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Node localization technology can help industrial Internet of Things systems control production 

processes more accurately, monitor product quality in real time, and handle problems timely, thereby 

improving product quality. It is significant in improving the efficiency and safety of industrial 

production. However, existing node localization technologies have low accuracy in node localization 

in complex environments, which cannot effectively ensure localization effectiveness and directly affect 

device monitoring in industrial Internet of Things. To address this issue, a node localization method is 

constructed based on the radial basis function neural network function. Then the cuckoo algorithm is 

applied to optimize it. From the results, the improved CS-RBF model had a smaller change in absolute 

error value, with a minimum value of -9.3 and an average value of 0.8. When the proportion of beacon 

nodes was 35%, the average localization errors of DE, APTT, and DV Hop were 0.27, 0.23, and 0.22, 

respectively. The node localization error of CS-RBF was 0.18. This indicates that the designed node 

localization method can effectively achieve precise localization of the required nodes, thereby 

effectively scheduling and managing equipment, reducing equipment waiting time, and improving 

production efficiency. 

Povzetek: Predstavljen je izboljšan nevronski mrežni model za lokalizacijo vozlišč v industrijskem 

internetu stvari (IIoT). Metoda združuje radialno bazično funkcijo (RBF) z optimizacijo s pomočjo 

kukavičjega algoritma, kar izboljšuje točnost lokalizacije vozlišč v kompleksnih okoljih. Rezultati 

kažejo, da je napaka pri lokalizaciji vozlišč pri uporabi CS-RBF metode bistveno manjša, s čemer je 

omogočeno učinkovito upravljanje opreme, zmanjševanje čakalnega časa naprav ter učinkovitosti 

proizvodnje.

1 Introduction 

The Industrial Internet of Things (IIoT) continuously 

integrates various collection and control sensors or 

controllers with sensing and monitoring capabilities, as 

well as mobile communication, and other technologies 

into industrial production processes. This improves 

manufacturing efficiency, enhance product quality, and 

reduce cost, ultimately achieving the transformation and 

upgrading of traditional industries [1-2]. In the 

implementation of IIoT, Wireless Sensor Networks 

(WSN) are composed of rich micro sensor nodes 

deployed in monitoring areas. Therefore, for WSN, data 

collection, processing, and transmission without node 

information is meaningless. Common methods such as 

target monitoring and tracking, intelligent transportation, 

and modern logistics management all provide their own 

location information through nodes [3]. Node localization 

technology is one of the key technologies for 

implementing IIoT applications, which plays an 

important role in improving the performance and 

operational efficiency of IIoT systems. Node localization 

technology can be used to determine the position of 

terminal devices, thereby providing users with accurate 

geographic location information and monitoring devices 

and resources in the IIoT [4-5]. With the continuous 

development of WSNs, reliable and efficient node 

localization technology is an urgent problem to be solved. 

In the current node localization technology, the 

localization accuracy needs to be improved, especially in 

complex environments, where problems such as 

occlusion and wireless signal attenuation seriously affect 

the localization accuracy. Therefore, a node localization 

technology based on the Radial Basis Function Neural 

Network (RBFNN) is constructed for the IIoT. In 

response to the shortcomings of RBFNN, the Cuckoo 

Search (CS) is applied to optimize it. An Cuckoo 

Search-Radical Basis Function (CS-RBF) is constructed. 

This study innovatively combines RBF network with CS 

algorithm to design a localization method for unknown 

nodes in the IIoT. In response to the shortcomings of the 

CS method in the search, its initial population is 

optimized to obtain better optimization results. 

The study consists of four parts. The first part 

summarizes the current research status of RBF, CS, and 

node localization technology both domestically and 

internationally. The second part constructs an IIoT node 
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localization method based on CS-RBF. The third part 

validates the performance. The fourth part summarizes 

the research content and points out future research 

directions. 

2 Related works 

RBFNN is an artificial neural network that uses RBF as 

activation functions. It can effectively overcome the 

characteristics of local minima, simple training, and fast 

convergence speed. It is widely used in fields such as 

time series prediction, function approximation, 

classification, and system control. Yang et al. used a 

fuzzy RBFNN to construct a multi-objective 

classification algorithm. This method considered three 

types of clustering techniques to effectively generate 

membership degrees. The proposed method had 

significant superiority, and the calculation accuracy 

reached 92.02%, but its computational complexity was 

relatively high [6]. Tian et al. developed a new 

data-driven model based on RBFNN. Firstly, the 

regularization was used to overcome the structural risks 

and over fitting problems, improving its complex data 

processing ability. Meanwhile, the improved whale 

optimization was applied to optimize the RBF kernel. The 

results indicated that the proposed model had high 

accuracy, verifying the feasibility and effectiveness. Its 

accuracy was 0.86, but the large structure of this method 

led to a significant increase in computational complexity 

[7]. Wang and Chen explored the predictive ability of 

quantitative structure-activity relationship models and 

joint optimization methods based on RBFNN to study the 

acute toxicity mechanism of Pimegales promelas. Then a 

potential acute toxicity prediction model was developed. 

The robustness and external prediction ability were also 

better than existing methods. This model demonstrated 

good performance, R2=0.91, and ROC=0.86. However, 

this method had relatively weak detection ability for 

outliers [8]. Pazouki et al. proposed a hybrid model that 

combined RBFNN and Firefly Optimization Algorithm 

(FOA) to predict concrete compressive strength. The 

input parameters included the age of the sample and the 

dosage of cement, fine aggregate, and high-efficiency 

water reducing agent. The output was the concrete 

compressive strength. The results indicated that the 

proposed model estimated compressive strength with 

better accuracy. The accuracy of this method reached 

94.57%, but the process of parameter optimization was 

relatively complex [9]. 

CS is an emerging heuristic optimization algorithm 

that has been extensively studied in fields such as path 

planning, wireless sensor layout, big data optimization, 

and large-scale optimization. Shadkam and Bijari 

proposed an improved CS that can find the optimal 

solution, which had good performance. The improved 

method was superior to the original algorithm, and its 

efficiency was 82%. However, the data processing effect 

of this method was insufficient [10]. Ma et al. improved 

the optimization scheduling scheme of micro-grids using 

the CS. To analyze the impact of multi-objective 

economic environment scheduling in micro-grids, an 

adaptive taxation flight strategy was proposed. It 

improved the accuracy, stability, and scheduling 

convergence speed. The AUC of this method reached 

0.85 and the accuracy was 84%. However, when the data 

size was large, the operational efficiency of this method 

was limited [11]. Zhang et al. proposed an improved CS 

to solve the soil structure parameter estimation. This 

algorithm extended the search range of soil model 

parameters. The results showed that the proposed 

algorithm performed well in minimizing errors. Its 

accuracy and recall were 086 and 0.88, respectively. 

However, the computational complexity of this method 

was relatively high [12]. Oruc et al. created a new fuel 

flow model for the descent phase of flight using the CS. 

A new fuel flow model for the B737-80 aircraft model 

was developed. The created model could accurately 

predict fuel flow based on the altitude and true airspeed. 

This model was useful in air traffic management decision 

support systems. Compared with existing methods, its 

prediction accuracy was increased by 8.59%, but this 

method still had scalability issues [13].  

The research on IIoT nodes is of great significance 

in improving production efficiency, enhancing equipment 

reliability, enhancing safety performance, promoting 

intelligent transformation, and industrial upgrading. Li 

proposed a source node location privacy protection 

algorithm based on virtual routing in the IIoT. It 

effectively resisted attacks from strong visual attackers 

and strengthened the privacy protection. Simulation 

experiments showed that this algorithm had good privacy 

protection effects, which was superior to several 

comparative algorithms. The accuracy of this method was 

88.97%, but it was prone to imbalance when selecting 

nodes [14]. Kassab et al. discussed the information 

centric form of wireless access in a multi cell wireless 

access network model. The optimal detector based on the 

model was introduced. The results showed that the access 

method designed in the study had better efficiency, which 

was 18.06% higher than existing methods. However, this 

method had cold start problem [15]. Sah et al. used 

heuristic algorithms to schedule the incoming traffic of 

backbone nodes. It provided a unique interference 

example for successfully transmitting control and data 

packets. The accuracy of data transmission was 91.32%, 

but this method consumed a high amount of energy 

during the calculation process [16]. The relevant work 

has been summarized, and the specific content is shown 

in Table 1. 
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Table 1: Literature summary table 

Author(s) 
Key methods and 

algorithms 
Performance metrics Limitations. 

Yang et al. [6] 

A multi-objective 

classification method based 

on fuzzy RBFNN 

The calculation accuracy 

has reached 92.02%. 

Its computational 

complexity is relatively 

high 

Tian et al. [7] 
A RBF-based data-driven 

model 
Its accuracy is 0.86. 

The structure of this 

method is relatively large, 

resulting in a significant 

increase in computational 

complexity. 

Wang and Chen [8] 

Quantitative 

structure-activity 

relationship model based 

on RBFNN 

R2=0.91, and ROC=0.86 

This method has relatively 

weak detection ability for 

outliers. 

Pazouki et al. [9] 

A hybrid prediction model 

based on RBF and FOA for 

concrete strength 

prediction 

The accuracy reaches 

94.57%. 

The process of parameter 

optimization is relatively 

complex. 

Shadkam and Bijari [10] 

Determine the optimal 

solution based on improved 

CS algorithm 

Its efficiency is 82%. 
The data processing effect 

of this method is 

insufficient. 

Ma et al. [11] 

Optimization scheduling 

method for microgrids 

based on CS algorithm 

AUC reaches 0.85, 
Accuracy is 84%. 

When the data size is large, 

the efficiency of this 

method is limited. 

Zhang et al. [12] 

A parameter estimation 

method based on improved 

CS soil results 

The accuracy and recall 

rates are 086 and 0.88, 

respectively. 

This method has a high 

computational complexity. 

Oruc et al. [13] 

Aircraft fuel estimation 

model based on CS 

algorithm 

Its prediction accuracy has 

increased by 8.59% 

There are still scalability 

issues with this method. 

Li [14] 

A source node location 

privacy protection 

algorithm based on virtual 

routing in the Internet of 

Things environment 

The accuracy of this 

method is 88.97%. 

This method is prone to 

imbalance when selecting 

nodes. 

Kassab et al. [15] 

A wireless access method 

centered on edge and cloud 

detection information 

It is 18.06% higher than 

existing methods. 

This method has a cold 

start issue. 

Sah et al. [16] 

A backbone node incoming 

traffic scheduling method 

based on heuristic 

algorithm 

The data transmission 

accuracy is 91.32% 

This method consumes a 

high amount of energy 

during the calculation 

process. 

 

In summary, node localization technology has 

received more research, but existing node localization 

mostly determines the position of known nodes. There is 

relatively insufficient research on predictive localization 

for unknown nodes. At the same time, in response to the 

high computational consumption and insufficient output 

processing ability in existing research, this study aims to 

leverage the advantages of RBFNN in data prediction to 

construct corresponding node prediction and localization 

techniques. Then it is optimized using CS algorithm. It is 

expected that this method can calculate unknown node 

positions, reduce computational complexity, and better 

achieve node localization. 

3 Construction of node localization 

model based on improved CS-RBF 
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With the large-scale application of IIoT, sensor networks 

have gained favor in various fields. Sensors with location 

information are crucial for specific data acquisition and 

analysis. Sensor nodes have high randomness during 

deployment, making it difficult to predict the node 

position, obtain location information with greater 

difficulty, and incur higher cost. Based on the distance 

calculation between nodes, an improved RBFNN is used 

to construct node localization technology in the IIoT. 

 

3.1 Calculation of node historical 

information 
As a key component of the IoT, WSNs are widely used 

for information collection, real-time monitoring, etc. 

Sensors achieve information collection, data transmission, 

and other functions through information sharing, which 

are the main equipment for obtaining data information in 

the IoT [17]. Sensor networks typically collect 

information from sensor nodes and transmit it to the 

control center, as shown in Figure 1. 

 

Sensor nodes

Sensor field

Statellite

Connect
Internet

 

Figure 1: Basic structure of sensor network 

 

In the WSN, the location of sensor nodes is the key 

to achieving information collection and transmission. The 

information data without node location information is 

meaningless. Due to the influence of practical application 

environments, the position of sensor nodes is unknown or 

constantly changing. Therefore, constructing 

corresponding node localization techniques to locate the 

node positions in sensors is of great significance. Before 

locating nodes, firstly, the distance between nodes needs 

to be calculated to obtain the relative coordinates of each 

node. Taking the distance calculation between nodes A 

and M as an example, nodes A and M are on both sides of 

BC. Nodes B and C are neighboring nodes that can 

communicate directly. Therefore, the Euclidean distance 

between neighboring nodes can be calculated, as shown 

in formula (1). 

tan

tan

tan

tan

tan

AC

CM

AM

CB

BM

Dis ce b

Dis ce d

Dis ce q

Dis ce p

Dis ce c

=


=


=
 =

 =

  (1) 

According to formula (1), the distance calculation 

method between nodes A and D is shown in formula (2). 
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The positions of nodes A and M are shown in Figure 2. 
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Figure 2: Schematic diagram of the positions of node A and node M 

 

After solving formula (2), the distance solutions between A and D are obtained. Based on the interference 
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conditions between sensor nodes and practical application 

requirements, the corresponding interference solutions 

are eliminated to obtain the distance between nodes A 

and D. The above situation is the distance between nodes 

calculated with the help of auxiliary nodes. However, in 

practical applications, there are significant errors between 

the calculated node distances due to hardware conditions 

and external interference factors. Therefore, the study 

uses an error function to correct the errors in this 

calculation [18]. Firstly, the error function is defined, as 

shown in formula (3). 

' 2

1

( ) (min( ), ))
m

i i

i

E u u q u q
=

= − −  (3) 

In formula (3), m  represents the number of error 

estimates. q  represents the distance between nodes A 

and D. Then, the estimated value of m  is solved using 

the weighting method. Generally speaking, a higher 

density between nodes leads to higher accuracy in 

distance calculation. Therefore, solutions with higher 

node density are assigned larger weights. The node 

density is represented as C . The weighted solution is 

shown in formula (4). 
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In formula (4), uiC  and viC  respectively represent 

the node connectivity of the two auxiliary nodes of the 

quadrilateral formed by node D. The practical application 

of nodes is complex and diverse. Not all nodes can form 

geometric relationships with their neighboring nodes 

during the calculation process. Therefore, for nodes that 

do not satisfy geometric relationships, other nodes that 

can satisfy quadrilateral relationships are used to 

supplement the quadrilateral and further estimate the 

node distance. If nodes A and M cannot form a 

quadrilateral relationship, the distance between the two is 

shown in formula (5). 

tan AM sDis ce D=   (5) 

In formula (5),   represents the correction 

coefficient between the shortest path distance and the 

Euclidean distance in nodes A and M, with a value range 

of (0,1). The size of   is positively correlated with the 

connectivity of each node that passes through the shortest 

path between nodes A and M. sD  represents the shortest 

path size between nodes A and M, as shown in formula 

(6). 

1 2 ...s zD d d d= + + +   (6) 

In formula (6), zd  represents the size of each hop 

distance between nodes A and M. Then, the error 

correction method is used to correct the distance between 

the calculated AM to obtain a relatively accurate distance 

between nodes A and M. 

 

3.2 Construction of node localization model 

based on improved CS-RBF 
Node localization prediction in WSNs is to calculate the 

position of unknown or target nodes based on known 

node information. With the progress of modern science 

and technology, artificial neural networks have been 

widely applied and developed in fields such as hospitals, 

industrial control, computer science, and intelligent 

recognition. The RBFNN has strong nonlinear 

approximation ability and fast training speed. Therefore, 

the study adopts RBFNN to construct an unknown node 

localization model for sensor networks. RBFNN is a 

three-layer feed-forward network model composed of 

Input Layer (IL), Hidden Layer (HL), and Output Layer 

(OL) [19]. When the input sample approaches the center 

distance of the basis function, the HL nodes are activated, 

producing a larger output. The weight between the IL and 

the HL is 1. The IL maps the output vector to the HL. The 

linear transformation process occurs between the HL and 

the OL. The final output is the weighted sum of of all 

neuron outputs in the HL. The activation function in 

RBFNN adopts Gaussian basis function, as shown in 

formula (7). 
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In formula (7), jb  represents the node width of the 

Gaussian basis function. x  is the input variable. jc  

represents the center vector of the j -th node in the 

network. The calculated historical node information is 

used as the input sample to calculate the nonlinear 

mapping relationship between the corresponding node 

positions at the fitting time point. The output of the 

RBFNN obtained is displayed in formula (8). 
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In formula (8), nX  represents the set of training 

samples for the network. ( )nY X  represents the 

movement position of the node. i  represents the 

weight between the i -th HL unit and the OL unit. 0b  

represents the offset of the output node. ( , )n iX k  

represents the basis function. ik  is the center of the basis 

function. In this calculation process, RBFNN encounter 

difficulties in center selection and are prone to falling into 

local optima during training. When constructing RNFNN 

model, different parameter selection methods have 

different impacts on model performance. The random 

selection center method can effectively determine 

network parameters. However, when the data sample is 

too large, over-fitting may occur and increase 

computational complexity. Although orthogonal least 

squares method can effectively improve the 

generalization ability of the model, it may not be able to 

design an RBFNN with the optimal structure. In addition, 

the self-organizing selection center method can also 

increase the complexity of the algorithm when facing 

large amounts of data. With the development of current 
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technology, intelligent optimization algorithms have 

provided new research directions for neural network 

parameter optimization. Based on this, the study adopts 

intelligent optimization algorithms to select the 

parameters of RBFNN. The intelligent optimization 

algorithm does not rely on gradient information during 

the optimization process. It only adjusts the search 

direction of the objective function based on the fitness 

function value, which has better performance. Therefore, 

the study adopts the CS to optimize it. The CS-RBF node 

localization method is constructed for the IoT, improving 

the performance of the RBFNN. CS is a new type of 

meta-heuristic optimization method that searches for the 

optimal solution in the solution space by simulating the 

breeding strategy of cuckoo birds [20]. The reproduction 

of CS is shown in Figure 3. 
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Figure 3: Schematic diagram of cuckoo bird reproduction 

 

The CS has advantages such as fewer parameters 

and strong optimization ability, which is widely used in 

parameter optimization. During the flight, its flight 

trajectory y exhibits typical characteristics of Levy flight. 

( )Levy   represents the flight path, which is a typical 

random walk strategy. Its step size follows the Levy 

distribution, as displayed in formula (9). 

1
( ) ~ (0 2)Levy s s




− −
   (9) 

In formula (9), s  represents the random step size 

of Levy flight. To generate a random step size that 

follows this distribution, Mantegna is used in the study, 

as shown in formula (10). 

1 (1 3)s a



=    (10) 

In formula (10),   and u  represent following a 

standard normal distribution. The position update of the 

CS during the optimization process is shown in formula 

(11). 

1 ( )t t

t iC C Levy + = +   (11) 

In formula (11), 
1t

iC +
 refers to the position of the 

i -th individual in the t -th generation.   is the step 

size scaling factor used to control the search range of the 

step size, as shown in formula (12). 

0 ( )t

i bestC C =  −   (12) 

In formula (12), 
1t

iC +
 represents the current optimal 

position. The standard CS algorithm has relatively weak 

search ability and search speed during operation. Firstly, 

the initial population of the CS algorithm is optimized. 

The initial population of the standard CS algorithm is 

randomly generated in the solution space, requiring more 

time to search for the optimal solution during 

optimization calculations. Therefore, the initial 

population optimization is to make the initial population 

randomly and uniformly distributed in the solution space. 

The parameter values that need to be optimized are 

divided into small intervals. Individuals are randomly 

generated in each interval. The sum of all individuals is 

the total population. Through this method, the solution 

can be uniformly distributed. In the CS algorithm, if the 

population is N , and the solution space of a parameter is 
[ , ]W R , then the solution space of the initialized 

population is shown in formula (13). 

 

, ( 1)p

R W R W
S W i W i
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After optimizing the initial population, the study 

adopts an elimination mechanism to optimize the CS 

algorithm, with the aim of increasing population diversity. 

Specifically, after completing the local search, all bird 

nests in the solution space are sorted according to their 

fitness size. Then S bird nests with the worst fitness are 

eliminated. A corresponding number of bird nests are 

generated at the current optimal bird nest position to 

update the position, as shown in formula (14). 
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In formula (14), 
1 ( )t t

t iC C Levy + = +   refers to 

a normal distribution with a mean of 0 and a variance of 1, 

with the aim of keeping the newly generated position near 

the optimal nest position.   represents the regulatory 

factor. The improved CS algorithm is shown in Figure 4. 
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Figure 4: Improved CS algorithm process 

 

The above optimization strategy is used to adjust the 

exploration and development capabilities of the CS 

algorithm. The algorithm can converge more quickly and 

effectively, with higher accuracy. In the application of the 

IoT, the spatial linear transformation ability of the IL to 

OL in the RBFNN is used to determine the mapping 

relationship with node positions. Next are the 

implementation steps. Firstly, the calculated historical 

node information in the IIoT is input into the RBFNN as 

initial data. Then the parameters are initialized to 

calculate the fitness function value of the CS algorithm. 

According to the fitness function value of the current CS 

and the optimal position of the bird nest, the CS 

algorithm is optimized. After multiple iterations, the 

optimal position is obtained. The specific implementation 

is shown in Figure 5. 
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Figure 5: Implementation process of CS-RBF 

 

In the CS-RBF, in RBFNN, the spatial linear 

transformation ability from IL to OL is used to determine 

the mapping relationship with node positions. The 

specific implementation process is as follows. Firstly, the 

CS algorithm is initialized, including the initial 

population, maximum iteration number, maximum 

discovery probability, etc. Then, the individuals in the CS 

algorithm are encoded. Their variance, weight, etc. are 

used for RBFNN training to calculate the initial fitness 

value of the individuals. Next, while retaining the optimal 

individual, the individual positions are updated to 

calculate the discovery probability of all individuals. 

Based on the calculation results, the fitness values of the 

individual positions before and after are compared. If the 

termination condition is met, the optimal parameters are 

obtained and assigned to RBFNN. Otherwise, the initial 
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fitness value of the individual is recalculated and 

subsequent steps are repeated. Based on the above steps, 

the parameter optimization of RBFNN is completed. The 

implementation process of the entire research method is 

shown in Figure 6. 

 

Using CS algorithm to find 

the optimal parameters
Normalize sample dataCollect historical node 

information to construct 

data samples

Perform node position 

prediction calculation
Obtain calculation results

Assigning optimal parameters

 to RBF neural networks

 

Figure 6: Implementation process of research method 

 

In summary, in the application of the IoT, the 

implementation process of the research method is as 

follows. Firstly, historical node information in the 

relevant IIoT is collected to construct data samples. The 

collected samples are normalized to construct 

corresponding training and testing sets. Then the CS is 

initialized to optimize RBFNN. The optimal parameters 

obtained from the CS algorithm are assigned to the 

RBFNN. Finally, the CS-RBF model is used to predict 

and calculate the nodes. 

 

4 Performance analysis of node 

localization model based on 

improved CS-RBF 
To verify the actual performance of the proposed 

CS-RBF node localization method, corresponding 

experiments are designed to verify its application 

effectiveness. Firstly, the optimization performance of the 

CS before and after improvement is analyzed. Then the 

node localization performance of the CS-RBF model is 

verified. 

 

4.1 Performance analysis of CS-RBF model 
The testing environment for the experiment is a Windows 

10 system, with an Inter (R) Core (TM) i5-3230M CPU 

of 2.60GHz. All experiments are completed in 

MATLAB2016a. The input parameters for network 

results are as follows. The input node is 5, and the HL 

nodes are 20. The population size of the CS is 50, with a 

minimum discovery probability of 0.2, and a maximum 

discovery probability of 0.5. The maximum iterations are 

500. Firstly, the performance of the CS method is tested. 

Four test functions are selected as basis functions to test 

the improved CS algorithm, namely J.D. Schaffer 

function (f1), Sphere function (f2), Schwefel's Problem 

function (f3), and Generalized Griewank function (f4). 

The dimensions of the four test functions are 2, 10, 10, 

and 30, and the theoretical optimal values are all 0. The 

search ranges are [-5, 5], [-100, 100], [-100, 100], and 

[-600, 600], respectively. The fitness values of the four 

test functions are displayed in Figure 7. In Figure 7 (a), 

the final convergence effect of CS and the improved SC 

was basically the same, but the initial value of CS 

convergence was relatively high. In Figure 7 (b), the 

improved SC converged after 40 iterations, while CS 

gradually converged after 100 iterations. In Figure 7 (c), 

the improved CS method showed over-fitting and 

relatively weak convergence performance. In Figure 7 (d), 

the improved SC gradually converged after 60 iterations. 

The iterations of CS exceeded the improved method. 

Overall, the improved CS algorithm has better 

convergence performance and accuracy than the standard 

CS algorithm. The obtained optimization results are also 

better than the original CS algorithm, with higher 

accuracy performance. 
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Figure 7: Performance comparison of CS algorithm before and after improvement in different test functions 

 

To verify the optimization effect of the CS, the 

prediction performance of the CS-RBF before and after 

improvement is compared. Figure 8 displays the results. 

In Figure 8 (a), there was a significant difference in the 

potential values between the improved CS-RBF method 

and the RBFNN method. The improved CS algorithm 

used in the study had higher fitness, meeting its various 

changing trends. In Figure 8 (b), the absolute error value 

of the improved CS-RBF model changed less, with a 

minimum absolute error value of -9.3, and an average 

absolute error value of 0.8. The maximum absolute error 

value of the RBFNN was 17, and the average absolute 

error value was 2.9. The difference between the two is 

significant, indicating that the improved CS can 

effectively optimize the RBFNN. 
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Figure 8: Comparison of predictive performance before and after RBF improvement 

 

To verify the feasibility of the proposed method in 

WSN, simulation experiments are conducted to analyze it. 

Meanwhile, different node localization methods are 

compared to verify the feasibility of the designed method, 

including Differential Evolution (DE), Approximate 

Point-in-Triangulation Test (APTT), and Distance Vector 

Hop (DV-Hop). In the experimental area, 50 sensor nodes 

are randomly arranged and numbered as 1, 2, 50. Firstly, 
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the visualization process of the nodes is presented, as 

shown in Figure 9. 
 

Determine reference

 node information
Building a wireless network Historical node information 

added to the network
Correcting node information

CS algorithm parameter

 optimization
End RBF parameter assignmentCalculate unknown node location

 

Figure 9: Visualization process of node localization in industrial Internet of Things environment 

 

Based on the above visualization process, the 

performance of the research method is analyzed. Firstly, 

in the C-Shaped Random network, the node localization 

efficiency of the CS-RBF algorithm is analyzed. Figure 

10 displays the results. In Figure 10, the time 

consumption of DE, APTT, DV Hop, and CS-RBF 

methods after completing sample node localization 

sampling was 5.6s, 4.3s, 3.2s, and 2.4s, respectively. The 

CS-RBF method has the lowest time cost after 

completing all node localization. The node localization 

performance is better. 
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Figure 10: Comparison of node localization efficiency in the C-Shaped Random network 

 

Next, the error performance of the designed method 

is analyzed. The localization errors of the four methods 

obtained are shown in Figure 11. Among them, Figure 11 

(a) represents the average localization error rate. Figure 

11 (b) represents the average error distance. In Figure 11 

(a), the average localization error rate of DE, APTT, and 

DV Hop was 0.69, 0.52, and 0.33, respectively. The 

average localization error of CS-RBF in all nodes was 

0.18. The node localization error of this method is 

significantly lower than the other three commonly used 

methods. Figure 11 (b) shows that the error distance 

difference in actual localization is relatively large. 

Among them, the maximum error distance of DE was 

9.7m, the APTT was 8.9m, the DV-Hop was 10m, and 

the CS-RBF was 5.1m. Each node localization method 

has multiple extremes, but the proposed CS-RBF method 

has the smallest error distance fluctuation. The node 

localization results are the most stable and the 

localization effect is the best. 
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Figure 11: Comparison of average localization error and average error distance of nodes using different methods 

 

4.2 Analysis of node localization effect for 

improved CS-RBF 
The average localization error of different methods varies 

with the beacon node density, as shown in Figure 12. In 

Figure 12, overall, the average localization error 

decreased with the increase of beacon node density, 

indicating that the node localization effect was getting 

better. Among them, when the proportion of beacon 

nodes was 10%, the average localization error difference 

of the four node localization methods was significant. As 

the beacon node density gradually increases, the 

localization error difference of each method gradually 

narrows. When the proportion of beacon nodes was 35%, 

the average localization errors of DE, APTT, and DV 

Hop were 0.27, 0.23, and 0.22, respectively. The node 

localization error of CS-RBF was 0.18. In the entire 

change process, the node localization error of CS-RBF is 

consistently lower than the other three methods, 

indicating that this method has the best localization 

effect. 
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Figure 12: Comparison of average localization error with changes in beacon node density 

 

To verify the actual effectiveness, different WSNs 

are selected to compare the node localization 

performance, including a completely random network 

(Random), a random lattice network (Gird), a C-shaped 

random network (C-Shaped Random), and a C-shaped 

random lattice network (C-Shaped Gird). The energy 

consumption of different node localization methods is 

shown in Figure 13. In Figure 13 (a), the energy 

consumption of DE, APTT, DV-Hop, and CS-RBF were 

75J, 62J, 51J, and 23J, respectively. In the Gird network, 

the energy consumption of the four methods was 87J, 46J, 

39J, and 21J, respectively. In Figure 13 (c), the energy 

consumption of the four methods was 105J, 56J, 47J, and 

38J, respectively. In Figure 13 (d), the energy 

consumption of the four methods was 142J, 123J, 97J, 

and 86J, respectively. In four different WSNs, the energy 

consumption of each method varies. Overall, CS-RBF has 

the lowest energy consumption, highest efficiency, and 

lowest energy cost required for IoT node localization. 
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Figure 13: Energy consumption of different node location methods in different sensor network environments 

 

Taking the C-Shaped random as an example, the 

proportion and coverage change of its beacon nodes are 

displayed in Figure 14. Figure 14 (a) presents the 

coverage change of node localization when the survival 

time changes. Figure 14 (b) shows the node localization 

coverage change when the beacon ratio changes. In 

Figure 14 (a), after 5s, the coverage of the four node 

localization methods reached a stable state. After 

stabilization, the coverage rates of DE, APTT, DV-Hop, 

and CS-RBF were 87%, 88%, 91%, and 99%, 

respectively. The coverage of CS-RBF method exceeded 

the comparison method. In Figure 14 (b), the coverage 

rates of DE, APTT, DV-Hop, and CS-RBF were 94%, 

94%, 95%, and 100%, respectively. Under different 

conditions, the node coverage outperforms commonly 

used node localization methods, indicating that its 

localization accuracy is optimal. 
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Figure 14: The impact of changes in the beacon proportion and survival time on coverage using different methods 

 

To further validate the effectiveness of the proposed 

method, the SOMCL method is used to collect 120 

positions of 60 unknown nodes in the movement 

trajectory, obtain corresponding time series. Then a 

prediction model for node positions is constructed. The 

prediction results obtained by different methods are 

shown in Figure 15. As shown in Figure 15, in this 

dataset, the error range of CS-RBF was [2, -2]m, 
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DV-Hop was [4, -6]m, APTT was [2, -5]m, and DE was 

[6, -7]m. Based on the error statistics of 50 sensor nodes 

arranged in the previous study, the designed method has 

better performance in different node datasets, which can 

adapt to different data environment changes. 
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Figure 15: Comparison of error curves 

 

The comparison between the proposed method and 

the APTT method with relatively better performance in 

the comparative methods is shown in Table 2. In Table 2, 

when comparing the research method with APTT, the 

localization error and error distance of the two methods 

are selected for statistical analysis. The results showed 

that there was a significant difference in localization error 

between the two methods (P<0.05). The error distances of 

the two methods obtained were 5.1 and 8.9, respectively, 

with significant statistical differences (P<0.05). There 

was a significant difference in time consumption between 

the two methods (P<0.05). The energy consumption was 

23 and 62, respectively (P<0.05), and the difference was 

statistically significant. 

 

 
Table 2: Statistical comparison of performance of different methods 

Comparative 

indicators 
Research method APTT t P 

Localization error 0.18 0.52 0.253 0.002 

Error distance 5.1 8.9 0.349 0.001 

Time 

consumption 
2.4 4.3 0.268 0.001 

Energy 

consumption 
23 62 0.451 0.001 

 

5 Discussion 

A node prediction method based on improved RBFNN 

was designed for the localization of unknown nodes in 

IIoT. The designed method shows a smaller change in 

absolute error value, with a minimum absolute error value 

of -9.3 and an average absolute error value of 0.8. 

Compared with the RBFNN based on whale optimization 

proposed by Tian et al. [7], the research method can more 

effectively expand the search range, resulting in better 

optimal parameter values. In addition, this method has 

better universality and robustness. The node localization 

method based on CS-RBF showed that its average 

localization error among all nodes was 0.18. Compared 

with the method proposed by Yihong L I et al. [14], the 

research method has smaller localization error and error 

distances. Because the research method is based on the  

 

 

 

calculation results of historical node information for data 

training, it can effectively reduce the training error and 

improve its performance. Compared with the method 

proposed by Kassab R et al. [15], the research method 

corrects the distance error between historical nodes, 

reduces the influence of error interference and 

meaningless node information, thereby improving the 

possible imbalance between nodes and improving node 

localization accuracy. Compared with Sah D K et al. [16], 

the designed method has lower energy consumption in 

different sensor network environments, that is, the 

method has better operation effect and performance. 

Because the research method reduces the influence of 

unnecessary node information during the initial historical 

node data processing, it can not only improve node 

localization accuracy, but also reduce node computation 

and improve the operational efficiency. 

Overall, the research method has better performance 
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and operational efficiency in locating unknown node 

positions in IIoT. Given the current demand for node 

information localization in IIoT, this method has broad 

application prospects, such as the localization and 

intensity determination of various natural disasters, the 

localization services required by intelligent control 

systems, intelligent transportation systems, etc. This not 

only provides new ideas and technical means for the 

localization and prediction of future node information, 

but also has a positive impact on improving the overall 

performance of the IIoT. 

However, there are still shortcomings in the research. 

The method used in the study only considers its 

application in a two-dimensional planar environment. 

Meanwhile, the node position prediction is based on the 

analysis of node positions in static environments, without 

considering node information localization in dynamic 

environments. In addition, computer hardware devices 

may also cause issues such as data overflow and data 

stream destruction. This will also require regular 

inspection and maintenance of computer hardware 

equipment in future research. 

6 Conclusion 

In IIoT applications, node localization technology is the 

key to obtaining accurate location information. On the 

basis of calculating the distance between nodes, a node 

localization method based on RBFNN was constructed. 

Then, the CS was used to optimize the performance of the 

RBFNN node localization method. Corresponding 

experiments were designed to verify its performance. The 

CS-RBF designed in the study had better convergence 

times and accuracy than the standard CS algorithm in 

different test functions. The optimization results obtained 

were also better than the unimproved CS algorithm. The 

time consumption of DE, APTT, DV-Hop, and CS-RBF 

methods after completing sample node localization 

sampling was 5.6s, 4.3s, 3.2s, and 2.4s, respectively. That 

is to say, the proposed CS-RBF method had the lowest 

time cost after completing all node localization, with 

better node localization performance. When the 

proportion of beacon nodes was 35%, the average 

localization errors of DE, APTT, and DV-Hop were 0.27, 

0.23, and 0.22, respectively. The node localization error 

of CS-RBF was 0.18. When the beacon ratio changed, the 

coverage rates of DE, APTT, DV-Hop, and CS-RBF were 

94%, 94%, 95%, and 100%, respectively. This indicates 

that the proposed CS-RBF node localization method has 

higher localization efficiency and accuracy, which has 

good application effects in node localization in the IIoT. 

However, there are still shortcomings in the research. 

Although error functions are used to correct the error 

values when calculating the distance between nodes, the 

correction effect in different application scenarios is 

affected to a certain extent. Future research will further 

optimize the node calculation in different scenarios and 

improve the correction effect. 
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