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This research article aims to predict the remaining usage time of roller bearings using machine learning 

algorithms. The specific classifiers employed in this study are Support Vector Machines, Random Forest 

Classifier, and k-Nearest Neighbors. The predictive model takes into account various features including 

temperature, speed, load, dimensions of the inner and outer rings, width, vibration amplitude, vibration 

frequency, lubricant type, and lubricant viscosity. Data for training and testing the model were collected 

using a custom-made single bearing test rig. The target output variables are divided into intervals 

representing different percentages of remaining usage time. Principal component analysis (PCA) is 

utilized to identify the most influential features from the data. A ten-fold cross-validation method is 

employed for training and testing the classifiers. The features extracted through PCA are then fed into the 

classification model. The results show that the Support Vector Machines achieve the highest mean 

classification accuracy of 96.74%, followed by the Random Forest Classifier with 95.95%, and the k-

Nearest Neighbors classifier with 91.77%. The study concludes that the Support Vector Machines 

outperform the Random Forest Classifier and k-Nearest Neighbors. Future research directions include 

exploring the application of deep learning algorithms to further enhance the predictive accuracy of the 

model. Additionally, conducting experiments with a larger and more diverse dataset, encompassing 

various operating conditions and types of bearings, would provide a broader understanding of the model's 

performance and generalizability. 

Povzetek: Raziskava primerja SVM, Random Forest in k-Nearest Neighbor algoritme za napovedovanje 

preostale življenjske dobe valjčnih ležajev, pri čemer SVM doseže najvišjo točnost z 96,74%.

1 Introduction  

Remaining Usage Life (RUL), also known as Remaining 

Useful Life, is a fundamental concept in the field of 

predictive maintenance. It involves estimating or 

predicting the amount of time that a specific component, 

system, or asset can be utilized before it fails or reaches a 

predefined threshold. RUL estimation is a critical aspect 

of maintenance planning and plays a significant role in 

optimizing maintenance strategies, minimizing downtime, 

reducing costs, and enhancing the overall reliability and 

performance of equipment (Lei et al., 2018; Nejjar et al., 

2024; Palaniappan, Nataraj, Noaman, et al., 2023). The 

primary objective of predicting the RUL of a component 

or system is to proactively schedule maintenance actions 

based on its expected remaining operational life 

(Aberkane & Elarbi-Boudihir, 2022; Yaseen et al., 2022). 

By accurately estimating the RUL, maintenance activities 

can be planned and executed in advance, ensuring that 

necessary interventions are carried out before the 

occurrence of unexpected failures (Guo et al., 2017; Zhao 

et al., 2017). This approach helps prevent costly 

downtime, minimize the risk of catastrophic failures, and 

optimize the utilization of resources. Predicting the RUL 

of a component or system requires an understanding of its 

degradation patterns and the ability to monitor its health 

condition (Ferreira & Gonçalves, 2022). Degradation 

patterns refer to the changes in the component's 

performance or health indicators over time, which are 

indicative of its remaining operational life (Fan et al., 

2020; L. Zhang et al., 2018). These patterns can be 

characterized by analyzing historical data, observing 

trends in sensor readings, or studying the behavior of 

similar components under similar operating conditions. 

Monitoring the health condition of a component or system 

involves collecting relevant data through various sensors, 

such as temperature sensors, vibration sensors, acoustic 

sensors, or oil analysis sensors (Baptista et al., 2019; 

Palaniappan, Nataraj, Ismail, et al., 2023a; Yan et al., 

2020). These sensors continuously measure key 

parameters that reflect the health and performance of the 

component. By monitoring these parameters, deviations 

from normal operating conditions can be detected, and the 

degradation process can be tracked. To estimate the RUL 

accurately, various data-driven techniques and algorithms 

are utilized (Chen et al., 2019; Elmahallawy et al., 2022). 

Machine learning algorithms, such as regression models, 

neural networks, decision trees, and support vector 
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machines, are commonly employed to analyze historical 

data, extract patterns, and predict the remaining 

operational life (Rathore & Harsha, 2022; Zhou et al., 

2020). These algorithms utilize features or variables 

derived from the collected data to establish relationships 

between the degradation patterns and the expected RUL. 

The process of RUL estimation is not limited to a single 

approach or algorithm (Karim et al., 2023; Liu, 2024). It 

often involves iterative steps of data preprocessing, 

feature selection, model training, and validation. The 

quality and availability of data, the choice of appropriate 

degradation models, the selection of relevant features, and 

the consideration of uncertainties and variability are 

factors that can influence the accuracy of RUL predictions 

(Nabi et al., 2021). Advancements in technology, such as 

the Internet of Things (IoT) and edge computing, have 

enabled real-time RUL estimation (Khan et al., 2024; Lei 

et al., 2018; Palaniappan, Nataraj, Ismail, et al., 2023b). 

By integrating sensor devices with connectivity 

capabilities and leveraging edge computing resources, it is 

possible to continuously monitor the health condition of 

assets, collect real-time data, and provide up-to-date RUL 

predictions. Real-time RUL estimation allows for timely 

maintenance interventions, enables condition-based 

maintenance decisions, and enhances overall asset 

management efficiency (Nejjar et al., 2024; L. Zhang et 

al., 2018). In conclusion, Remaining Usage Life (RUL) 

estimation is a crucial concept in predictive maintenance. 

It involves predicting the remaining operational life of a 

component or system based on its degradation patterns 

and health condition monitoring. Accurate RUL 

estimation enables proactive maintenance planning, 

minimizes downtime, reduces costs associated with 

reactive maintenance, and enhances the overall reliability 

and performance of equipment. By utilizing data-driven 

techniques and algorithms, organizations can optimize 

maintenance strategies and ensure the effective utilization 

of resources. 

 

2   Literature review  
In recent years, there has been a lot of interest in applying 

machine learning approaches to predict machinery's 

remaining useful life (RUL) (Esfahani et al., 2021; Li et 

al., 2019). This literature review provides an overview of 

several studies and approaches to RUL prediction with 

machine learning. Regression models are a popular 

strategy for RUL prediction.   

Baptista et al. investigated the use of the Kalman filter in 

data-driven prognostics, which includes a training stage 

for building a data-driven model and a prediction stage for 

estimating the end of life and remaining useful life of 

systems (Baptista et al., 2019). The Kalman filter is well-

known for its integrated and resilient properties. The paper 

examines the performance of the Kalman filter in five 

data-driven prognostics systems that employ field data 

from an aeroplane bleed valve: neural networks, 

generalized linear models, k-nearest neighbors, random 

forests, and support vector machines. The results show 

that Kalman-based models have superior precision and 

convergence. The Kalman filtering technique increases 

the accuracy and bias of the original regression models, 

especially when the equipment approaches its end of life. 

Among the approaches, the nearest neighbor’s method 

demonstrated the greatest overall improvement, implying 

that Kalman filters may be particularly effective for 

instance-based methods. 

Zhou et al. proposed a model for calculating the remaining 

useful life of battery cells in a pack. It use k-nearest 

neighbor regression and includes information from all 

cells. A differential evolution technique optimizes the 

model's parameters. The approach determines the 

remaining useful life by averaging the useful lives of 

related cells. The approach yields an average error of 9 

cycles, with the best estimation yielding an error of 2 

cycles. Estimations are performed in 10 milliseconds. 

Accuracy improves as the number of tested and nearby 

cells increases. Compared to particle filter and support 

vector regression, the technique reduces estimation errors 

by 83.14% and 89.79%, respectively. The results support 

the method's usefulness in calculating the remaining 

usable life of lithium-ion cells (Zhou et al., 2020). 

Yan et al., introduced a novel method for predicting the 

remaining useful life (RUL) of rolling element bearings, 

which are critical components in rotating machines (Yan 

et al., 2020). The method uses dimensionless data to assess 

bearing degradation and a hybrid degradation tracing 

model to estimate RUL optimally. Two novel metrics are 

proposed to reflect the vibration intensity of bearings, 

increasing sensitivity to incipient faults and decreasing 

variations. These metrics are used to identify the 

beginning of prediction and provide a dimensionless 

failure threshold. A support vector machine (SVM) 

classifier is used to determine the degradation stage with 

high accuracy, and it is trained using fitted measurements 

from a generalized degradation model. Five degradation 

stages have been defined for classification. However, 

actual measurements are used as inputs during the 

prediction process. The hybrid degradation tracing model 

uses the best RUL prediction to follow the deterioration 

progress based on classification findings. The suggested 

method is validated on public bearing datasets and 

compared to existing methods, confirming its 

effectiveness within a reasonable error range. Because the 

proposed measurements are dimensionless, this method 

can be used under a variety of operating situations. 

In the work of Fan et al., proposed a transfer learning (TL) 

method based on feature representation for predicting the 

remaining useful life (RUL) of equipment (Fan et al., 

2020). This approach solves the situation in which 

samples with previously unknown circumstances are 

encountered in the target domain, but labels are only 

available in the source domain. We use the Consensus 

Self-Organizing Models (COSMO) deviation detection 

method to create transferable attributes that capture each 

equipment's distinctiveness when compared to its peers. 

Our TL method's efficiency is proved utilizing the NASA 
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Turbofan Engine Degradation Simulation Data Set. 

Models with COSMO transportable features outperform 

other methods for predicting RUL, especially when the 

target domain is more complicated than the source 

domain. 

Kang et al., presented a novel machine learning-based 

approach for automating the prediction of equipment 

failure in continuous production lines, with a focus on 

estimating the remaining useful life (RUL) (Kang et al., 

2021). The suggested model includes normalization, 

principal component analysis for pre-processing, 

interpolation, grid search for parameter optimization, and 

the multilayer perceptron neural network (MLP) method. 

The approach is assessed using a case study of predicting 

engine RUL using NASA turbo engine information. The 

experimental results show that the suggested model is 

effective at predicting the RUL of turbo engines and 

greatly improved predictive maintenance outcomes. 

Rathore & Harsha proposed a data-driven prognostics 

method for determining the remaining operational life of 

bearings (Rathore & Harsha, 2022). The method employs 

run-to-failure data from test rig tests to extract time-

domain properties. Sudden changes in these traits signal 

the onset of defects that lead to failure. A monotonicity 

measure is used to choose the ideal feature set for 

expressing bearing degradation. Dimension reduction and 

fusion are achieved using principal component analysis 

(PCA), which yields a unidimensional health indicator 

(HI). The oscillations in the HI are smoothed with a 

Weibull failure rate function (WFRF) and approximated 

using a nonlinear least-squares technique. By inverting the 

model, anticipated time values and the bearing's remaining 

operational life are estimated and compared to actual 

experimental results. Performance assessment measures 

including MAPE, MSE, RMSE, and bias are used. 

Furthermore, an online degradation state classification 

approach employing a k-nearest neighbor (KNN) 

classifier is built, resulting in good accuracy as seen by the 

ROC curve (receiver operating characteristic curve) with 

an AUC (Area under the ROC Curve) value of 0.94. 

Within 95% confidence levels, the predicted remaining 

useful life (RUL) closely approximates the actual RUL, 

with some variations. The model exhibits promising 

performance and can be used to estimate the remaining 

useful life of bearings. 

A summary of the recent literature with 

equipment/component for which RUL is predicted using 

machine learning techniques along with dataset used, 

preprocessing, feature extraction, methodology and 

outcome are tabulated in Table 1.  

 

Table1: Recent works related to RUL 

Reference Equipment/Co

mponent 

Dataset Preprocessing/ 

Feature Extraction 

Methodology Outcome 

(L. Zhang et 

al., 2018) 

lithium-ion 

cell 

ARBIN 

BT2000 

is used 

for data 

collectio

n 

Differential 

evolution 

optimization   

SVM, KNN and 

particle filter 

KNN performed 

better compared to 

the other classifiers 

and the metric used is 

relative error.  

(Baptista et 

al., 2019) 

aircraft bleed 

valve 

584 data 

recorded 

between 

2010 to 

2015 

Kalman Filter SVM, Neural Network, 

Random Forest, 

KNN,  generalized 

linear models 

All the classifiers 

with Kalman filter 

performed better 

compared to the 

classifiers without 

Kalman filter.  

Relative accuracy 

was used as metric.  

(Yang et al., 

2019) 

Bearing 

dataset 

(acceleration 

and 

temperature 

data  for 17 

bearings) 

PRONO

STIA 

dataset 

Cutting vibration 

signals into 

segments 

as training samples 

Convolution Neural 

Network 

Satisfactory results 

were obtained and the 

metric used was 

RMSE.  

(Yan et al., 

2020) 

Bearing force 

lubricatio

n, 

constant 

speed 

and load 

- IMS 

dataset 

and 

Relative Root 

Mean 

Square (RRMS) 

and Inertial 

Relative Root 

Mean Square 

(IRRMS) 

SVM 98.88% 

Classification 

accracy was obtained  

https://www.sciencedirect.com/topics/social-sciences/generalized-linear-model
https://www.sciencedirect.com/topics/social-sciences/generalized-linear-model
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PRONO

STIA 

dataset 

(Fan et al., 

2020) 

Turbofan 

Engine 

Degradation 

NASA 

Turbofan 

Engine 

Degradat

ion 

Simulati

on Data 

Set 

transfer learning Self organizing Maps Root Mean Square 

Error – RMSE and 

mean absolute 

percentage error – 

MAPE 

 

 

(Kang et al., 

2021) 

Turbofan 

Engine 

Degradation 

NASA 

turbo 

engine 

datasets 

Normalization and 

Principal 

component 

analysis.  

Multilayer Perceptron 

(MLP) 

Mean Square error  

(Rathore & 

Harsha, 

2022) 

Roller bearing  Roller 

bearing 

dataset 

Principal 

component 

analysis 

KNN MAPE, MSE, RMSE 

95% confidence in 

predicting the RUL 

(Y. Zhang & 

Zhao, 2023) 

Lithium ion 

Battery  

124 

commerc

ial 

lithium 

iron 

phosphat

e 

(LFP)/gr

aphite 

cells 

variance feature Gaussian process 

regression 

More than 85% 

classification 

accuracy reported 

(Kumar & 

Upadhyaya, 

2023) 

rolling element 

bearing (REB) 

Vibration 

signals,  

10,000 

data 

continuous 

Wavelet transform 

(CWT) and 

extraction of 

statistical features 

from CWT 

coefficients. 

KNN 83.3% Classification 

accuracy  

(Motahari-

Nezhad & 

Jafari, 2023) 

Angular 

contact ball 

bearing 

Acoustic 

emission 

signal 

Prognostic feature 

selection 

Multilayer Perceptron 

(MLP) and Radial 

Basis function (RBF) 

neural networks 

MLP-  Mean Squared 

error  =7.86 

RBF – Mean Squared 

error  = 2.85 

(Sharma et 

al., 2024) 

axial piston 

pump 

leakage 

volume 

- Auto-Regressive 

Integrated Moving-

Average 

RMSE 

Prediction of 28 

months usage of axial 

piston pump before it 

fails was reported 

 

Overall, machine learning techniques have proven to be 

effective in RUL prediction of various machinery 

components. The use of regression models, feature 

engineering, transfer learning, ensemble methods, deep 

learning, and uncertainty estimation are among the key 

approaches explored in the literature. These advancements 

contribute to enhanced maintenance strategies and 

improved operational efficiency in industrial settings. 

Existing studies in the literature have made significant 

contributions to bearing remaining usage life prediction. 

However, a common limitation among these studies is the 

limited scope of parameters considered for prediction. 

Most studies focus only on a subset of parameters, such as 

temperature, speed, load, or vibration frequency, while 

neglecting other influential factors. This limited parameter 

set may not fully capture the complex dynamics of bearing 

behavior, leading to suboptimal accuracy in remaining 

usage life prediction. Additionally, most studies have used 

binary or discrete output variables, such as failure or 

degradation stages, rather than a continuous percentage-

based measure of remaining usage life. Unlike previous 

studies that consider a limited set of parameters, this 

research incorporates a wide range of parameters that have 

been identified as influential in bearing performance. 

These parameters include temperature, speed, load, inner 

and outer ring diameter, width, vibration amplitude, 

lubricant type, and lubricant viscosity. By considering a 

more extensive parameter set, the study aims to capture a 

more accurate representation of the bearing's operational 

conditions and improve the prediction accuracy. While 
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most existing studies use binary or discrete output 

variables, this research focuses on predicting remaining 

usage life as a continuous percentage value. The use of a 

percentage-based output variable provides a more precise 

and informative measure of the remaining lifespan, 

enabling better decision-making in maintenance planning 

and resource allocation. The present study compares the 

performance of three different classifiers, namely Random 

Forest, K-Nearest Neighbors, and Support Vector 

Machine, in predicting bearing remaining usage life. By 

evaluating the results of multiple classifiers, the study 

aims to identify the most effective model for accurate 

remaining usage life prediction. This comparative analysis 

contributes to the selection of an optimal classifier for 

practical implementation in real-world scenarios. In 

summary, this research addresses the research gap in the 

existing literature on bearing remaining usage life 

prediction by considering a comprehensive set of 

parameters and utilizing a percentage-based output 

variable. The study's focus on multiple classifiers enables 

a comparative analysis to identify the most accurate 

prediction model. By filling this research gap, the findings 

of this study contribute to the advancement of predictive 

maintenance techniques, enhancing the reliability and 

efficiency of bearing performance assessment in various 

industrial applications. 

 

3   Methodology 
In this research article, a comprehensive multi-step 

methodology was employed to predict the remaining 

usage time of roller bearings using machine learning 

algorithms. The methodology, as depicted in Figure 1, 

provided a systematic approach to address the prediction 

task. The dataset used in this study was collected from a 

custom-made single bearing test rig, specifically designed 

to capture various factors relevant to the bearing's 

operational conditions. These factors included 

temperature, speed, load, dimensions (such as inner and 

outer ring diameter, width), vibration amplitude and 

frequency, lubricant type, and viscosity. By encompassing 

these diverse features, the dataset aimed to capture the 

complexity of the bearing's behavior and its potential 

impact on the remaining usage time. To identify the most 

influential features within the dataset, Principal 

Component Analysis (PCA) was employed. PCA is a 

statistical technique that reduces the dimensionality of a 

dataset while preserving its essential variance. By 

applying PCA to the dataset, the researchers were able to 

extract the key features that significantly contributed to 

the prediction of the remaining usage time. This feature 

selection step facilitated a more focused analysis and 

enhanced the efficiency of the subsequent classification 

models. To ensure the reliability and generalizability of 

the predictive models, a ten-fold cross-validation method 

was employed. This technique involved dividing the 

dataset into ten subsets of approximately equal size. The 

models were then trained and evaluated ten times, with 

each subset serving as the testing set once. By applying 

cross-validation, potential biases and overfitting were 

mitigated, and the models' performance was robustly 

assessed. The mean classification accuracy, which 

measures the proportion of correctly classified instances, 

served as the evaluation metric for the models, providing 

a reliable indicator of their predictive capabilities. 

 

 

 

Figure 1: System block diagram 

 

 

A) Data collection: 

The bearing parameters utilized in this study were 

obtained from GDR's Tech Pvt Ltd, a company situated in 

Tamil Nadu, India. The data collection process involved 

the use of a specifically designed single bearing test rig, 

which is depicted in Figure 2. This test rig was 

instrumental in gathering the necessary information for the 

research. The roller bearing was naturally degraded and 
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ran until failure to collect the required data. The 

parameters collected encompassed a range of relevant 

factors, including temperature, speed, load, inner ring 

diameter, outer ring diameter, width, vibration amplitude, 

vibration frequency, lubricant type, and lubricant 

viscosity. The selection of parameters for roller bearing 

Remaining Useful Life (RUL) prediction is crucial for 

developing an accurate and effective predictive model. 

The chosen parameters should capture the key factors that 

influence the degradation and failure of roller bearings.  

Roller bearings are sensitive to temperature variations as 

high temperatures can accelerate wear, lubricant 

degradation, and material fatigue. Monitoring temperature 

helps identify potential overheating conditions that can 

lead to bearing failure.  

The rotational speed of roller bearings affects their 

operating conditions and influences factors such as 

lubrication effectiveness, load distribution, and contact 

stress. Higher speeds can lead to increased wear and 

fatigue. 

The load applied to a roller bearing affects its stress levels, 

fatigue life, and overall performance. Excessive loading or 

variations in load can accelerate wear, leading to 

premature failure.  

The dimensions of the inner and outer rings determine the 

bearing's load-carrying capacity and its ability to 

withstand external forces. Changes in ring diameter can 

affect the distribution of load and contribute to bearing 

degradation.  

The width of a roller bearing impacts its load-carrying 

capacity and stiffness. A wider bearing generally has a 

higher load capacity, but it can also affect other factors 

such as lubrication and heat dissipation. 

Vibration analysis provides insights into the condition of 

roller bearings. Abnormal vibration patterns can indicate 

faults such as misalignment, imbalance, or bearing 

defects. Monitoring vibration amplitude and frequency 

helps detect early signs of degradation. 

The type of lubricant used in roller bearings significantly 

affects their performance and longevity. Different 

lubricants have varying properties, such as viscosity and 

temperature range, which impact the bearing's ability to 

reduce friction and wear. 

Viscosity is a critical parameter that determines the 

lubricant's ability to maintain a protective film between 

rolling elements and raceways. Proper viscosity ensures 

efficient lubrication and reduces friction and wear. 

 

By considering these parameters in roller bearing RUL 

prediction, you cover various aspects that influence the 

bearing's degradation and failure. This comprehensive 

approach allows for a more accurate assessment of the 

bearing's health and improves the effectiveness of 

maintenance strategies, such as condition-based 

maintenance or predictive maintenance, to optimize the 

bearing's lifespan and minimize unexpected failures. 

Multichannel data acquisition system was utilized to 

collect the data from the sensors. These parameters were 

carefully chosen to encompass various aspects that could 

affect the remaining useful life (RUL) of the bearings. The 

collected database consisted of a total of 6180 data points. 

Each data point represented a specific RUL category. To 

be specific, there were 1000 data points representing a 5% 

RUL, 1000 data points representing a 10% RUL, 1000 

data points representing a 15% RUL, 1000 data points 

representing a 20% RUL, and 2180 data points 

representing a RUL greater than 20%. This distribution of 

data points allowed for a comprehensive analysis of the 

bearing's behavior at different stages of its life cycle. By 

considering a diverse range of RUL values, the researchers 

aimed to develop a robust and accurate predictive model 

for estimating the remaining usage time of roller bearings. 

The raw data was found to be statistically insignificant 

using ANOVA method and hence application of machine 

learning is mandatory in classifying the data.  

 

Figure 2: Data collection setup 

 

B) Feature selection: 

In the process of predicting the remaining usage time of 

roller bearings using Random Forest (RF), Support Vector 

Machines (SVM), and k-Nearest Neighbors (KNN) 

algorithms, Principal Component Analysis (PCA) plays a 

crucial role in feature selection. The selected features for 

PCA encompass a comprehensive set, including 

temperature, speed, load, inner ring diameter, outer ring 

diameter, width, vibration amplitude, vibration frequency, 

lubricant type, and lubricant viscosity. PCA enables 

dimensionality reduction by transforming the correlated 

variables into uncorrelated principal components. This 

transformation allows for a more concise representation of 

the data while preserving its essential variance. By 

analyzing the eigenvalues and loadings associated with the 

principal components, we gain insights into their 

contributions to the overall variability of the dataset. This 

information allows us to identify the most influential 

features, rank them according to their significance, and 

select the most informative ones for accurate predictions. 

The utilization of PCA for feature selection enhances the 

performance of the Random Forest Classifier and KNN 

algorithms by reducing dimensionality and focusing on 

the key features that have a substantial impact on the 

remaining usage time of roller bearings. By eliminating 

redundant or less informative features, PCA allows the 

algorithms to concentrate on the most critical aspects that 

drive the bearing's aging process. This approach not only 

improves the efficiency of the algorithms but also 
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provides a more interpretable and concise set of features, 

enabling better understanding and insights into the factors 

affecting the remaining life usage of roller bearings. 

 

C)  Model development: 

The section explains the implementation of the Random 

Forest and k-Nearest Neighbors classifiers. It details the 

training process using ten-fold cross-validation, ensuring 

the models are robust and capable of generalizing well to 

new data. 

 

Random forest classifier  

The Random Forest Classifier is an ensemble learning 

algorithm widely used in machine learning for 

classification tasks. It constructs multiple decision trees 

during the training phase and combines their predictions 

to make final predictions. Each decision tree is built using 

a random subset of the training data and a random subset 

of features, which helps reduce overfitting and enhance 

the model's generalization ability. This randomness also 

enables Random Forests to handle high-dimensional 

feature spaces effectively and makes them robust to 

outliers and noise in the data. During prediction, each 

decision tree independently classifies the input data, and 

the class with the majority vote across all trees is selected 

as the final prediction. Random Forests can capture 

complex decision boundaries and capture intricate 

relationships between features. One of the advantages of 

Random Forests is their ability to estimate feature 

importance. By analyzing how much each feature 

contributes to the classification task, insights can be 

gained into the underlying relationships and factors 

driving the predictions. Additionally, Random Forests 

offer a good balance between bias and variance, which 

helps prevent overfitting and improves the model's 

generalization performance. However, it is important to 

note that Random Forests may not perform as well on 

datasets with severe class imbalance, and they can be 

computationally more expensive compared to simpler 

models like decision trees. Furthermore, the 

interpretability of Random Forests can be limited due to 

the ensemble nature of the model. Despite these 

considerations, the Random Forest Classifier remains a 

powerful and versatile algorithm widely used in various 

domains for its robustness, accuracy, and ability to handle 

complex classification tasks. 

 

Support vector machines 

The Support Vector Machine (SVM) classifier is a 

powerful algorithm for solving classification problems. 

SVM works by finding an optimal hyperplane that 

separates the data points of different classes in a high-

dimensional feature space. The key idea behind SVM is to 

maximize the margin, which is the distance between the 

decision boundary and the nearest data points of each 

class. By maximizing the margin, SVM aims to find a 

hyperplane that generalizes well to unseen data. SVM can 

handle both linearly separable and non-linearly separable 

data by using the kernel trick. The kernel function 

transforms the input features into a higher-dimensional 

space where the data becomes linearly separable. This 

allows SVM to capture complex decision boundaries and 

make accurate predictions. SVM also introduces a 

regularization parameter (C) to balance the trade-off 

between achieving a low training error and a low margin. 

By adjusting C, the user can control the flexibility of the 

model and prevent overfitting or underfitting. One of the 

advantages of SVM is its ability to handle high-

dimensional data effectively. SVM constructs a decision 

boundary using a subset of training data points called 

support vectors, which are the data points closest to the 

decision boundary. This property makes SVM memory-

efficient and suitable for datasets with a large number of 

features. Additionally, SVM is robust to noise and outliers 

in the data. The use of the margin ensures that SVM 

focuses on the most informative data points near the 

decision boundary, rather than being influenced by 

outliers. SVM has demonstrated strong performance in 

various domains, including image classification, text 

categorization, and bioinformatics. However, SVM's 

training time can be relatively high for large datasets, and 

the selection of appropriate hyperparameters, such as the 

choice of kernel and C, requires careful tuning. 

Nonetheless, SVM remains a popular and widely used 

classifier due to its versatility and ability to handle 

complex classification tasks. 

 

k-Nearest Neighbors 

The k-Nearest Neighbors (k-NN) algorithm is a non-

parametric machine learning algorithm used for 

classification and regression tasks. In k-NN, the prediction 

for a new data point is determined by the majority vote or 

average of the values of its k nearest neighbors in the 

feature space. The algorithm does not require a training 

phase as it directly uses the training data for predictions. 

It is a flexible algorithm that can handle complex decision 

boundaries and capture non-linear relationships in the 

data. One advantage of k-NN is its simplicity and ease of 

implementation. However, there are considerations when 

using k-NN. The choice of the parameter k is critical, as a 

small k value may lead to overfitting, while a large k value 

may result in oversimplification. Additionally, k-NN can 

be sensitive to the scale of features, and data normalization 

is often necessary. As the number of data points increases, 

the computational cost of k-NN can also become a 

limitation. In classification tasks, k-NN is commonly used 

when the decision boundaries are not well-defined or 

when the data is not linearly separable. It can be 

particularly effective when dealing with multi-class 

classification problems. In regression tasks, k-NN can 

provide accurate estimates by averaging the values of its k 

nearest neighbors. However, it's important to note that k-

NN suffers from the curse of dimensionality, where the 
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algorithm's performance can deteriorate as the number of 

features increases. Despite its limitations, k-NN remains a 

popular and versatile algorithm that is widely used in 

various domains, especially when interpretability and 

flexibility are important considerations. 

 

Performance evaluation:  

10-fold cross-validation is a widely used and reliable 

technique in machine learning for evaluating the 

performance and generalization ability of a model. It 

involves dividing the dataset into ten equal-sized subsets 

or "folds" and repeatedly training and testing the model on 

different combinations of training and validation sets. This 

approach provides a more robust estimate of the model's 

performance by reducing the impact of a single train-test 

split and considering the variability in performance across 

multiple iterations. By ensuring that each data point 

participates in both training and validation, cross-

validation offers a comprehensive evaluation of the 

model's effectiveness and its ability to generalize to 

unseen data. It helps address issues related to data 

partitioning and sample bias, making it particularly 

valuable in scenarios with limited or imbalanced datasets. 

Additionally, cross-validation enables researchers to 

assess the stability and reliability of the model by 

observing performance variations across different folds. 

While 10-fold cross-validation is a widely adopted 

approach, other variations of cross-validation, such as 

stratified k-fold or leave-one-out cross-validation, may be 

more appropriate depending on the specific characteristics 

of the dataset and research objectives. These variations 

cater to scenarios with imbalanced datasets or when 

dealing with limited data. The choice of cross-validation 

technique should align with the requirements of the 

application or research study. Regardless of the specific 

approach chosen, cross-validation serves as a valuable 

tool for estimating the performance of machine learning 

models and providing a more reliable evaluation of their 

generalization capabilities. 

 

4   Results and discussion 
This section presents the outcomes of a comparative 

analysis study that focuses on evaluating the performance 

of three machine learning algorithms - Support Vector 

Machine (SVM), Random Forest Classifier (RFC), and k-

Nearest Neighbor (KNN) - for predicting the remaining 

usage life of roller bearings. The primary metric used to 

assess the performance of these algorithms is 

classification accuracy, which measures the proportion of 

correctly classified instances in the dataset. The analysis 

is conducted using a ten-fold cross-validation approach to 

ensure robustness and reliability in the evaluation process. 

Equation 1 is used in obtaining the mean classification 

accuracy of each classier for each fold.  Equation 2 is used 

to determine the sensitivity and Equation 3 is used to 

determine the specificity.  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
) ∗ 100 

                                                                                      (1) 

Sensitivity = TP / (TP + FN)                                        (2) 

Specificity = TN / (TN + FP)                                       (3) 

where,  

TP- True Positive  

TN- True Negative  

FN- False Negative 

FP – False Positive  

 

 

Table 2: Classification accuracy for random forest classifier in classifying remaining usage life 

Accuracy in % n_ = 50 

 d = 15 

 s = 10 

 l = 2 

 f = 'sqrt' 

 n_ = 50 

 d = 10 

s = 2 

l = 1 

f = 'sqrt' 

n_ = 100 

d = 10 

s = 2 

l = 1 

f = 'sqrt' 

n_ = 100 

d = 10 

s = 2 

l = 1 

f = 'sqrt' 

n_ = 100 

d = 10 

s = 4 

l = 1 

f = 'sqrt' 

n_ = 200 

d = 10 

s = 2 

l = 1 

f = 'sqrt' 

n_ = 200 

d = 15 

s = 4 

l = 1 

f = 'sqrt' 

Fold 1 89.45 94.40 94.69 96.83 91.92 89.68 88.60 

Fold 2 87.41 94.40 94.21 95.55 91.84 89.03 88.86 

Fold 3 86.89 93.39 94.83 96.46 93.03 88.86 88.35 

Fold 4 85.63 93.89 94.89 95.88 92.17 89.85 88.69 

Fold 5 86.12 93.95 93.69 96.85 92.40 88.61 88.59 

Fold 6 87.35 94.59 94.45 95.87 92.98 89.09 87.42 

Fold 7 86.93 94.98 94.34 94.38 91.11 89.40 88.29 

Fold 8 89.45 94.96 95.56 96.10 93.45 89.91 87.08 

Fold 9 87.68 92.65 94.31 95.78 91.37 89.92 88.02 

Fold 10 89.31 93.10 93.55 95.75 92.44 89.08 88.53 

Mean Accuracy 87.62 94.03 94.45 95.95 92.27 89.34 88.24 

Where Number of Trees (n), Maximum Depth (d), Minimum Samples Split (s), Minimum Samples Leaf (l) Maximum 

Features (f) = 'sqrt' (square root of the total number of features) 
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Table 2 shows the results obtained using random forest 

classifier by tuning the following parameters: Number of 

Trees (n), Maximum Depth (d), Minimum Samples Split 

(s), Minimum Samples Leaf (l) Maximum Features (f) = 

'sqrt' (square root of the total number of features). Across 

all parameter settings, the Random Forest classifier 

demonstrates relatively high accuracy in classifying the 

Remaining Usage Life, with mean accuracies ranging 

from 87.62% to 95.95%. The highest mean accuracy is 

achieved with the parameter settings: n_ = 100 (Number 

of Trees), d = 10 (Maximum Depth), s = 2 (Minimum 

Samples Split), l = 1 (Minimum Samples Leaf), and f = 

'sqrt' (Maximum Features). The lowest mean accuracy is 

observed with the parameter settings: n_ = 50 (Number of 

Trees), d = 15 (Maximum Depth), s = 10 (Minimum 

Samples Split), l = 2 (Minimum Samples Leaf), and f = 

'sqrt' (Maximum Features). It is worth noting that the 

parameter settings with higher values for the number of 

trees (n_) tend to yield slightly better performance, as 

indicated by the higher mean accuracy values. 

Additionally, the parameter settings with lower maximum 

depth (d), lower minimum samples split (s), and lower 

minimum samples leaf (l) values tend to result in better 

performance. The choice of the maximum features (f) 

parameter as 'sqrt' (square root of the total number of 

features) appears to be effective in achieving good 

accuracy values, as seen across all parameter settings. 

The sensitivity and specificity for the parameters 

which achieved highest mean classification accuracy for 

Random Forest classifiers are 90.56% and 97.14% 

respectively.  

 

Table 3 : Classification accuracy for K-nn classifier in classifying remaining usage life 

 
Accura

cy in % 

K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10 

Fold 1 78.11 84.74 89.97 92.63 85.56 84.48 82.26 78.50 78.64 78.71 

Fold 2 77.53 85.52 88.28 91.44 85.94 84.02 82.47 76.24 75.03 78.90 

Fold 3 80.73 85.43 88.54 92.48 86.48 84.69 80.09 77.14 77.15 77.55 

Fold 4 81.24 84.03 90.39 91.53 86.62 83.51 82.74 78.31 78.55 75.42 

Fold 5 81.57 84.26 89.61 92.32 85.04 84.21 80.25 76.74 77.53 77.95 

Fold 6 80.80 84.03 90.77 92.57 84.93 84.83 81.25 76.39 77.24 76.61 

Fold 7 82.43 85.94 90.23 91.63 85.04 83.52 80.83 76.81 78.14 75.94 

Fold 8 81.00 84.81 90.14 90.52 84.94 83.57 82.85 78.60 76.74 75.24 

Fold 9 82.25 85.71 90.75 91.57 86.66 83.86 82.97 78.54 75.94 78.72 

Fold 10 83.41 84.12 89.97 91.00 86.88 84.04 80.82 78.68 77.15 77.80 

Mean 

Accuracy 80.91 84.86 89.87 91.77 85.81 84.07 81.65 77.60 77.21 77.28 

 

The table 3 represents the classification accuracy of a K-

nearest neighbors (K-NN) classifier for classifying the 

Remaining Usage Life. The accuracy values are expressed 

in percentages, and the different values of K range from 1 

to 10. The table also includes the accuracy values for each 

fold in a cross-validation process, as well as the mean 

accuracy across all folds for each value of K. On average, 

the highest accuracy values are achieved around K=4, 

where the accuracy ranges from 91.77% to 92.63%. The 

accuracy tends to decrease or stabilize for larger values of 

K beyond the optimal range of K=4 to K=5. The mean 

accuracy values range from 77.21% to 84.86%, showing 

the overall performance of the classifier across all folds 

and values of K.  

The sensitivity and specificity for the parameters which 

achieved highest mean classification accuracy for KNN 

classifiers are 86.13% and 94.28% respectively.    

The table 4 represents the classification accuracy of a 

Support Vector Machine (SVM) classifier for classifying 

the Remaining Usage Life. The accuracy values are 

expressed in percentages. The table includes different 

combinations of hyperparameters for the SVM classifier, 

such as different values of C and gamma, and their 

corresponding accuracy values for each fold in a cross-

validation process. The mean accuracy across all folds for 

each combination of hyperparameters is also provided. 

The accuracy of the SVM classifier varies depending on 

the combination of hyperparameters. The highest mean 

accuracy is achieved with Combination 4, where C=1, 

RBF kernel, and Gamma=0.001, with a mean accuracy of 

96.75%. Generally, increasing the value of C or selecting 

a smaller Gamma tends to improve the accuracy of the 

SVM classifier. There is some variability in accuracy 

across different folds, indicating the potential impact of 

data partitioning on model performance. 

The sensitivity and specificity for the parameters which 

achieved highest mean classification accuracy for SVM  

classifiers are 94.73% and 98.44% respectively.  
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Table 4: Classification accuracy for SVM classifier in classifying remaining usage life 

 
Accuracy in 

% 

C=0.01 

RBF kernel 

Gamma 

=0.01 

C=0.01 

RBF kernel 

Gamma 

=0.001 

C=1 

RBF kernel 

Gamma 

=0.01 

C=1 

RBF kernel 

Gamma 

=0.001 

C=10 

RBF kernel 

Gamma 

=0.01 

C=10 

RBF kernel 

Gamma 

=0.001 

C=25 

RBF kernel 

Gamma 

=0.01 

C=25 

RBF kernel 

Gamma 

=0.001 

Fold 1 91.33 91.19 95.60 97.18 95.96 93.34 92.24 92.14 

Fold 2 91.45 92.20 95.17 95.96 94.98 94.63 93.72 94.02 

Fold 3 89.54 89.24 94.00 95.61 94.95 94.95 92.81 94.85 

Fold 4 88.27 90.76 93.29 98.74 93.99 95.47 94.86 93.48 

Fold 5 89.03 91.58 96.47 97.27 95.10 94.01 94.90 92.23 

Fold 6 90.14 92.21 93.63 95.99 93.13 94.75 92.02 93.98 

Fold 7 89.29 91.83 96.50 95.77 93.23 95.32 92.69 92.43 

Fold 8 88.25 91.96 94.42 95.62 95.68 94.25 94.80 91.34 

Fold 9 90.36 92.15 95.77 98.75 95.80 94.60 94.34 94.38 

Fold 

10 88.13 89.29 

96.95 

96.64 95.27 93.51 94.71 93.97 

Mean 

Accuracy 89.58 91.24 95.18 96.75 94.81 94.48 93.71 93.28 

 

The Random Forest classifier achieves accuracy values 

ranging from 78.11% to 92.63%. The accuracy tends to 

increase initially with K (number of nearest neighbors) 

and reaches its peak around K=4. After K=4, the accuracy 

either decreases or remains relatively stable. The mean 

accuracy across all folds ranges from 77.21% to 84.86%. 

The SVM classifier achieves accuracy values ranging 

from 88.13% to 98.75%. Different combinations of 

hyperparameters, such as C (regularization parameter) and 

gamma, lead to varying accuracies. The mean accuracy 

across all folds ranges from 89.58% to 96.75%. The 

highest mean accuracy is achieved with Combination 4, 

where C=1, RBF kernel, and Gamma=0.001. The K-NN 

classifier achieves accuracy values ranging from 78.11% 

to 92.63%. The accuracy tends to increase initially with K 

and reaches its peak around K=4. After K=4, the accuracy 

either decreases or remains relatively stable. The mean 

accuracy across all folds ranges from 77.21% to 84.86%. 

The SVM classifier achieves the highest accuracy values 

among the three classifiers, with a range of 88.13% to 

98.75%. The accuracy range for Random Forest and K-

NN classifiers is similar, ranging from 78.11% to 92.63%. 

The SVM classifier also exhibits the highest mean 

accuracy across all folds, ranging from 89.58% to 96.75%. 

The mean accuracy for Random Forest and K-NN 

classifiers ranges from 77.21% to 84.86%.The SVM 

classifier's performance is highly dependent on the choice 

of hyperparameters, such as C and gamma. Tuning these 

hyperparameters can significantly impact the accuracy. 

Both the Random Forest and K-NN classifiers show a 

similar pattern in terms of the optimal value of K. The 

accuracy tends to increase with K initially and reaches a 

peak around K=4, after which it either decreases or 

stabilizes. Overall, the SVM classifier demonstrates the 

highest accuracy and mean accuracy among the three 

classifiers, indicating its potential as a reliable classifier 

for classifying the Remaining Usage Life. However, it's 

important to note that the optimal choice of classifier 

depends on the specific dataset and classification task, and 

further analysis and experimentation may be needed to 

determine the most suitable classifier for a given scenario. 
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Figure 3: Roller bearing RUL classification accuracy in % 

 

Figure 3 shows the graph for roller bearing RUL 

maximum classification accuracy for each classifier 

extracted from Table 1. Table 2 and Table 3. The Graph 

clearly shows that SVM classifier has the maximum 

classification accuracy and Random Forest classifier 

accuracy is similar to the SVM classifier. The 

classification accuracy obtained using KNN classifier is 

less compared to the other two classifiers.    

The obtained results in this article cannot be directly 

compared with existing research in the literature due to the 

unique nature of the dataset used. Unlike most existing 

studies that utilize fewer than three parameters for 

predicting the remaining usage time of roller bearings, this 

research incorporates a comprehensive set of parameters 

including temperature, speed, load, inner and outer ring 

diameters, width, vibration amplitude, vibration 

frequency, lubricant type, and lubricant viscosity. This 

difference in dataset composition hinders a direct 

comparison with previous literature. The incorporation of 

a wide range of parameters in this study reflects a more 

realistic and holistic approach to bearing health 

monitoring and remaining useful life prediction. By 

considering multiple parameters, the model developed in 

this research captures the complexity and 

interdependencies of various factors that affect bearing 

degradation and remaining usage time. However, this also 

means that the results obtained cannot be directly 

benchmarked against previous studies that focus on a 

limited number of parameters.  

Firstly, let’s compare the component or equipment for 

which RUL prediction was carried out. From Table 1, it 

was observed that the work of (Yang et al., 2019) (Yan et 

al., 2020) (Rathore & Harsha, 2022) (Kumar & 

Upadhyaya, 2023) (Motahari-Nezhad & Jafari, 2023) also 

have developed RUL prediction for bearing which is like 

the present study which is used for predicting the RUL for 

roller bearing. Secondly when we compare the dataset, 

most of the works use vibration signal/acoustic emission 

in predicting the RUL using machine learning algorithm. 

However, the present study uses more than one parameter 

in prediction of RUL. Next When we compare the 

preprocessing /Feature extraction method used, (Rathore 

& Harsha, 2022) used PCA and obtained 95% accuracy 

which is like the method used in this research. While 

comparing the classifier used, most of the researchers have 

used KNN, SVM and Neural networks. The outcome in 

terms of predicting the Rul have been satisfactory in most 

cases. While considering the number of parameters used 

for developing the model, the present study has performed 

better compared to the previous research.  

While the lack of comparative literature limits the 

ability to assess the performance of the developed model 

in relation to existing approaches, it opens opportunities 

for future research. With the availability of more diverse 

and extensive datasets, a deep learning model could be 

developed to further improve the classification accuracy 

for predicting remaining usage time. Deep learning 

models, such as convolutional neural networks or 

recurrent neural networks, have demonstrated their 

effectiveness in handling complex datasets and capturing 

intricate patterns. By leveraging the power of deep 

learning and utilizing larger datasets encompassing 

various operating conditions and bearing types, it is 

possible to enhance the accuracy and generalizability of 

the predictive model. In conclusion, the uniqueness of the 

dataset used in this study, incorporating multiple 

parameters that are not typically found in existing 

literature, restricts the direct comparison of results. 

However, this limitation also highlights the potential for 

future research to explore more comprehensive 

approaches, such as deep learning, using larger and 

diverse datasets. By addressing these limitations and 
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further advancing the understanding of bearing health 

monitoring, we can enhance the accuracy and applicability 

of predictive models for remaining usage time estimation 

in practical industrial applications. 

 

6   Conclusion 

In conclusion, this research article successfully developed 

a predictive model for estimating the remaining usage 

time of roller bearings using machine learning algorithms. 

The study employed Support Vector Machines, Random 

Forest Classifier, and k-Nearest Neighbors as the specific 

classifiers. These algorithms effectively utilized various 

features, including temperature, speed, load, dimensions 

of the inner and outer rings, width, vibration amplitude, 

vibration frequency, lubricant type, and lubricant 

viscosity, to make accurate predictions. To train and 

evaluate the model, a custom-made single bearing test rig 

was utilized to collect data. The target output variables 

were segmented into intervals representing different 

percentages of remaining usage time, allowing for more 

precise predictions. Principal component analysis (PCA) 

was applied to identify the most influential features from 

the dataset, enhancing the model's performance. A ten-

fold cross-validation method was employed to ensure 

robust training and testing of the classifiers. The results 

demonstrated that the Support Vector Machines achieved 

the highest mean classification accuracy of 96.74%, 

followed by the Random Forest Classifier with 95.95%, 

and the k-Nearest Neighbors classifier with 91.77%. 

These findings indicate that Support Vector Machines 

outperformed the other two algorithms in accurately 

predicting the remaining usage time of roller bearings. The 

study suggests several future research directions to further 

improve the predictive accuracy of the model. One 

potential avenue is exploring the application of deep 

learning algorithms, which have shown promising results 

in various domains. Additionally, conducting experiments 

with a larger and more diverse dataset, encompassing 

different operating conditions and types of bearings, 

would provide a more comprehensive understanding of 

the model's performance and its ability to generalize to 

real-world scenarios. Overall, this research contributes to 

the field of predictive maintenance by demonstrating the 

efficacy of machine learning algorithms in estimating the 

remaining usage time of roller bearings. The findings have 

practical implications for industries relying on these 

bearings, enabling them to optimize maintenance 

schedules and reduce unexpected failures. 
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