
https://doi.org/10.31449/inf.v46i6.4184 Informatica 46 (2022) 95–104 95

Metamorphic Testing and Serverless Computing: A Basic

Architecture

Yakiv Yusyn* and Tetiana Zabolotnia

E-mail: yusin.yakiv@gmail.com and tetiana.zabolotnia@gmail.com

Computer Systems Software Department

National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, 03056, Ukraine

Keywords: cloud computing, serverless computing, metamorphic testing, cloud architecture, Azure

Received: May 16, 2022

Automated testing of complex software systems can be a challenging task, and today there are a large

number of methods for its implementation. One such method is metamorphic testing, which effectively

solves the problems of usual methods and is gaining popularity. However, performing metamorphic tests

can take a long time, so the question arises of their distributed running, including in the cloud. Thus, the

authors of this study considered the designing of a cloud serverless architecture of software for

metamorphic testing. The serverless architecture for metamorphic testing is proposed, which is based on

the composition of the entire system from 5 individual components: models, data generator, software

artifact under test, metamorphic relations, and serverless functions. For each of the main possible types

of software artifacts, the possibility of using the serverless architecture for metamorphic testing is

considered. The developed architecture is presented in the form of component, deployment, and sequence

diagrams. The use of the proposed architecture in practice is shown by the example of testing two software

artifacts – a class library and a web application. Performance measurements have shown that despite the

additional network delay when running one test, the performance of all tests in general in the case of the

serverless architecture is closer to local startup and will be faster with increasing complexity and number

of tests.

Povzetek: Predstavljena je arhitektura brez strežnika za metamorfno testiranje zapletene programske

opreme.

1 Introduction
Quality assurance of developed software products using

automated testing methods has been and remains an urgent

task for the IT sector.

The most widely used automated software testing

method is the oracle-based tests that consist in a

comparison of the obtained output data against the

expected ones (for the specified input data) [1]. In

practice, the problem of finding and determining the

oracle for the software module under test is widespread

and is called the "oracle problem" [2]. Most often, it is due

to two causes: first, a complex logic of the software

artifact to be tested that leads to difficulties with expected

result identification by a human, and second, a huge

capacity of the scope of possible internal states of the

artifact and possible values that input parameters can get

– as a result, the tests using oracles will cover only some

subsets of such scope.

Metamorphic testing is one method that effectively

solves the oracle problem [3]. Unlike comparing the

obtained result with the expected one, the method is based

on the idea of using metamorphic relations – certain

relations between the input and output data characteristic

* Corresponding author

for the given domain area [3]. Metamorphic relation

describes how the output data should change when

specific input data change. For instance, the following

relation may serve as metamorphic relation for the

multiplication function: if one of the multipliers is

increased twice (change of input data), the result will also

increase twice (output data change). As one can see,

specific input or output data are not considered in this

relation, thus solving the oracle problem. Accordingly,

metamorphic relations form the basis of metamorphic tests

that check whether the software under test fulfills such

relations.

Metamorphic testing is already used successfully in

some sectors, but the development of the basic

architecture options for its software implementation and

standardized tools for its application remains urgent. One

of the tasks that we could highlight here is combining

metamorphic testing with cloud and distributed computing

technology to accelerate tests execution. It is due to the

fact that this methodology is located in the testing pyramid

closer to the integration and end-to-end tests [4], so local

runs of a large number of metamorphic tests may take

mailto:yusin.yakiv@gmail.com
mailto:tetiana.zabolotnia@gmail.com

96 Informatica 46 (2022) 95–104 Y. Yusin et al.

much time. However, the performance of such tests can be

distributed owing to their independent nature.

Thus, the purpose of this work is metamorphic testing

software improvement as a whole by developing its cloud

serverless architecture that would improve the obtained

results in terms of the test execution speed.

In Section 2, related works are shortly described,

including the use case of cloud system for metamorphic

testing of bioinformatic pipeline. In Section 3, an

overview of serverless computing is given, and all

remaining sections are dedicated to the experiment and its

results, including conclusions.

2 Related works
The idea of metamorphic testing was proposed in [3] for

the first time, and since that time used successfully in

several various sectors, for instance, in the development of

web applications [5, 6, 7], compilers [8, 9], computer

graphics [10, 11] and bioinformatics [12, 13] applications,

so on.

The first meta-review of the papers involving

metamorphic testing methodology is provided in [14] and

expanded in [15]. Besides the description of the current

status of metamorphic testing practical application, the

second meta-review also describes challenges and open

issues in this area, among which is the use of cloud

computing to run tests.

However, most paper still focuses on applying

metamorphic testing to different domains rather than

metamorphic testing software, frameworks, and

architectures. As of today, the only implementation of the

framework for metamorphic testing using cloud

technologies is described in [16]. This software uses EC2

virtual machines from the AWS cloud provider with their

manual creation, control, and deletion. The developed

framework was used to test the bioinformatic pipeline

with one run costing $21 and taking 5.5 hours instead of

35 hours of the local run of the same tests. The following

Section will show that serverless computing has certain

advantages over virtual machines used in [16].

Table 1 summarizes the main points of tools from

overviewed papers like the type of artifact under test, the

type of run, etc.

3 Overview of serverless computing
Serverless computing is the implementation of the

architecture pattern “Function-as-a-Service” (FaaS), the

main idea of which consists in encapsulation of the code

runtime environment control [17]. With an

implementation of this architecture, the software artifact

as a managed code is published to the cloud provider

without relation to any dedicated or virtual server. The

cloud provider automatically deploys and launches a copy

of the code at any available server in response to an

occurrence of a defined event – it could be an HTTP

request, a message in the event bus, a scheduled time, etc.

The cloud provider will automatically delete the deployed

copy after the event processing.

As in the case of serverless computing it is impossible

to predict the function launch location, a function must be

stateless – be independent of any other running processes,

files in the file system, etc.

Compared to other cloud technologies like virtual

machines or managed applications, the serverless

computing provides the following advantages:

− Simplification of the hardware infrastructure and

operations with it: if serverless computing is

used, the cloud provider automatically performs

horizontal scaling of used resources. This means

that the number of computation nodes always

corresponds to current needs: additional

computation nodes could be automatically added

when it is necessary to handle a big volume of

concurrent requests, and unnecessary nodes will

Table 1: The summary table of tools from overviewed research.

Work Type of artifact

under test

MRs

count

Type of

run

Automated or

not

Additional notes

5 Web application 4 Local Automated

6 Web application 4 Local Automated Written in JS

7 Web application 5 Local Automated Running hourly; some MRs achieved

performance in 3000 inputs per hour

8 Desktop

application

1 Local Automated Written in C

9 Desktop

application

1 Local Automated Written in C

10 Desktop

application

5 Local Automated Written in C

11 Library 6 Local Automated Written in MATLAB

12 Desktop

application

14 Local Manual

13 Desktop

application

3 Local Manual

16 Desktop

application

5 Local Automated Total run time – 35 hours

Cloud

VMs

Automated Total run time – 5.5 hours

Metamorphic Testing and Serverless Computing: A Basic Architecture Informatica 46 (2022) 95–104 97

be removed later. This feature is important for

cloud applications with uneven loads – you do

not need to reserve resources that will only be

used during peak loads. Besides, code

deployment becomes simpler compared to

traditional servers;

− Economic advantages, because in the case of

serverless computing, you pay only for the de

facto used resources.

To confirm the second point, let us consider one of the

most popular cloud providers – Microsoft Azure which

provides serverless computing services called Azure

Functions [18]. In this service, two factors are rated [19]:

− Number of runs, with the first million runs (a

month) for free;

− Consumed resources represented by Gb*s –

memory consumed by one function run

multiplied by the total runtime. 400000 Gb*s a

month is for free.

Thus, in a general case, the monthly expenditures can

be calculated using the equation (1), where n – a number

of runs a month, t – a run time of one function (seconds),

m – a memory consumed by one function (Gb), ,c nf f –

free limits correspondingly,
cp – a price of one Gb*s, and

np – a price of one run.

 () ()c c n nntm f p n f p−  + −  (1)

Let us assume that these monthly expenditures should

be compared against an alternative – processing of all

requests by N virtual machines with monthly price
vmp

per machine. Also, let us assume that the time and memory

consumed by one function are known, then it is possible

to calculate n , that would show that serverless

calculations are cheaper (see the equation (2))

() ()

()

c c n n vm

c c c n n n vm

c n vm c c n n

vm c c n n

c n

ntm f p n f p Np

ntmp f p np f p Np

n tmp p Np f p f p

Np f p f p
n

tmp p

−  + −  

− + − 

+  + +

+ +


+

 (2)

Let the theoretical function to run 1 s consuming 256

Mb of memory, and as an alternative let us consider 5

virtual machines of A1 type (1 core, 1.75 Gb RAM, Linux)

with monthly rate $23 for a machine [20]. As of

01.05.2022, $0.000016 0 2, $0.000 00c npp == , in such

case, n , at that the price for serverless architecture would

be equal to the price of the used virtual machines

(calculated according to (2)), would be equal to

approximately 28 million function runs a month

(approximately 10.5 requests per second). Wherein the

serverless architecture will efficiently smooth request

peaks owing to automatic horizontal scaling, virtual

machines would be insufficient even at average loading

(as loading of one machine would be in average 2 requests

per second with runtime of one request per second and

only at one available core). And in the case of
nn f the

serverless architecture would be free as the consumed

Gb*s are below the free use limit.

Of course, like any other architecture pattern, the

serverless architecture has some disadvantages that could

be critical for some sectors [17]:

− Technical disadvantages:

o "cold" start – when function's trigger

appears, the function deploying and

startup would be delayed by the cloud

provider, if the function was not invocated

for a long time (for Microsoft Azure –

about 20 minutes [21]);

o limitation of the function run time – most

cloud providers limit the maximum time

for single function execution (in Azure,

the maximum available time is 10

minutes). If the code may run for more

time (as, for instance, in the considered

work [16]), then serverless architecture

cannot be applied;

− Organizational disadvantages:

o vendor control – in the case of serverless

computing, infrastructure is controlled by

the cloud provider. It could lead to

uncontrolled downtimes, unexpected

hidden limits, and cost changes;

o security issues – the cloud provider has

access to applications. It could increase

the number of security questions if the

application processes the sensitive

information or implements algorithms

that are trade secret;

o vendor lock-in – if you want to change the

cloud provider, you will probably need to

update the application replacing the

vendor-specific features and libraries.

4 Metamorphic testing and

serverless architecture
As was shown in [16], metamorphic tests are independent

of each other and exist as individual computing units, thus

allowing their parallel runs at different virtual machines.

The possibility of applying serverless computing to

run metamorphic tests depends on the nature of the

software artifact under test:

− software library – easily tested as it can be

deployed together with the function, for instance,

using the package manager;

− web service – easily tested if provided external

accessibility via the Internet because the function

can do HTTP requests using various libraries;

− desktop application (CLI/GUI) – testing is

impossible in the majority of cases because such

software artifact would require additional

deploying (violation of the function stateless

principle).

A generic serverless architecture of the framework for

metamorphic testing of an abstract software artifact is

shown in Fig. 1 as a component diagram. The interfaces

on this diagram represent the public exported classes that

98 Informatica 46 (2022) 95–104 Y. Yusin et al.

other components could use – these possible classes are

described below.

The "Artifact under test" component in a general case

corresponds to the software artifact under test. In the case

of a software library, it acts in such a role itself, and in the

case of a web service testing – the component encapsulates

the execution of HTTP requests to the web service. This

component is either connected as an independent package

using the package manager or compiled and deployed

along with metamorphic tests.

The "Data generator" component is responsible for

obtaining input data to run metamorphic tests. Whatever

input data obtaining strategies (general and specific for

individual metamorphic relations) may be implemented

within this component. Two main strategies may be

highlighted:

− random data generation based on some passed

parameters. These parameters must include a

seed for the generator, which will ensure the

stability and reproducibility of the tests;

− return of pre-arranged data that is either stored

inside the component or at external storage (for

instance, a database).

The "Models" component contains a description of

data used by other architecture components. Three

individual subcomponents can be identified within it:

input models, output models, and data generator models.

Input models describe data supplied to the input of

software artifact under test (and, correspondingly,

received at the data generator output). In some cases, input

models may be absent (for instance, when only primitive

types or basic library types are supplied to the software

artifact input) or be a part of the software artifact (if it

supplies them itself). Also, if the software artifact is

designed to process whatever types of data (for instance,

using generics and reflection), then there will be no

relation between the software artifact and input models.

Output models, correspondingly, describe data

obtained at the software artifact output. Output models

may be absent or embedded in the software artifact

similarly to the input models.

Data generator models describe data supplied to its

input. It could be both data for random generation (seed,

amount of data, etc.) and, for instance, an identifier of pre-

arranged data.

The "MRs" component contains an implementation of

metamorphic relations that receive the input data (hence

the link to the "Models" component), convert them

according to the metamorphic relation, and call the

software artifact under test.

The “Functions” component contains serverless

functions which combine the launch of a data generator,

the transfer of received data to a metamorphic relation, and

the return of data to the user (hereinafter as a synonym for

such functions, we will use the name “metamorphic

functions”). Such function is created for each

metamorphic relation.

All described components are deployed together as a

serverless functions application. Metamorphic functions

could use any supported launch trigger like an HTTP

request or a message in a message bus. The deployment

diagram of such an application (which contains N

metamorphic relations) is shown in Fig. 2.

The end-user interacts with metamorphic functions

using a defined user interface that calls them (using

provided values for the data generator model) and

processes the results (whether the test is passed or not). By

"end-user" we mean not only a person but also any other

software, such as CI/CD pipelines. In the case of a person,

the user interface could be implemented in the form of

GUI software with the fields for entry of data generator

model values and selection of metamorphic functions to

be called. In the case of any other software, it could be

software libraries, CLI software, shell scripts, etc.

The sequence diagram of the function life cycle when

the function is called is shown in Fig. 3. This diagram

shows interactions between defined components (see Fig.

1), the order, and which specific models from the

Figure 1: The generic serverless architecture: component diagram.

Metamorphic Testing and Serverless Computing: A Basic Architecture Informatica 46 (2022) 95–104 99

“Models” component are used for each specific

interaction.

5 Experiment

5.1 Experiment design

The experimental Section aims to measure the

performance of serverless metamorphic testing and define

possible delays compared with local/virtual machine

execution.

To achieve that, two software for metamorphic testing

were implemented, corresponding to artifact types and

data generator types applicable to serverless architecture

(see Section 4). The first software implements

metamorphic testing of a software library using a random

data generator, and the second implements metamorphic

testing of a web service using a data generator with

constant data. Also, the software artifacts for the

experiment were chosen in such a way that one

metamorphic test does not take much time and is

completed in a few seconds at most. This is to compensate

for the possible difference in hardware when running

locally and in the cloud, to focus only on the difference

due to different architectures.

Each implemented software contains five

metamorphic relations defined for the chosen software

artifacts. So, there are ten metamorphic relations in total,

each of which can be considered a separate experiment for

the performance testing.

The two developed Function Apps were deployed to

Azure in the “West Europe” region with Windows

operating system. Each implemented metamorphic

function was run in two possible modes – “warm” start

and “cold” start – to define delays in both cases. To be sure

that there was a "warm" start, the first three queries for the

metamorphic function were not included in the statistics -

that is, they were run to "warm-up" the metamorphic

function. To ensure a "cold" start at each run, a delay of

30 minutes was implemented between each function call

(Azure describes 20 minutes delay in the documentation,

additional 10 minutes were taken for confidence).

Figure 3: The generic serverless architecture: deployment diagram.

Figure 2: The generic serverless architecture: sequence diagram.

100 Informatica 46 (2022) 95–104 Y. Yusin et al.

5.2 Subject and defined MRs No.1

A public library YetAnotherConsoleTables of one of the

authors was selected as a software artifact for

metamorphic testing using serverless architecture [22].

The library's primary purpose is an output of the

transmitted collection of objects at the console (or any

other text output) as a table (see Fig. 4).

It is obvious that each row in the table has an equal

length that can be calculated using the equation (3), where

length()jiv – length of the string representation of the

field i of the object with index j (totally m objects), and

col_name()i – the string representation of the i field

name.

1

1 3 max(max(length()),col_name())
n

ji

i

w v i
=

= + + (3)

The total number of rows in the received table is easily

calculated using the equation 3 2h m= + , where 3 – the

fixed number of rows in the table header, and m – number

of objects in the collection.

For the selected software artifact there are five

metamorphic relations identified that could be grouped

into three groups: manipulations with the number of

objects; manipulations with the number of fields; and

other.

MR Group 1: Manipulations with the number of

objects:

1) MR1.1. Collection reduction. Let

1 2{ , ,..., }o mC o o o= – collection of objects, and
1m

function deletes its last object:

1 1 2 1() { , ,..., }o m mm C C o o o −= = . Then, 2o mh h− = .

2) MR1.2. Collection increase. Let

1 2{ , ,..., }o mC o o o= – collection of objects, and
1m

function adds one object to it:

1 1 2 1() { , ,..., }o m mm C C o o o += = . Then, 2o mh h+ = .

MR Group 2: Manipulations with the number of

fields:

3) MR2.1. Field deletion. Let the type of collection

objects consists of n fields:
1 2{ , ,..., }o nt col col col= , and

the
1m function creates on its basis a new type without the

last field:
1 2 1{ , ,..., }m nt col col col −= , and maps the original

collection of objects into the collection of new type

objects. Then,

(3 max(max(length()),col_name()))o jn mw v n w− + = .

4) MR2.2. Adding a field. Let the type of collection

objects consists of n fields:
1 2{ , ,..., }o nt col col col= , and

the
1m function creates on its basis a new type by adding

a new field:
1 2 1{ , ,..., }m nt col col col += , and maps the

original collection of objects into the collection of new

type objects recording the constant value const for a new

field of each object. Then,

3 max(length(),col_name(1))o mw const n w+ + + = .

MR Group 3: Other:

5) MR3. Change of the order of objects in the

collection. Let
1 2{ , ,..., }o mC o o o= – a collection of

objects, and the
1m function changes the order of objects

into the reverse order:
1 1() { , ,..., }o m m mm C C o o o−= = .

Then the original table's row that corresponded to the

object with index i (the index of this row can be

calculated using the equation 3 2(1)i+ − , with numbering

starting with zero) corresponds to the received table's row

for the element with index 1m i− + .

The schematic representation of defined metamorphic

relations is shown in Fig. 5. The light-yellow color

indicates the “Add” operation (row/object or field/column,

it does not matter), the light-red color indicates the

“Remove” operation, and the pair of blue-green colors are

used to identify different rows.

5.3 Implemented software No.1

The software for metamorphic testing of the library

YetAnotherConsoleTables was implemented using the

.NET platform and C# 9.0 language and is available at

https://github.com/yakivyusin/MTServerless/tree/master

and corresponds to the described serverless architecture.

The software library YetAnotherConsoleTables

corresponding to the "Artifact under test" component from

the UML diagram (see Figure 1) is connected owing to the

NuGet package manager.

The "MTServerless.Models" project corresponds to

the "Models" component; it contains the description of the

input model as well as the data generator model. The input

model contains three fields (one of numeric type and two

of string type), and the data generator model contains the

initial value for the generator of pseudorandom numbers

(as GUID) and the number of objects in the collection to

generate: “Seed” and “Count” correspondingly.

Compared to the basic architecture, two differences

could be noted:

− As the YetAnotherConsoleTables library is

implemented to output collections of whatever

type, there are no references between the library

and the model project.

− As the output of the artifact under test is a set of

rows for the console/other text output, there is no

Figure 4: An example of an output of the transmitted

collection of objects containing two fields: numeric

and string.

Metamorphic Testing and Serverless Computing: A Basic Architecture Informatica 46 (2022) 95–104 101

need to describe the output model (types of

strings, StringWriter are available at the .NET

basic library).

The "MTServerless.Generator" project corresponds to

the "Data generator" component that generates a

collection of input objects based on the transmitted

parameters. The field “Seed” of the data generator model

is used for initialization of the pseudorandom number

generator, which is later used for filling input model

numeric and string fields.

The "MTServerless.Relations" project corresponds to

the metamorphic relations component itself. Each class in

this project corresponds to one metamorphic relation

receiving a collection of input objects at the input and

returning the Boolean value (whether the metamorphic

relation is held or not). As a specific feature of such

relations, it is worth mentioning the implementation of

relations MR2.1 and MR2.2 that for manipulations with

the number of fields create anonymous types based on the

input (anonymous types were introduced in C# 3.0 [23]).

The "MTServerless" project contains a set of Azure

Functions for each metamorphic relation (Functions SDK

3.0 was used for their implementation). A function is

called using HTTP requests, and input parameters for the

data generator are transmitted using the HTTP request

query parameters: "seed" and "count" (so, the URL of a

function to be called looks like

https://example.com/Function?seed=b6cb1f5b-3cc5-4ed8

-b75e-51c99a900a19&count=5). These parameters are

used to create an instance of the data generator model type,

which will be passed to the data generator.

5.4 Subject and defined MRs No.2

As an example of a web service serverless metamorphic

testing case, it was decided to reproduce the software from

the paper [7], which describes the metamorphic testing of

web search engines.

This paper identifies five metamorphic relations

grouped into two groups: “No Missing Web Page” and

“Consistent Ranking.”

“No Missing Web Page” MR Group:

1) MPSite. This metamorphic relation checks if some

page was found using query A , then this page also should

be found using query page domain restrictionB A= + .

2) MPTitle. This metamorphic relation checks if some

page was found using query A , then this page also should

be found using query page title textB A= + .

3) MPReverseJD. This metamorphic relation checks

that search results for queries 1 2 3 4A A A A A=    and

4 3 2 1A A A A A=    are similar.

“Consistent Ranking” MR Group:

4) SwapJD. This metamorphic relation checks that

search results for queries word1 word2A = and

word2 word1A = are similar.

5) Top1Absent. This metamorphic relation checks

that the first result for search query A will also appear in

search results for query page domain restrictionB A= + .

Instead of a random data generator, a data generator

with constant values is used for this program artifact. Each

metamorphic relation has its constant value chosen from

examples in the original paper [7]. For metamorphic

relations, which include a similarity check, the threshold

0.5 of the Jaccard coefficient was used.

It was decided to use DuckDuckGo [24] as a web

search engine for metamorphic testing because this engine

provides a simple HTML version that is easy to parse.

Also, DuckDuckGo uses Google as an underlying engine,

so the quality of results is the same.

5.5 Implemented software No.2

The software for metamorphic testing of the DuckDuckGo

web search engine was implemented using the .NET

Figure 5: Defined metamorphic relations for the library of tabulated output.

102 Informatica 46 (2022) 95–104 Y. Yusin et al.

platform and C# 9.0 language and is available at

https://github.com/yakivyusin/MTServerless/tree/search

and corresponds to the described serverless architecture.

The “MTServerless.Artifact” project corresponds to

the “Artifact under test” component of the basic

architecture. As was described in Section 4, this project

encapsulates HTTP requests to the actual artifact under

test – DuckDuckGo web search engine – and parses the

HTML response to return query results.

The “MTServerless.Generator” project corresponds

to the “Data generator” component. This data generator

accepts only one parameter – the identifier of the

metamorphic relation (a simple order number) for which

the generator is currently being called. Based on the

passed identifier, the constant search query is returned.

The “MTServerless.Models” project corresponds to

the “Models” component. In the case of the web search

service, this project only describes the output model. The

output model is presented as a “SearchResult” class,

which contains three fields: site title, URL, and

description. The input model and the data generator model

are absent, because they are presented in the form of built-

in .NET classes: string for the search query (the input

model) and integer number for the data generator model.

The “MTServerless.Relations” project corresponds to

the metamorphic relations component itself. Each class in

this project corresponds to one metamorphic relation

receiving a search query at the input and returning the

Boolean value (whether the metamorphic relation is held

or not). It should be noted that metamorphic relations,

which build a follow-up query for each search result

(MPSite and MPTitle), contain a 2 seconds delay before

each follow-up query. This delay is implemented to avoid

a temporal ban from DuckDuckGo, and all these delays

will be subtracted from performance results.

The “MTServerless” project contains a set of Azure

Functions for each metamorphic relation (Functions SDK

3.0 was used for their implementation). A function is

called using HTTP requests without any input parameters

– each function passes the hard-coded identifier to the data

generator.

5.6 Results

First, the time of described metamorphic relations

execution was compared in the case of the “warm” Azure

start and the case of the local start. The term "execution

time" in the context of these studies means the time

between the HTTP request sending and receiving the

server response. The obtained results are provided in Fig.

6.

As one can see, the mean execution time of

metamorphic function in Azure with a "warm" startup is,

on average, 200 ms longer than the mean execution time

in the case of local deployment. This deceleration is

caused by network delays (which may be considered a

constant for each specific case) and possible delays of the

cloud provider. A specific value of the network delay

constant depends on the quality and speed of Internet

connection and mutual geographic location of the

Figure 6: Metamorphic functions execution time in Azure ("warm" and “cold” start) and locally.

1712,2

1695,6

1557

1547,8

1662,4

235,3

238,2

240

252,8

244,9

55,75

34,75

25,25

26,5

20,75

MR1.1

MR1.2

MR2.1

MR2.2

MR3

Time, ms

Azure Cold

Azure Warm

Local

5,82

5,27

3,65

3,42

3,22

4,39

3,88

2,22

2,04

1,82

4,27

3,71

2,04

1,87

1,67

Site

Title

Reverse

Swap

TopOne

Time, s

Azure Cold

Azure Warm

Local

Metamorphic Testing and Serverless Computing: A Basic Architecture Informatica 46 (2022) 95–104 103

metamorphic testing client and selected data center of the

cloud provider. Also, in the case of web application

testing, there is a possible difference in network delays

between the web application server and the deployment

place of a testing framework. If the cloud provider's data

center is closer to the web application server, testing will

be faster than in the case of local deployment.

The metamorphic functions execution time in Azure

was also measured for the "cold" start. The obtained

results are provided in Fig. 6 too.

As one can see, the additional "cold" start delay is

1400 ms on average for the developed software. Such

delay may depend on many factors, to name the main

ones: the size of the artifact with metamorphic functions

(because the artifact should be transferred from a storage

to a server); the number of the tested artifact's external

dependencies (the more dependencies you need to restore

using the package manager, the longer it takes); current

loading of the cloud provider's infrastructure. However,

two out of the three above factors are constants for specific

software, and the current loading of the infrastructure

(based on analysis of the obtained data outliers) may

maximum add 600 ms; therefore, the "cold" start delay

may also be considered constant for defined metamorphic

function.

Thus, it could be considered that the proposed

serverless framework architecture for metamorphic testing

increases the individual metamorphic relation execution

time (compared to traditional local architectures) by the

constant
iC + in the case of a "warm" start and by the

constant
i cC C+ + in the case of a "cold" start (where

iC – the constant of network delays,
cC – the constant of

software complexity, and  – the error representing

dependencies on the cloud provider). Nevertheless, in

practice, such delays may be considered nonessential

because executing one metamorphic function may take

minutes.

The developed serverless architecture shows the best

results in the case of concurrent execution of a set of

metamorphic tests because in such case, all functions are

executed simultaneously (degree of concurrency =

number of functions) compared to the local start where the

degree of concurrency is limited by the

hardware/compared to the virtual machines where the

count of installed VMs limits the degree of concurrency.

As a result, for serverless computing, the total execution

time of a test set will be close to the maximum execution

time of one metamorphic function when the Amdahl's law

will limit the total execution time of a test set for

local/VMs.

6 Discussion
In this paper, two tools for metamorphic testing of artifacts

of different types were developed using the proposed basic

architecture. A total of 10 metamorphic relations were

made - 5 for each artifact considered.

The developed tools differ from the tools considered

in Section 2 by using cloud serverless technologies,

allowing them to run locally and in the cloud without any

additional changes (Azure provides tools for running

serverless functions locally). The results show that despite

additional network and other delays, running serverless

functions in the cloud will reduce the overall metamorphic

testing time for more complex artifacts or more relations.

The main achievement of this paper is the idea of using

serverless computing for metamorphic testing and the

basic architecture of developing such software.

7 Conclusion
The study considered the possibility of using serverless

computing and Function-as-a-Service pattern for

metamorphic testing and developed the corresponding

framework architecture.

Serverless computing provides the following

advantages for metamorphic testing:

− compared to local starts – the maximum degree

of concurrency that equals the number of

metamorphic relations;

− compared to virtual machines – infrastructure

simplification (no need to save VM images and

deploy them when necessary) and expedition of

calculations as functions are deploying quicker.

The developed architecture for metamorphic testing

using serverless computing: represented as component,

deployment, and sequence diagrams; optimized for

serverless computing; ensures components isolation.

The study demonstrated the use of the proposed

architecture for metamorphic testing of two different

software artifacts. The obtained results show that in the

case of a "warm" start, the serverless computing

introduces an individual metamorphic function execution

delay of ~200 ms compared to a local start. However, in

the case of simultaneous start of the whole package of

metamorphic tests, the serverless architecture achieves the

performance of local architecture, and with an increase in

the number of tests and/or their complexity, the serverless

computing is much quicker. Thus, the developed

serverless architecture of metamorphic testing is

expedient for practical application if the disadvantages of

serverless computing are not critical for this specific case.

E.g., the bioinformatic pipeline from the paper [16] could

not be tested using the proposed serverless architecture

due to the long execution time. However, any software

artifact with an execution time less than 10 minutes could

be efficiently tested using the serverless framework.

Acknowledgement

Authors would like to thank: Microsoft company for

providing free limits for a lot of their Azure cloud services,

which were very helpful during this and other research;

Pavlo Holianytskyi for his help with the English paper

version; and Larysa Yusyn for her motivating of authors

to finalize the research.

References
[1] Weyuker E., The Oracle Assumption of Program

Testing, Proc. of the 13th International Conference

104 Informatica 46 (2022) 95–104 Y. Yusin et al.

on System Sciences (ICSS), Honolulu, HI, January

1980, pp. 44-49.

[2] Barr T., Harman M., McMinn P., Shahbaz M., Yoo

S., The Oracle Problem in Software Testing: A

Survey, IEEE Transactions on Software

Engineering, 41 (5), pp.507–525, 2015.

https://doi.org/10.1109/TSE.2014.2372785

[3] Chen T., Cheung S., Yiu S., Metamorphic testing: a

new approach for generating next test cases,

Technical Report HKUST-CS98-01, Department of

Computer Science, Hong Kong University of

Science and Technology, Hong Kong, 1998.

[4] Bourque P., Fairley R., Chapter 4: Software Testing,

SWEBOK v3.0: Guide to the Software Engineering

Body of Knowledge. IEEE. pp. 4–1–4–17, 2014.

[5] Zhou Z., Zhang S., Hagenbuchner M., Tse T., Kuo

F.-C., Chen T., Automated functional testing of

online search services, Software Testing,

Verification and Reliability, 22 (4), pp.221-243,

2012. https://doi.org/10.1002/stvr.437

[6] Zhou Z., Tse T., Kuo F.-C., Chen T., Automated

functional testing of web search engines in the

absence of an oracle, Technical Report TR-2007-06,

Department of Computer Science, The University of

Hong Kong, Hong Kong, 2007.

[7] Zhou Z., Xiang S., Chen T., Metamorphic testing for

software quality assessment: A study of search

engines, IEEE Transactions on Software

Engineering, 42 (3), pp.264-284, 2016.

https://doi.org/10.1109/TSE.2015.2478001

[8] Tao Q., Wu W., Zhao C., Shen W., An automatic

testing approach for compiler based on metamorphic

testing technique, Proc. of the 17th Asia Pacific

Software Engineering Conference (APSEC), pp.270-

279, 2010. https://doi.org/10.1109/APSEC.2010.39

[9] Le V., Afshari M., Su Z., Compiler validation via

equivalence modulo inputs, Proc. of the 35th ACM

SIGPLAN Conference on Programming Language

Design and Implementation, pp.216-226, 2014.

https://doi.org/10.1145/2666356.2594334

[10] Kuo F.-C., Liu S., Chen T., Testing a binary space

partitioning algorithm with metamorphic testing,

Proc. of the 2011 ACM Symposium on Applied

Computing, pp.1482–1489, 2011.

https://doi.org/10.1145/1982185.1982502

[11] Jameel T., Mengxiang L., Liu C., Test oracles based

on metamorphic relations for image processing

applications, Proc. of the 16th IEEE/ACIS

International Conference on Software Engineering,

Artificial Intelligence, Networking and

Parallel/Distributed Computing (SNPD), pp.1-6,

2015. https://doi.org/10.1109/SNPD.2015.7176238

[12] Pullum L.L., Ozmen O., Early results from

metamorphic testing of epidemiological models,

Proc. of the ASE/IEEE International Conference on

BioMedical Computing (BioMedCom), pp.62-67,

2012. https://doi.org/10.1109/BioMedCom.2012.17

[13] Ramanathan A., Steed C.A., Pullum L.L.,

Verification of compartmental epidemiological

models using metamorphic testing, model checking

and visual analytics, Proc. of the ASE/IEEE

International Conference on BioMedical Computing

(BioMedCom), pp.68-73, 2012.

https://doi.org/10.1109/BioMedCom.2012.18

[14] Segura S., Fraser G., Sanchez A., Ruiz-Cortes A., A

survey on metamorphic testing, IEEE Transactions

on Software Engineering, 42 (9), pp.805-824, 2016.

https://doi.org/10.1109/TSE.2016.2532875

[15] Chen T., Kuo F.-C., Liu H., Poon P.-L., Towey D.,

Tse T., Zhou Z., Metamorphic testing: A review of

challenges and opportunities, ACM Computing

Surveys 51 (1), pp.1-27, 2018.

https://doi.org/10.1145/3143561

[16] Troup M., Yang A., Kamali A., Giannoulatou E.,

Chen T., Ho J., A cloud-based framework for

applying metamorphic testing to a bioinformatics

pipeline, Proc. of the 1st International Workshop on

Metamorphic Testing (MET ’16). ACM, New York,

NY, pp.33–36.

https://doi.org/10.1109/MET.2016.014

[17] Roberts M., Serverless Architectures, [Online].

Available: https://martinfowler.com/articles/

serverless.html (accessed October 1, 2021).

[18] Microsoft, Azure Functions – Serverless Apps and

Computing, [Online]. Available:

https://azure.microsoft.com/en-

us/services/functions/ (accessed October 1, 2021).

[19] Microsoft, Azure Functions Pricing, [Online].

Available:

https://azure.microsoft.com/en-us/pricing/

details/functions/ (accessed October 1, 2021).

[20] Microsoft, Pricing Calculator, [Online]. Available:

https://azure.com/e/243a23dd3327440bb556781315

2d3ef0 (accessed October 1, 2021).

[21] Tresness C., Understanding serverless cold start,

[Online]. Available: https://azure.microsoft.com/en-

us/blog/understanding-serverless-cold-start/

(accessed October 1, 2021).

[22] Yusyn Y., YetAnotherConsoleTables: NuGet

Package, [Online]. Available:

https://www.nuget.org/packages/YetAnotherConsol

eTables/ (accessed October 1, 2021).

[23] Richter J., CLR via C# 4th Edition, Microsoft Press,

2013.

[24] DuckDuckGo, Main Page. [Online]. Available:

https://duckduckgo.com/ (accessed October 1,

2021).

https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1002/stvr.437
https://doi.org/10.1109/TSE.2015.2478001
https://doi.org/10.1109/APSEC.2010.39
https://doi.org/10.1145/2666356.2594334
https://doi.org/10.1145/1982185.1982502
https://doi.org/10.1109/SNPD.2015.7176238
https://doi.org/10.1109/BioMedCom.2012.17
https://doi.org/10.1109/BioMedCom.2012.18
https://doi.org/10.1109/TSE.2016.2532875
https://doi.org/10.1145/3143561
https://doi.org/10.1109/MET.2016.014
https://martinfowler.com/articles/
https://azure.microsoft.com/en-us/pricing/
https://duckduckgo.com/

