hunting phase involves updating the position of 

  using the positions of grey wolf  ,  , and  , and 

the updating process of   is denoted in Equation (10). 

( ) ( )

( ) ( )

( ) ( )

1

2

3

t

t

t

D C X X t

D C X X t

D C X X t

 

 

 

 = −



= −

 = −


 (10) 

The position vectors of wolf packs of different levels 

are calculated as denoted in equation (11). 

1 1

2 2

3 3

X X A D

X X A D

X X A D

 

 

 

= −


= −
 = −

  (11) 

Equations (10) and (11) can be used to calculate the 

distance between an individual and the optimal three 

wolves, and thus comprehensively determine the 

direction in which the individual moves towards the prey. 

It implements local or global search based on the size of 

the convergence factor. The process of optimizing LSTM 

model parameters using GWO is shown in Figure 5. 
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Figure 5: Schematic diagram of the process of optimizing LSTM model parameters by GWO 

 

Although GWO has many advantages and achieves 

hyperparameter optimization of LSTM models, the GWO 

algorithm is inclined to get stuck in local optima in the 

later phrase of parameter optimization. Therefore, the DE 

algorithm is introduced to optimize the GWO algorithm 

in this study. DE is an evolutionary algorithm with fast 

convergence speed and high accuracy, which utilizes the 

differences between individuals in the population to 

explore the search space and search for the optimal 

solution. The DE algorithm originates from the 

improvement of genetic annealing algorithm. The 

algorithm gradually promotes the individuals in the 

population through continuous iteration, making them 

gradually approach the optimal solution. The working 

mechanism of the DE algorithm is indicated in Figure 6 

[29-30]. 
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Figure 6: Differential evolution algorithm working mechanism and flow 

 

Firstly, a certain number of individuals are produced 

as the initial population, and the expression for each 

individual is shown in equation (12). In equation (12), the 

i th individual of the population is represented as 

( ) ( ) ( ) ( ) ( ) 1 2, ,..., ,...,i i i ij iDx t x t x t x t x t= , where j  

represents the parameter index and  1,2,...,j D= . 
,low up

j jx x  represent the boundary conditions of individual 

population. t  represents evolutionary algebra. 

( )   ( )0 0,1low up low

ij j j jx x rand x x= +  −  (12) 
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The population dominant individuals are calculated 

based on the fitness function, and then mutation 

operations are performed within the individuals [31]. 

New individuals are generated from three individuals 

through differential strategy, and the calculation is 

denoted in equation (13). In equation (13), ( )ijv t  

represents the mutated individual. ( )ajx t , ( )bjx t , and 

( )cjx t  are three different individuals. ( )cjx t  stands for 

mutation operator. 

( ) ( ) ( ) ( )( )1ij aj bj cjv t x t F x t x t+ = +  −  (13) 

In the process of evolution, to increase the diversity 

of the population, new individuals are crossed with 

existing individuals, as shown in equation (14). In 

equation (14), ( )1iju t +  represents the variable of 

variation. RC  represents the crossover operator. randj  

represents a random dimension. 

( )
( ) ( )

( ) ( )

1      0,1   
1

     0,1   

ij R rand

ij

ij R rand

v t if rand C or j j
u t

x t if rand C or j j

+  =
+ = 

 =
(14) 

Finally, the selection operation is conducted 

according to the greedy criterion, and the calculation 

process is shown in equation (15) [32]. In equation (15), 

f  represents the fitness function. 

( )
( ) ( )( ) ( )( )
( ) ( )( ) ( )( )

1      1
1

     1

i i i

i

i i i

u t if f u t f x t
x t

x t if f u t f x t

 + + 
+ = 

+ 

(15) 

After completing the encirclement, hunting, and 

attack behavior of the grey wolf population according to 

the GWO algorithm, the DE algorithm is applied to 

search for the best wolf location, complete the wolf pack 

location update, and make the GWO algorithm jump out 

of the local optimal solution. The process of improving 

the GWO algorithm by mixing the DE algorithm is 

shown in Figure 7. 
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Figure 7: Flowchart of DE algorithm mixed with improved GWO algorithm 

 

4 Performance testing and 

application effect analysis of 

tourism passenger flow prediction 

model 
To identify the performance of the hybrid improved 

GWO algorithm and DE-GWO-LSTM PFP model 

designed in the research, a series of performance testing 

experiments and prediction application effect analysis 

experiments were conducted. 

 

 

 

4.1 Performance testing of improved GWO 

parameter optimization algorithm 
Theoretical analysis can to some extent demonstrate the 

global search capability of the DE hybrid improved GWO 

algorithm, but quantitative performance analysis is still 

needed. The performance of the study was validated 

using different testing functions. The study selected 5 sets 

of testing functions, namely the unimodal benchmark 

testing functions Sphere, Quartic, multimodal Rastigin, 

Ackley, and Generalized Penalized testing functions. 

Fire-fly Algorithm (FA), Whale Optimization Algorithm 

(WOA), and traditional GWO were selected for 

comparison. It set the max number of iterations for the 

experiment to 1000, the initial population size to 60, and 
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the optimization times for each function to 40. The 

optimization outcomes for various test functions are 

indicated in Table 2. In Table 2, for the two unimodal test 

functions, the average optimization result of DE-GWO 

was closer to the global minimum value, with values of 

6.134E-12 and 6.189E-10, respectively. The standard 

deviation value was relatively small, and the improved 

GWO algorithm had better stability than the traditional 

GWO algorithm and the other two IOAs on the unimodal 

test function. On three different multimodal test functions, 

the partial optimization values of different optimization 

algorithms increased, but compared to each other, the 

improved GWO algorithm’s optimization value was still 

the smallest. In 40 optimization tests, the convergence 

rate of the improved GWO algorithm reached 100%. The 

improvement strategy of research design enabled GWO 

to effectively explore space, avoiding the occurrence of 

local optima and solving the problem of multimodal test 

functions having multiple local minima. 

 

 
Table 2: Comparison of test function optimization results 

Test 

function 
Algorithm 

Global 

minimum 

Variable 

dimension 

Average 

convergence 

value 

Convergence 

times 

Standard 

deviation 

value 

Sphere 

FA 0 30 6.156E-3 16 0.5687 

WOA 0 30 2.371E-5 18 0.2671 

GWO 0 30 7.684E-6 26 0.0061 

DE-GWO 0 30 6.134E-12 40 0.0001 

Quartic 

FA 0 10 2.644E-4 20 0.6412 

WOA 0 10 6.157E-3 19 0.3941 

GWO 0 10 4.198E-6 23 0.0267 

DE-GWO 0 10 6.189E-10 40 0.0035 

Rastrigin 

FA 0 10 4.197E-3 13 0.7616 

WOA 0 10 1.684E-5 18 0.7613 

GWO 0 10 6.167E-4 26 0.0646 

DE-GWO 0 10 8.168E-9 40 0.0000 

Ackley 

FA 0 10 6.164E-2 16 0.6971 

WOA 0 10 1.649E-4 21 0.7364 

GWO 0 10 5.167E-5 33 0.3764 

DE-GWO 0 10 6.169E-7 40 0.0046 

Generalized 

Penalized 

FA 0 10 1.649E-2 23 0.6791 

WOA 0 10 1.174E-3 24 0.5314 

GWO 0 10 3.197E-4 29 0.3181 

DE-GWO 0 10 6.318E-6 40 0.0364 

 

The GWO algorithm’s optimization ability before 

and after improvement was compared and analyzed, 

population fitness was utilized as the evaluation indicator, 

and the analysis outcomes are indicated in Figure 8. In 

Figure 8 (a), the traditional GWO algorithm had a faster 

evolutionary speed in the early phrase and a slower 

evolutionary speed in the later phrase. It gradually 

converged in the middle and later phrases of iteration, 

approaching the optimal population fitness around 115  

 

generations. In Figure 8 (b), the hybrid optimized 

DE-GWO algorithm approached the optimal population 

fitness curve in the early stages of iteration. It can be seen 

that the DE improvement strategy increased the 

population fitness ability of the GWO algorithm. With the 

data analysis in Table 1, the DE-GWO algorithm’s the 

global optimal solution search ability significantly 

improved. 
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Figure 8: Comparison of population evolution before and after GWO algorithm improvement 

 

4.2 Performance testing of DE-GWO-LSTM 

prediction model 
Firstly, the optimization ability of DE-GWO for LSTM 

hyperparameters was evaluated, and Hyper volume (HV) 

and Inverse Generational Distance (IGD) were selected as 

evaluation indicators. The experiment outcomes are 

indicated in Figure 9. HV and IGD are convergence 

indicators for evaluating algorithms. HV can measure the 

volume occupied by the solution set in the target space. It 

can be demonstrated that a higher value of HV leads to 

enhanced performance and convergence of the solution 

set. IGD measures the distance between the approximate 

Pareto front generated by the algorithm and the true 

Pareto front. A reduction in the value of IGD is indicative 

of an enhanced convergence of the algorithm. In Figure 9 

(a), the HV indicator curve of DE-GWO was the highest, 

with a maximum value of 0.91. It was better than 

traditional GWO by 0.74, while the HV value of the FA 

algorithm was the smallest, only 0.42. As shown in 

Figure 9 (b), the IGD curve of DE-GWO converged to 

the minimum value of around 0.09, which was 0.21 lower 

than the FA algorithm and 0.05 lower than the GWO 

algorithm. Overall, the DE-GWO algorithm has good 

convergence in the LSTM parameter optimization 

process, and the generated Pareto frontier solutions cover 

a large number of true frontier solutions. 
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Figure 9: Comparison of HV and IGD for different optimization algorithms 

 

Simultaneously it evaluated the diversity of the 

solution set of the DE-GWO algorithm, as the diversity of 

parameters affects the accuracy of the algorithm's 

prediction. The experimental results of Spacing and 

Spread are shown in Figure 10. Spacing and Spread 

indicators measured the minimum and maximum 

Euclidean distance between all solutions, respectively. 

The larger the values of the two indicators, the more 

dispersed and diverse the solutions in the solution set. As 

shown in Figure 10 (a), the Spacing curve of the 

DE-GWO algorithm was at its highest level and 

ultimately stabilized above the value level of 0.8. As 

shown in Figure 10 (b), the Spread curve of the DE-GWO 

algorithm was at the highest level, while the Spread 

values of the other three algorithms were all below 0.7. 

The DE-GWO achieved good application results in 

optimizing LSTM parameters. 
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Figure 10: Comparison of solution diversity of different algorithms 

 

Time series prediction models LSTM, GWO-LSTM, 

and Grey Forecast Model (GM) were selected for 

performance comparison. The NYC-Taxi, Air-Travel, 

Public-Transportation, and Retail datasets were utilized 

as the PFP dataset. NYC-Taxi included the travel records 

of New York City taxis. Air-Travel contained flight 

information and passenger data from different airports. 

Public-Transportation included passenger flow data for 

public transportation systems such as subways, buses, etc. 

Retail included both retail store sales records and 

customer visit records, which can be used for predicting 

and analyzing traffic in corresponding fields. The 

experimental data was broken into training and testing 

sets in an 8:2 ratio. 

The MAPE, Root Mean Square Error (RMSE), 

Mean Absolute Error (MAE), and R2 indicators of 

different prediction models were compared, and the 

experiment findings are indicated in Table 3. MAPE, 

RMSE, and MAE are all indices that determine the 

deviation between predicted and actual values. The three 

indices comprehensively assess the model’s the 

predictive ability, and smaller error values indicate better 

model performance. R2 can measure the degree to which 

a predictive model interprets the dependent variable and 

is applied to evaluate the goodness of fit of the model. 

The closer the R2 is to 1, the greater the model's 

explanatory power for variation in the dependent variable 

and the better the model's predictive effectiveness. In 

Table 3, the three types of error indicators of the 

improved DE-GWO-LSTM model were the smallest, 

while those indicators of the traditional LSTM and the 

GM models had larger values, roughly floating above the 

0.4 value level. The performance improvement of the 

improved GWO-LSTM model was not significant 

compared to the baseline model, and the error value still 

fluctuated around 0.3 level. The R2 values of the 

DE-GWO-LSTM model were all above the 0.85 level, 

with a maximum value of 0.9450. Compared to 

traditional LSTM models, it improved by 46.14%. This 

indicated that the model can accurately fit the 

characteristics of historical data and use data features at 

different time scales to complete data prediction. Overall, 

it can be seen that parameter optimization helped the grey 

wolf population break out of local optima, improving 

prediction accuracy and global search ability. 

 

 

Table 3: Comparison of predictive performance of different prediction models 

Model NYC-Taxi Air-Travel Public-Transportation Retail 

LSTM 

MAE 0.4861 0.4012 0.5109 

RMSE 0.4392 0.3694 0.4971 

R2 0.6466 0.6711 0.7130 

MAPE 0.4316 0.4160 0.3915 

GWO-LSTM 

MAE 0.3106 0.3067 0.3406 

RMSE 0.2906 0.3941 0.3166 

R2 0.7169 0.7613 0.7164 

MAPE 0.3641 0.3296 0.3064 

GM 

MAE 0.4216 0.4613 0.4136 

RMSE 0.4035 0.4067 0.3914 

R2 0.6812 0.6913 0.7066 

MAPE 0.3916 0.4036 0.4162 

DE-GWO-LSTM 

MAE 0.0693 0.0946 0.1067 

RMSE 0.1306 0.1649 0.1741 

R2 0.9450 0.9426 0.8697 

MAPE 0.1642 0.0952 0.2234 
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The results of the time efficiency comparison of 

different prediction models are shown in Figure 11. In 

Fig. 11, the prediction efficiency of different prediction 

models on different datasets was significantly different, 

but the computational efficiency of DE-GWO-LSTM 

model was higher in all datasets, indicating that the 

hyperparameter seeking optimization of LSTM by GWO 

algorithm after optimization by DE algorithm improved 

the efficiency of prediction model, which is comparable 

to the prediction time of simple baseline model. 
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Figure 11: Comparison of prediction efficiency of different models 

 

4.3 Analysis of the application effect of 

DE-GWO-LSTM passenger flow prediction 

model 
Relevant data of a TA in China from January 1, 2023 to 

December 31, 2023 was selected as the experimental 

dataset, with the data from January 1, 2023 to May 31, 

2023 as the training set. The data was divided into 

weekdays and holidays. The predication results of 

different time periods and overall is denoted in Figure 12. 

From sub-figures 12 (a) and (b), the prediction model 

designed in the study had a generally consistent trend 

with the fluctuation of actual passenger flow data for 

weekdays and holidays, but there were errors in 

estimating the number of passenger flows at some times. 

From Figure 12 (c), the prediction model designed in the 

study was more accurate in predicting the overall 

passenger flow over a six-month period, with a higher 

accuracy in predicting the trend of passenger flow and the 

number of passengers. 
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Figure 12: Passenger flow prediction results for different time periods 

 

The accuracy, precision, recall, F1 values, and error 

stability of the prediction model on the training and 

testing sets were evaluated and analyzed. The experiment 

outcomes are indicated in Figure 13. From Figures 13 (a) 

and (b), those values of the DE-GWO-LSTM prediction 

model were relatively close on the test and training sets, 

with an accuracy close to 0.95 and a precision and recall 

higher than 0.90. The combined use of four indicators 

comprehensively evaluated the prediction model’s overall 

effectiveness, meeting the actual needs of tourist flow 

prediction in scenic areas. As shown in Figure 13 (c), the 

model had good predictive stability. The prediction error 

for different data samples always maintained a relatively 

stable small range fluctuation, with a stability higher than 

0.90. This indicated that the model can accurately predict 

passenger flow by capturing seasonal and cyclical 

fluctuations. 

 



46   Informatica 48 (2024) 31–50                                                                        J. Yu 

Number of iterations
10 20 30 40 50 60 70 80 90 100

In
d
ic

at
o

r 
v
al

u
es

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Accuracy training set

Accuracy test set

Precision training set

(a) Accuracy and Precision

Precision test set

Number of iterations

10 20 30 40 50 60 70 80 90 100

In
d
ic

at
o

r 
v
al

u
es

(b)Recall and F1

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0

Recall  training set

Recall test set

F1 training set

F1 test set

0

Sample size ( ×10)

10 20 30 40 50 60 70 80 90 100

S
ta

b
il

it
y

0.80

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

(c) Stability of mean error

0

 

Figure 13: Comprehensive performance evaluation of the prediction model 

 

Finally, the PFP model designed for the study was 

applied to the simulation of TAs. A questionnaire survey 

was conducted to analyze and evaluate the economic and 

social benefits, management convenience, and tourist 

experience of the prediction model. Quarterly evaluation 

and follow-up would be conducted, and the statistical 

outcomes are indicated in Figure 14. As shown in Figure 

14, during the follow-up period on a quarterly basis, the 

satisfaction rating curves of the three stakeholders 

towards the predictive model showed an upward trend, 

achieving good application feedback. This model greatly 

facilitated the management of scenic spots and prepared 

tourists’ reception scientifically and reasonably based on 

the predicted results. At the same time, it maximized the 

travel experience for tourists. 
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Figure 14: Satisfaction evaluation of predictive model application
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5 Discussion 

With the continuous development of social economy, 

empowering the tourism industry through smart tourism 

is of crucial significance for developing new quality 

productivity, accelerating the construction of a strong 

tourism country, and promoting the high-quality 

development of tourism. To accelerate the development 

of smart tourism, the study analyzed around the TAs PFP, 

and the study chose LSTM, which is more sensitive to 

spatiotemporal sequences, as the basic framework of the 

prediction model, which is consistent with the technical 

basis of the literature [12], [18]. 

At the same time, the study, in the summary of 

related work, found that the IOA in the process of 

hyper-parameter optimization to improve the 

performance of the prediction model was more obvious. 

Literature [16] uses multi-objective marine predator 

combination strategy to optimize wind speed prediction, 

literature [17] uses PSO, Drosophila optimization, lion 

swarm optimization and SSA to enhance backpropagation 

neural network, and literature [18] uses flock 

optimization algorithm to improve bidirectional LSTM 

prediction model all effectively improve the prediction 

accuracy. In view of this, the study chose the simpler 

GWO algorithm to optimize the hyperparameters of 

LSTM, but the GWO algorithm had the deficiency of 

easily falling into the local optimum. The study 

reintroduces the DE algorithm to optimize the population 

of GWO algorithm, increase the diversity of the 

population, and improve the algorithm's ability of finding 

the optimal solution. Compared with the existing 

advanced research, the study integrated a variety of 

networks and algorithms to improve the performance of 

the prediction model, and at the same time, the model 

complexity was taken into account, and a simpler IOA 

was introduced, which is a better technical strategy. 

Comparing the experimental results of the literature [11], 

it is found that the model designed by the study improves 

the F1 value by 0.25, and the MAPE takes the lowest 

value of 0.0952, which is comparable to the results of the 

literature [14], but the model complexity has been 

significantly reduced. However, the research integrated 

LSTM, GWO and DE algorithms to a certain extent also 

increased the technical complexity, which increased the 

difficulty of using the technology for the tourism 

industry. 

On the whole, the method designed by the study 

realizes the optimal combination of DE and GWO, gives 

full play to the advantages of the two algorithms, and 

improves the accuracy and efficiency of PFP. This helps 

to enrich the theoretical research of IOAs and depth 

studies, and promote the application and development of 

optimization algorithms in the field of time series 

forecasting. The use of this method can help scenic spot 

managers to develop a reasonable resource allocation 

plan, improve service quality, and optimize the visitor 

experience. In future research work, further optimization 

of the algorithm can be considered to improve the 

scalability of the model in the face of different sizes of 

datasets and different types of TAs. Consideration should 

also be given to realizing further extensions of the 

forecasting method to increase the applicability of the 

method in other time series forecasting problems, such as 

weather forecasting, stock forecasting, and so on. 

Moreover, the prediction algorithm is integrated using a 

distributed system in order to realize the real-time 

prediction of tourist volume. 

6 Conclusion 

To improve the intelligent and information-based 

development of tourism and provide tourists with more 

convenient and personalized travel experiences, an LSTM 

PFP model improved by introducing IOAs was studied 

and designed. The experimental results showed that the 

quantitative analysis results further validated the 

theoretical analysis. The average optimization results of 

the unimodal test function were 6.134E-12 and 6.189E-10, 

respectively, which are closest to the global mini value. 

The DE algorithm optimized the global search capability 

of GWO, avoiding the problem of multiple local minima 

in multimodal test functions. Simultaneously it optimized 

the grey wolf population’s the fitness curve. DE-GWO 

showed good optimization results for LSTM 

hyperparameters, with a maximum HV index of 0.91, 

which is better than the traditional GWO's 0.74. The IGD 

curve converged to the minimum value of 0.09, a 

decrease of 0.05 compared to the GWO algorithm. The 

Spacing and Spread curves were both above the 0.8 value 

level, indicating better diversity in the solution set. The 

three error indicators of the DE-GWO-LSTM model on 

different datasets were the smallest, and the R2 value 

increased by up to 46.14%. This model had a relatively 

accurate prediction of overall passenger flow, with good 

stability in accuracy, precision, recall, and F1 values on 

the test and training sets. The prediction error fluctuation 

was small, and it achieved good economic and social 

benefits, which is conducive to scenic area management 

and improves the travel experience of tourists. This study 

is conducive to the intelligent management of tourism, 

but the accuracy of the prediction model in predicting 

sudden changes in passenger flow at peaks or valleys still 

needs to be strengthened. 
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