
Informatica 35 (2011) 489-498 489

Message-Optimal Algorithm for Detection and Resolution of
Generalized Deadlocks in Distributed Systems

Selvaraj Srinivasan and R. Rajaram
Department of Information Technology
Thiagarajar College of Engineering
Madurai, 625015, India
E-mail: ssnit@tce.edu, rrajaram@tce.edu

Keywords: distributed deadlock, generalized model, deadlock detection, wait-for graph, deadlock resolution

Received: October 15, 2010

In this paper, we present a new algorithm to detect and resolve generalized deadlocks in distributed
systems. The algorithm constructs a distributed spanning tree by diffusing probes along the edges of the
Wait-For Graph (WFG) and collects a reply that carries the dependency information of processes to
determine a deadlock. Unlike the previous algorithms, it performs reduction whenever it receives a reply
from an active process. Moreover it isolates termination detection from deadlock detection, and
terminates the execution once it detects a deadlock. It has a worst-case time complexity of d+2 and
message complexity of e+2n; where n is the number of nodes, e is the number of edges and d is the
diameter of the WFG. Correctness proof and performance analysis for the algorithm are also provided.
Furthermore, it minimizes the message length and message overhead associated with deadlock
resolution as compared with the existing algorithms.

Povzetek: Članek preučuje problem smrtnega objema v porazdeljenih sistemih.

1 Introduction
In a distributed computing environment, if a process
needs a resource on the remote site for its computation, it
sends a request message to the desired site. If the resource
is available, it will be granted to the requesting process
immediately; otherwise, the requesting process waits
indefinitely until its request is granted. This will lead to a
deadlock in distributed systems where a set of processes
wait indefinitely for each other to satisfy their requests.
Since deadlock reduces the resource availability and
throughput, it should be detected and resolved promptly.
However, deadlock is very difficult to detect as well as
resolve in distributed systems due to the presence of
multiple sites. In general, the interdependency among the
distributed processes is modeled by a directed graph
known as the Wait-For Graph (WFG) [1,2]; where each
node represent a process and an edge from a node ‘i’ to
node ‘j’ indicates that process ‘i’ is requested a resource
from process ‘j’ and process ‘j’ is not granted a resource
to process ‘i’. A deadlock is defined differently
depending upon the underlying resource request model
such as Single-Resource model, AND model, OR model
and P out-of Q model [1,7]. In the Single Resource and
AND model, a process needs all requested resources to
continue its execution. Hence, the presence of cycle in
the WFG implies a deadlock. In the OR model, a
process proceeds the execution only if any of the
requested resource is granted. Therefore, the
presence of knot is necessary to determine OR deadlock.
In the P out-of Q model, a process makes requests for Q
resources and remains blocked until it is granted any P
resource. Since AND and OR model are the special case

of P out-of Q model, it is also referred as generalized
request model. A generalized deadlock corresponds to a
deadlock in the generalized request model. The
generalized request model is quite common in many
domains such as resource management in distributed
operating systems, communicating sequential processes
and quorum consensus algorithms in distributed
databases [11,12,16]. A cycle in the WFG is necessary
but not sufficient condition whereas a knot is sufficient
but not necessary condition for a generalized deadlock.
Since detection of generalized deadlock requires the
detection of a complex topology in the WFG, only few
generalized deadlock detection and resolution algorithms
[4,5,7,8,10,12,15,16] have been proposed in the
literature. Most of them have used the diffusion
computing technique [1] in which a distributed
computation is initiated by a single node and joined by
other nodes only after receiving a message. The
generalized deadlock detection algorithms are grouped
into two categories namely centralized and distributed
algorithms based on the existence of the WFG. In the
centralized algorithms, the initiator maintains the entire
information to determine a deadlock whereas in the
distributed algorithm the information is spread across
multiple sites.

1.1 Literature survey
In general, the distributed algorithms [4,5,7,10,12]
have used ‘record and reduce’ principle to detect the
generalized deadlocks. According to the technique, the
algorithm records the consistent snapshot of distributed

490 Informatica 35 (2011) 489–498 S. Srinivasan et al.

WFG and performs reduction later to determine a
deadlock. The algorithm proposed by Bracha and Toueg
[4] consists of two phases. In the first phase, the initiator
records a snapshot by propagating the probes along the
edges of the WFG. In the second phase, the algorithm
simulates the granting of resources to determine a
deadlock. The second phase is nested within the first
phase. It exchanges 4e messages in 4d time units, where
e is the number of edges and d is the diameter of the
WFG. By following the approach in [4], Wang.et.al [5]
developed another algorithm in which an explicit
termination technique is used to detect the end of the
first phase. The second phase begins only after the first
phase is finished. Although it reduces the time
complexity of [4] into 3d+1, it needs 6e messages to
detect a deadlock. Moreover, both [4] and [5] have
failed to resolve deadlocks. The algorithm in [10]
records as well as reduces the WFG simultaneously to
determine a deadlock. It records a consistent snapshot of
distributed WFG in the outward sweep and reduces in
the inward sweep in a single phase. It uses 4e-2n+4l
messages in 2d time units to find out whether the
initiator is deadlocked, where n is the number of nodes
and l is the number of leaf nodes in the WFG. However
it deals with the complications introduced because the
reduction of node in the inward sweep can begin much
before the state of all WFG edges incident at that node
have been recorded in the outward sweep. And it needs
O(e) messages to resolve deadlocks. The algorithm in
[11,12] uses lazy evaluation technique by which the
reduction of a process in a snapshot is delayed until the
initiator detects the termination. Although it minimizes
the message complexity into 2e as with the previous
algorithms, it uses variable sized messages with the
length of O(e) . Since the initiator knows the resource
requirement of all deadlocked processes, it minimizes the
message overhead associated with deadlock resolution
unlike in [10]. The algorithm in [19] achieves the time
and message complexity of [12] with fixed sized
messages. Unlike [12], it performs the reduction before
the initiator terminates the execution of the algorithm. In
general, distributed algorithms require two or more
rounds of message transfer along the entire edges of the
WFG. Hence, they need at least 2d time units to detect
deadlock in the worst case.

In the centralized algorithms [8,15,16], the initiator
maintains the Local Wait-For Graph (LWFG) to detect a
deadlock. The initiator of the algorithm in [8] collects
a reply from each process in its reachable set exactly
once. Based on the information in replies, it
incrementally constructs the WFG locally to determine a
deadlock. It needs only 2n messages with the length of
O(n) to find out deadlock. However, it has a time
complexity of 2d like the distributed algorithms. In
addition, it may abort nodes that are not deadlocked and
needs O(n) messages to resolve deadlocks. The algorithm
in [15] constructs the LWFG by using the ancestor-
descendent relationship between the processes in
replies. It uses less than 2e messages in 2d time units to
detect a deadlock. It reduces the message length into
O(e-n+m) where m indicates the number of nodes that

are not associated with any non-tree edges in the
spanning tree induced by the algorithm. However, it
needs additional technique to assign a unique path string to
each node in the WFG and to interpret the path strings for
constructing LWFG at the initiator. In contrast to [8], it
resolves all deadlocks reachable from the initiator. The
initiator of the algorithm in [16] collects the dependency
information of all nodes to determine the deadlocked
processes. It has almost half the time complexity of
previous algorithms to detect a deadlock. It needs less
than 2e messages in d+2 time units for detecting all
deadlocked processes. However it needs additional
technique to optimize the message length at each node
and requires messages with the length of O(d) in the
worst case. Hashemzadeh proposed an algorithm [17,18]
based on history based edge chasing technique in which
the initiator declares a deadlock once it finds its existence
in the message. However, it significantly minimizes the
message overhead associated with the executions of
concurrent instances and deadlock resolution. We do not
consider the algorithms based on edge chasing techniques
[17,18] in this paper.

We propose a new centralized algorithm to detect
and resolve distributed deadlock in generalized model.
Our algorithm improves the message complexity and
message size of previous algorithms. The initiator of the
algorithm constructs the distributed spanning tree (DST)
by propagating probes (CALL messages) along the edges
of the WFG. Once a process receives the probe, it sends a
reply that carries its dependency information directly to the
initiator. However, the initiator performs reduction
immediately after receiving a reply from an active process
and receives a reply at most twice from each node in its
reachable set unlike the earlier algorithms. At the end of
termination, it declares all the nodes whose resource
requirements are not met as deadlocked. We have
formally proved the correctness of the proposed
algorithm. It has a worst-case time complexity of d+2
time units and message complexity of less than e+2n,
where d is the diameter, n is the number of nodes and e
is the number of edges in the WFG. Further, it has a data
traffic complexity of O(n) in the worst case. Since it
selects a victim without using additional messages, it
considerably simplifies deadlock resolution.

Although the proposed algorithm have some
similarities with [16], it differs from Lee’s algorithm
[16] and pervious centralized algorithms [8,15] in the
following aspects:

1. The algorithm performs reduction whenever it
receives a reply form an active node whereas Lee’s
algorithm [15,16] performs reduction only after it
detects the termination.

2. The algorithm in [15,16] uses an explicit mechanism
to reduce the message length, whereas the proposed
algorithm does not require any additional techniques.

3. The initiator of the proposed algorithm builds a
directed spanning tree of the WFG, whereas the
initiator of Chen [8] algorithm does not consider
any structural property of the WFG.

MESSAGE-OPTIMAL ALGORITHM FOR… Informatica 35 (2011) 489–498 491

4. Unlike in [16], the initiator of the proposed
algorithm receives a reply from all nodes in its
reachable set at most twice.

The rest of this paper is divided into five main sections.
In Section 2, we describe the key definitions and
assumptions about the system model and the problem
definition. In Section 3, we present the algorithm along
with an example. In Section 4, we prove the correctness
of the algorithm. In Section 5, we analyze the
performance of the algorithm and compare it with that of
previous algorithms. Finally, we conclude the paper in
section 6.

2 System Model
Although we follow the computation model in [4, 8, 10,
12, 16], we describe it for completeness of this paper.
The system has ‘n’ processes and each one has a unique
identity. There is a logical channel between any two
processes. The processes can communicate only by
message passing. The message delays are arbitrary but
finite. The messages are delivered to the destination in
the same order as the sender sends them. The messages
are neither lost nor duplicated and the entire system is
fault-free. The messages are grouped into namely
computation and control messages in the system. The
computation messages including

REQUEST, REPLY, CANCEL and ACK
are generated as a result of application’s execution.
However, the control messages including CALL,
REPORT and WEIGHT, which will be discussed in the
section 3, are generated by the execution of the deadlock
detection algorithm. Both computation and control
messages are time stamped based on the requesting
process’s logical lock [3]. Thus the time stamp of ACK
or REPLY should be matched exactly with the
corresponding REQUEST message.

A process state is active or blocked at any instant.
When a process ‘i’ makes a generalized request and
blocks, the unblocking condition of its request is denoted

as a function Fi. For example, Fi=A∧(B∨C) denotes that
process ‘i’ requires a resource from process A and a
resource from either process B or C. Function Fi is
evaluated in the following manner: substitutes true for a
node id in Fi if it has received a REPLY, indicating
granting of that request from that node; otherwise,
substitutes false for it. Then, evaluate the function Fi. A
process unblocks when a sufficient number and
combination of its requests to make Fi true are granted.

An active process can send both computation and
control messages whereas the blocked process can send
either control messages or ACK. When process ‘i’
blocks on pi out-of qi requests, it sends REQUEST
message to qi processes in OUTi. Therefore, OUTi

gives the domain of Fi. Upon receiving a REQUEST
message from ‘i’, process ‘j’ records <i, t_blocki> in INj

and sends an ACK message to the sender of the message.
If process ‘j’ is active, it sends a REPLY message to
process ‘i’ and subsequently removes <i, t_blocki> from

INj. Once a node is unblocked, it withdraws the remaining
requests it had sent earlier but not yet granted.

Each process ‘i’ maintains the following variables to
keep track of its state in the WFG. The initial value of
each variable is given within parenthesis.
parenti : the process identifier from which ‘i’ has
received the first probe (NULL)
IN

i
: the set of processes which are directly blocked on ‘i’

(φ)
OUT

i
: the set of processes for which ‘i’ is waiting (φ)

Fi : the condition for unblocking a process ‘i’
We denote the set of processes in INi as

predecessors and the set of processes in OUTi as
successors of process ‘i’. A blocked process cannot
withdraw any one of its requests spontaneously. And it
could not abort any requests abnormally. These two
assumptions are essential to ensure that the algorithm
records a consistent snapshot. We use the terms process
and node interchangeably throughout this paper.

2.1 Problem statement
A generalized deadlock exists in the system if the
requesting conditions of one or more processes can never
be satisfied. The formal description of deadlock is
provided as in [16].
Definition 1: Let evaluate(Fi) be a recursive
operation evaluated based on the following:

1. evaluate (i) = evaluate (Fi),
2. evaluate (Fi) = true, for active node ‘i’,

3. evaluate (P∨Q) = evaluate (P) ∨ evaluate (Q)

4. evaluate (P∧Q) = evaluate (P) ∧ evaluate (Q)
where P and Q are nonempty AND/OR expressions

of node identifiers. A generalized deadlock exists in the
system if and only if the following topology exists in the
WFG.
Definition 2: A generalized deadlock is a sub graph
(D,K) of WFG (V,E) where

∀i∈D(≠ φ), evaluate (Fi) = false,
No message for computation is under transmission

between any nodes in D

Therefore, all processes in D are blocked forever and
the resource requirement of processes that do not belong
to D can be satisfied at any instant. It should be necessary
to abort a node in D to resolve a deadlock.

A distributed deadlock detection algorithm
should satisfy the following two correctness conditions:

Liveness: If a d e a d l o c k e x i s t s , t h e
a l g o r i t h m wi l l detect it within finite time.

Safety: The algorithm does not report any false
deadlock.

3 The Proposed Algorithm
In this section, we present the basic idea behind the
execution of single instance our deadlock detection
algorithm. Then, we present the algorithm formally and
provide an example.

492 Informatica 35 (2011) 489–498 S. Srinivasan et al.

3.1 The description
We assume that the initiator ‘i’ initiates the deadlock
detection algorithm. It includes the unblocking function
(Fi) in the set UCinit and sends CALL message to each
one of its successor ‘j’ in outi. If node ‘j’ receives the first
CALL message, it becomes the child of the sender and
sends REPORT message that carries the unblocking
function (Fj) to the initiator directly. Further, it
propagates the CALL message to its own successors.
However, if a node that has already joined the execution
of current instance receives the second and subsequent
CALL message, it does send a reply immediately. Those
nodes send a WEIGHT message to the initiator only
after receiving CALL messages from all its predecessors.
Hence, it minimizes the message overhead to detect a
deadlock.

Whenever the initiator receives a REPORT
message from a blocked node ‘i’, it includes a tuple (i,
Fi, num_predi) in the set UCinit. At the same time, if it
receives a REPORT message from an active node ‘i’, it
includes ‘i’ in the set Ainit and attempts to evaluate all
unblocking functions in the set UCinit. It performs the
evaluation in the following manner: Select a tuple (i, Fi,
num_predi) from the set UCinit and check if the node
identifiers in the set Ainit are sufficient to make Fi as true.
If it happens, it includes ‘i’ in the set Ainit and removes
the corresponding tuple from the set UCinit. This process
is repeated continuously until there is no more unblocking
function in the set UCinit can be simplified as true. If the
algorithm unblocks all nodes in the set UCinit during
evaluation, it terminates the execution immediately;
otherwise, it continues the execution until it detects the
termination based on weight distribution technique. Once
the algorithm terminates the execution, it declares all the
nodes that have not been reduced in the set UCinit as
deadlocked.

The algorithm detects the termination based on the
weight distribution method like in [10,17]. According to
the method, the initiator distributes a weight of one to its
successors through CALL messages. When a node
receives the first CALL message, it distributes the weight
in the message among its successors. However, it
accumulates the weight in all subsequent CALL messages
until it receives the CALL messages from all its
predecessors. It then returns the weight to the initiator
through a WEIGHT message. It is accomplished as
follows. Each node ‘i’ has a variable ‘num_predi’ that
counts its predecessors. Whenever it receives a CALL
message, it decreases the count by one. Hence, the
num_predi at a node becomes zero signifying that it receives
the CALL message from all its predecessors. Whenever the
initiator receives a WEIGHT message, it sum ups the
weights. The algorithm terminates when the weight at
the initiator becomes one.

In a dynamic environment, the algorithm may report
a false deadlock due to the presence of phantom edges.
Let us consider a phantom edge from node ‘i’ to node ‘j’.
This implies that when node ‘j’ receives a CALL
message from node ‘i’, node ‘j’ has sent a REPLY to

node ‘i’. In the proposed algorithm, it is resolved by as
follows. Whenever node ‘j’ receives the CALL message
from node ‘i’, it checks whether node ‘i’ is in INj. If i
INj, it sends an ALERT message to the initiator. Upon
receiving the ALERT message, the initiator evaluates fi

by substituting j as true. If node ‘i’ unblocks during the
evaluation, it is included in the set Ainit and initiates the
evaluation of other nodes in the set UCinit.

3.2 Formal specification
A formal description of the proposed algorithm
executed at node ‘i’ is presented below. The initial value
is given inside the parenthesis.

Data Structure of a node ‘i’
parenti : node id (NULL); /* a node from which a
CALL has been first received */
weighti : float (0); /* the weight value of ‘i’ */
ini : set of nodes (INi); /*the set of predecessors of ‘i’ */
outi : set of nodes (OUTi); /*the set of successors of ‘i’ */
fi : AND-OR Expression (Fi); /*the condition for ‘i’ to be
active */
num_predi: integer (|INi|); /* the number of predecessors
of ‘i’ */

Additional Data Structures at initiator
UCinit a set of unblocking functions which contains
tuples of the form (i, fi, num_predi) where fi denotes
the unblocking condition of a node ‘i’ (φ).
A

init  a set of active nodes (φ)
weightinit  the accumulated weight value (0)
victiminit the node identifier to be aborted to resolve
the deadlock (φ).

Message Formats
CALL(initiator, sender, weight): Sent by node ‘sender’
carrying the identifier of the initiator and the weight
value for the receiver of this message.

REPORT(sender, fsender, num_predsender): Sent by node
‘sender’ as a response to first CALL message carrying
the unblocking condition and its number of predecessors.

WEIGHT(sender, weightsender):Sent by node ‘sender’
after receiving CALL messages from all its predecessors.

ALERT (sender, weightsender): Sent by node ‘sender’ after
receiving CALL messages through a phantom edge.

I. When a node ‘i’ initiates the algorithm
initiatori := i;
parenti:=i;

UC
init

:= UC
init
∪ {(i, fi, num_predi

)};

send CALL(initiator, i, 1 / |out
i
|) to each j∈out

i

II. Upon receipt of CALL(initiator, j, weightj) from j
begin

MESSAGE-OPTIMAL ALGORITHM FOR… Informatica 35 (2011) 489–498 493

num_predi --;

if (parenti = NULL ∧ j∈ini) then
/* Step II.1 */

parenti:=j;
initiatori := initiator;
send REPORT(i, fi, num_predi) to initiatori

 if (|outi| >0) then /* Step II.1.1 */
 send CALL(initiatori,i,weightj/|outi|) to each

k∈outi

else if (parent
i
≠ NULL ∧ j∈in

i
) then /* Step II.2 */

 if (i=initiator) then /* Step II.2.1 */
 weightinit= weightinit + weightj;
 else if (num_predi = 0) then /* Step II.2.2*/
 send WEIGHT(i, weighti) to initiatori

 else
 weighti:= weighti + weightj;

 else if (j∉ini) then /* Step II.3*/
 send ALERT(i, weightj) to initiatori

 end

III. Upon receipt of REPORT(i, fi,num_predi) from i :
begin
if (f

i
= φ) then

A
init

:= A
init
∪ {i};

evaluation();
else

UCinit := UCinit ∪{(i, fi, num_predi)};
end

IV. Upon receipt of WEIGHT(i, weighti) from i :
begin
weightinit:= weightinit + weighti ;
if (weightinit =1  UCinit

!= φ) then
resolution(); // Declare a Deadlock

end

V. procedure evaluation()
begin

for each i ∈UCinit do
begin

if (evalvate(i.fi) = true) then

Ainit:=Ainit∪ {i};
UCinit := UCinit – { i ,fi, num_predi}

if (UC
init

= φ) then
No deadlock; exit;

else
evaluation();

end for
end

VI. procedure resolution()
begin

count:=0;
repeat
for each i ∈UCinit do

begin
if (i.num_pred  count) then

count:= i.num_pred;
victiminit:= i.id;

end for
send ABORT to victiminit ;
UCinit:=UCinit–{(victiminit,fvictim,num_predvictim)};

Ainit :=Ainit∪ {victiminit};
 evaluation() ;

until (UCinit = φ)
end

VII. Upon receipt of ALERT(i, j, weighti) from i :
begin

 for each k ∈ UCinit do
if (k.id = i) then

k. fi:= k. fi | j = true ;
// Substitutes j by true

if (evaluate (k. fi) = true) then
UCinit := UCinit - {k};
Ainit: = Ainit  {k.id};
evaluation();

weightinit:= weightinit + weighti ;
if (weightinit =1 UCinit

!= φ) then
resolution(); // Declare a Deadlock

end

3.3 Example execution

 Figure 1: The Wait-For Graph

We illustrate the idea behind our algorithm with the help
of an example. Figure 1 shows a distributed WFG that
spans 10 nodes labelled from 1 to 10. All the nodes
except 2, 6 and 10 are blocked initially. The unblocking
conditions of these nodes are as follows:

F1=(2∧3)∨4, F3=(5∧6)∨7, F4=8∧9, F5=1, F7=4, F8=7 and

F9=(810)1)
Let us consider node 1 initiates the algorithm and the

messages are propagated in such a manner to induce a
Breath First Search(BFS) Spanning Tree of the WFG.
Figure 2 shows the Directed Spanning Tree, where tree

494 Informatica 35 (2011) 489–498 S. Srinivasan et al.

and nontree edges are indicated by solid and dashed lines
respectively.

Figure 2: The Distributed Spanning Tree

1. When node 1 initiates the algorithm,
it sends CALL(1,1,1/3) to nodes 2,3 and 4
respectively.

2. When node 2 receives the CALL from
1, it sends REPORT(2,,1) and
WEIGHT(2,1/3) to 1.

3. When node 3 receives the CALL from
1, it sends REPORT(3,(56)7,2) to 1 and
CALL (1,3,1/9) to nodes 5,6 and 7
respectively.

4. When node 4 receives the CALL from 1, it

sends REPORT(4,8∧9,2) to 1 and
CALL(1.4,1/6) to nodes 8 and 9
respectively.

5. When node 5 receives the CALL from
3, it sends REPORT(5,1,1) and CALL (1,5,
1/9) to 1

6. When node 6 receives the CALL from

3, it sends REPORT(6,,1) and
WEIGHT(6,1/9) to 1.

7. When node 7 receives the CALL from
1, it sends REPORT(7, 4,2) to 1 and
CALL(1,7,1/9) to 4.

8. When node 8 receives the CALL from
4, it sends REPORT(8, 7,2) to 1 and
CALL(1,8,1/6) to 7.

9. When node 9 receives the CALL from 4, it

sends REPORT(9, (8∧10)1,1) to 1 and
CALL(1,9,1/18) to nodes 1,8 an 10
respectively.

10. When node 1 receives the CALL from 5
through a back edge, it updates weightinit

11. When node 4 receives the CALL from 7,
it sends WEIGHT (4, 1/9) to 1.

12. When node 7 receives the CALL from 8,
it sends WEIGHT (7, 1/6) to 1.

13. When the initiator 1 receives the CALL
from 9 through a back edge, it updates
weightinit.

14. When node 8 receives the CALL from 9,
it sends WEIGHT (8, 1/18) to 1.

15. When node 10 receives the CALL from
9, it sends REPORT(10,φ,1) and
WEIGHT(10,1/18) to 1.

Figure 3 shows the flow of control messages across the
WFG.

 Figure 3: The Message Flow

Whenever the initiator receives the REPORT from
nodes 2, 6 and 10, it simplifies the unblocking functions in
the set UCinit. Finally, it declares the nodes 1,3,4,5,7,8 and
9 as deadlocked nodes.

3.4 Properties of the Algorithm
In this section, we prove the correctness of our algorithm
by using several observations (observations 1 - 9) and
lemmas (Lemmas 1-4) about the properties of the
algorithm.
Observation 1: When the initiator diffuses the CALL
messages, it is eventually received by all nodes in its
reachable set.
Observation 2: The diffusion of CALL message induces
a distributed spanning tree of the WFG.
Observation 3: Whenever a node receives the first
CALL message, it propagates the message to each one of
its successor.
Lemma 1: If node ‘i’ receives the CALL message, the
unblocking function Fi is sent to the initiator.
Proof: From observation 1, each node that is reachable
from the initiator receives the CALL message. Upon
receiving the first CALL message, node ‘i’ sends its
unblocking function Fi to the initiator through REPORT
message after the execution of Step II.1. Thus, the lemma
is proved.
Observation 4: Once a num_predi has been recorded in
node ‘i’, it does not change during the execution of the
algorithm.

MESSAGE-OPTIMAL ALGORITHM FOR… Informatica 35 (2011) 489–498 495

Observation 5: Whenever a node ‘i’ receives the CALL
message through any one of its incoming edge, it
decrements num_predi by one.
Lemma 2: If a node ‘i’ sends a WEIGHT message to the
initiator then it must have received CALL messages from
all its predecessors.
Proof: By observation 5, upon receiving the CALL
message from each node jini, node ‘i’ decreases
num_predi by one. At the time node ‘i’ receives the
CALL message, if num_predi is decremented to 0 then its
weight is sent to the initiator through a WEIGHT
message by Step II.2.2. Hence, the lemma holds.

Observation 6: Whenever an initiator receives the
REPORT message from an active node, it evaluates the
unblocking functions in the set UCinit.
Definition 3: The initiator reduces a node ‘i’ iff it has
sufficient active nodes in the set Ainit to simplify Fi as
true.
Observation 7: Node ‘i’ can belong to the set Ainit only
if any one of the following holds.

The initiator receives a REPORT message from node
‘i’ that contains Fi as true

At the time the initiator evaluates Fi as true during
reduction, node ‘i’ is added to the set Ainit.
Definition 5: If the initiator is reduced during the
evaluation, the algorithm stops the execution.
Observation 8: The weight in a CALL and WEIGHT
message is always in transit until they reach the initiator
and added to weightinit.
Definition 3: The algorithm is said to be terminated
when weightinit =1
Observation 9: When the algorithm terminates the
execution, all nodes that is reachable from the initiator
either in the set UCinit or Ainit.

Lemma 3: If a deadlock exists in the system, the
algorithm will detect it in finite time.
Proof : Assume that a deadlock D exists in the system.
The initiator declares a deadlock only if a set UCinit  
after the execution of Step V. Thus, it is sufficient to
prove that the initiator has all information about the
nodes and their associated edges in D. Let us consider
node ‘i’ in D. It implies that node ‘i’ has sent Fi to the
initiator through a REPORT message by lemma 1. Since
node ‘i’ is blocked forever, the initiator evaluates Fi as
false during the execution of Step V at the end of
termination. Thus, all nodes in D exist in the set UCinit.
Let us now assume a edge e = (i,j) and eD. By lemma
1, node ‘i’ sends this information to the initiator only
after sending a CALL message to node ‘j’. Before
sending the CALL message, node ‘i’ must send a
REQUEST message to node ‘j’. If node ‘i’ has received a
REPLY message from node ‘j’, an edge e has not been
included in Fi. Since both nodes ‘i’ and ‘j’ are in D, edge
e can not reduced during the execution of Step V in the
algorithm. Therefore, UCinit contains a deadlock D after
the algorithm has terminated. Consequently, the initiator

sends an ABORT message to a victim until to resolve a
deadlock by Step VI. Thus, the lemma holds.

Lemma 4: If a deadlock is declared, the deadlock exists
in the system
Proof: The proposed algorithm reports a deadlock only
when UCinit=. Assume a contrary that the algorithm
does not detect a deadlock D. So, it is sufficient to prove
that UCinit =  after the execution of Step V. This reflects
the fact that a deadlock D exists in the system and the
nodes of D in the set UCinit are reduced during the
execution of Step V. Let node ‘i’ be one of such nodes
that unblocks first in the set UCinit. According to the
definition of deadlock, node ‘i’ is removed from the set
UCinit only if the unblocking function Fi is simplified as
true. It can be possible only when node ‘i’ had received
at least one REPLY from its successors in D at some
time Ti. By observation 7, it should happen only before it
sends Fi to the initiator. Let node ‘j’ be one such
successor in D that unblocks node ‘i’. And node ‘j’
sends a REPLY to node ‘i’ only if it has received the
REPLY from some of its successors in D before Ti. That
is in contradiction with the assumption that node ‘i’ is the
first node that unblocks in the set UCinit. Thus is proved.

Theorem 1: The initiator of the algorithm terminates the
execution in finite time.
Proof: By step I, the initiator distributes the weight of
one to all nodes that are reachable from it through CALL
messages. The messages are neither lost nor duplicated
according to our network assumptions. From observation
5, for each node ‘i’ that is reachable from the initiator
sends a WEIGHT message that carries the weight value
to the initiator after the execution of step II.4. The
initiator executes the Step II.2.1 or IV upon receiving the
CALL or WEIGHT messages and stops the execution
once its weight becomes one. Since the messages
transmission takes finite time, the initiator terminates the
execution in finite time.

Theorem 2: The algorithm records a consistent snapshot
at the initiator.
Proof: Let S be the last snapshot computed by the
algorithm, and it contains a edge (p,q). This implies that
this dependency relation was included in Fp which has
sent by p to the initiator through a REPORT message.
Before sending a REPORT message, node ‘p’ sends a
CALL message to all its successors, including node ‘q’
during the execution of Step I or II. This is so because
node ‘p’ had sent a REQUEST message to node ‘q’ and
pinq. This reflects the fact that the edge from p to q
indeed exists in the WFG at the time of execution.
Hence, the theorem holds.

Theorem 3: The algorithm detects a deadlock if and only
if it exists in the system
Proof: Follows from Lemmas 3 and 4.

496 Informatica 35 (2011) 489–498 S. Srinivasan et al.

3.5 Concurrent executions
Since several nodes may block simultaneously, each one
of them invokes the deadlock detection algorithm
independently. If this happens, a node can be involved in
the execution of more than one instance and several
initiators may report the same deadlock. In such
situations, each instance may select different victims
even though a single victim is sufficient to resolve a
deadlock. Nevertheless, few instances of the algorithm
might be engaged in false deadlock resolution. The
various issues associated with the concurrent execution
of the algorithm are addressed in [8,11,12,16]. Since the
method in [8] needs more messages and prone to useless
aborts, we follow the priority based technique in
[11,12,16] to handle concurrent executions. According to
the method, the algorithm assigns a unique priority to
each instance based on its identifier, which comprises
the initiator’s identifier and the block time / sequence
numbers. Since the control messages of every instance
carries this label, each instance can be distinguished from
others.. When a node involves in the execution of
multiple instances, it will support the execution of only
high priority instance and suspends the execution of low
priority instances.

3.6 Deadlock resolution
The initiator selects a victim that unblocks as many as
deadlocked nodes in the set UCinit to resolve a deadlock.
Then, it sends an ABORT message to the victim directly.
It includes the victim into Ainit and removes the
corresponding tuple from the set UCinit. It then evaluates
the unblocking functions of all nodes in the set UCinit and
removes the nodes whose unblocking function is
simplified as true. If a victim is insufficient to make
UCinit as empty, it selects another victim. This process
continues until UCinit is empty. Upon receiving the
ABORT message, a node aborts its execution and
releases all resources it had acquired earlier. An aborted
process restarts its execution as in [11,13]. Thus the
proposed algorithm simplifies the deadlock resolution by
minimizing the messages and the nodes to be aborted.

4 Performance Analysis
We discuss the performance of the proposed algorithm
with respect to time, message and data traffic
complexities. The message complexity is the total number
of messages exchanged by the algorithm. The time
complexity of the algorithm is the time required by the
initiator to detect a deadlock. The data traffic complexity
defines the total length of data transmitted by the
algorithm. The measurements are based on the
assumption that the message transmission between any
two nodes takes one time unit. We assume that n is the
number of nodes, e is the number of edges and d is the
diameter of the WFG.

Theorem 4: The algorithm terminates the execution in
d+2 time units.

Proof: Whenever a node initiates the algorithm, it sends
CALL message to its successors which in turn
propagates the message to its own successors. Therefore,
the CALL message must travel to the farthest node
reachable from the initiator. Let dmax  d be the
maximum diameter of the WFG. Then, the latest time the
leaf node of spanning tree receives the CALL message is
dmax+1. Since the leaf node sends a WEIGHT message to
the initiator directly, the algorithm will receive all replies
at most dmax+2 time units. Thus the time complexity of
the proposed algorithm is d+2 in worst-case.

Theorem 5: The algorithm detects a deadlock using
e+2n messages.
Proof: To compute the message complexity, we consider
separately each message type.

CALL messages are sent once over any edge of the
WFG. Thus, at most e messages are sent totally.

REPORT messages are sent to the imitator over a
communication channel directly. Since there is no more
than ‘n’ node, the total number of REPORT messages is
bounded by n.

WEIGHT messages are sent to the initiator once by
the leaf nodes of spanning tree and thus no more than n-1
of such messages can be sent.

From above, we can conclude that the message
complexity at worst case is O(e+2n) messages.

Let us consider the message length of proposed
algorithm. Since CALL and WEIGHT messages are
fixed sized, we now analyse the length of REPORT
message. A REPORT message delivers the unblocking
function of a node to the initiator. In the generalized
model, the unblocking function of a node ‘i’ is a AND-
OR expression that involves |outi| node identifiers. In the
best case, the unblocking condition can be true and Fi is
. In the worst case, Fi comprises the set of |outi| node
identifiers.

For computational complexity at the initiator, we
need to determine computational complexity of two
procedures namely evaluation and resolution. The
evaluation procedure is executed whenever an initiator
receives the REPORT message from an active node. In
the worst case, when all nodes are deadlocked, the
unblocking functions of all n nodes are in the set UCinit

and Ainit=. At the time, the algorithm declares the
deadlock without evaluating the unblocking conditions
and invokes the procedure resolution. In the procedure
resolution, a victim is selected, inserted into the set Ainit

and removed from the set UCinit. Therefore, the number
of processes in the set UCinit is reduced at least by one at
each execution of resolution. Hence, in the worst case the
computational complexity at the initiator is O(n) steps. In
contrast, the algorithm in [16] requires O(n2) steps and
the algorithm in [12] needs O(t2) steps, where t is the
number of nodes in the induced spanning tree by those
algorithms. However, in the best case (UCinit=), the
local complexity of this algorithm is O(1)

MESSAGE-OPTIMAL ALGORITHM FOR… Informatica 35 (2011) 489–498 497

Table 1: Performance Comparison

Table 1 compares performance of different generalized
deadlock detection algorithms. The message length of
O(n) indicates that it consists of all node identifiers in the
algorithms [7,8]. And the message used in the algorithms
[12,15,16] and the proposed algorithm carries the
unblocking functions to the initiator. However, the
message length of these algorithms is differed due to the
following reason. In the algorithm [16] the unblocking
functions of nodes are merged as well as distributed
during propagation of probes outward from the initiator
whereas in [17], the unblocking function of each node is
merged during the propagation of replies backwards to
the initiator. As a result, the number of unblocking
function in a reply grows as the message goes up in the
spanning tree induced by the algorithm [12]. Similarly, if
a node has exactly one successor, the number of
unblocking conditions in a reply message is at most n-1
in the worst case in [16]. In contrast to [12, 16], the
proposed algorithm sends an unblocking function of a
node to the initiator disrespect the presence of deadlock
and the number of successors of nodes in the WFG. In
this conjuncture, the message length of proposed
algorithm is a constant.

5 Conclusion
We presented a new algorithm to detect and resolve
generalized deadlocks in distributed systems. The
initiator of the algorithm collects the unblocking
functions of all nodes in its reachable set exactly once.
Then it arbitrarily simplifies the unblocking conditions
depends on the reply from an active to determine
deadlock. We proved the correctness of the algorithm. It
has a time complexity of d+2 time units and worst case
message complexity of e+2n messages hops delay to
detect a deadlock. In addition, it finds out all nodes that
are in deadlock with the initiator only if the initiator is
deadlocked unlike the earlier algorithms. The
performance of the proposed algorithm is better or

comparable with the existing algorithms in terms of time,
message and data traffic complexities. Furthermore, it
simplifies the deadlock resolution by minimizing the
additional round of messages. The proposed algorithm is
applicable to detect deadlocks in different domains of
distributed systems design such as resource management
in distributed operating systems, store and forward
communication networks, communicating processes and
replicated databases.

References
[1] E.Knapp. (1987), Deadlock Detection in Distributed

Database Systems, ACM Computing Surveys,
Vol.19, No. 4 pp.303-327.

[2] M,Singhal.(1989), Deadlock detection in distributed
systems. IEEE Computer, Vol.22, pp. 37–48.

[3] L.Lamport. (1978), Time, Clocks, and the ordering
of events in a distributed systems, ACM
Communications, vol 21, pp. 558-565.

[4] G.Bracha, and S.Toueg. (1987), A distributed
algorithm for generalized deadlock detection,
Distributed Computing, Vol.2, pp.127–138.

[5] J.Wang, S.Huang, and N.Chen.(1990), A
distributed algorithm for detecting generalized
deadlocks, Tech. Rep., Dept. of Computer Science,
National Tsing-Hua Univ.

[6] W.K.Ng, and C.V.Ravishankar.(1994), On-Line
Detection and Resolution of Communication
Deadlocks, Proc. 27th Ann. Hawaii Int’l Conf.
System Science, pp.524-533.

[7] J.Brzezinski, J.M.Helary, M.Raynal, and
M.Singhal. (1995), Deadlock Models and a General
Algorithm for Distributed Deadlock Detection, J.
Parallel and Distributed Computing, Vol.31,
pp.112-125.

[8] S.Chen, Y.Deng, P.C.Attie, and W.Sun.(1996),
Optimal deadlock detection in distributed systems
based on locally constructed wait-for graphs, Proc.
Int’l Conf. Distributed Computing Systems, pp.613–
619.

[9] M.Roesler, and W.A.Burkhard.(1989), Resolution
of Deadlocks in Object-Oriented Distributed
Systems, IEEE Trans. Computers, Vol. 38, No. 8,
pp.1212-1224.

[10] A.D.Kshemkalyani, and M.Singhal. (1989),
Efficient detection and resolution of generalized
distributed deadlocks, IEEE Transactions on
Software Engineering, Vol.20, pp. 43–54.

[11] A.D.Kshemkalyani, and M.Singhal.(1997),
Distributed detection of generalized deadlocks.
Proc. 17th Int’l Conf. Distributed Computing
Systems, pp.553–560.

[12] A.D.Kshemkalyani, and M.Singhal. (1999), A One-
Phase Algorithm to Detect Distributed Deadlocks in
Replicated Databases, IEEE Trans. Knowledge and
Data Eng., vol. 11, No. 6, pp. 880-895.

[13] S. Lee. and J.L. Kim.(1995), An Efficient
Distributed Deadlock Detection Algorithm, Proc. of
the 15th Int. Conference on Distributed Computing
System, pp.169–178.

Algorithms Delay
Number
Of
Messages

Message
Size

Resolution

Barcha
et al [4]

4d 4e O(1) no
Scheme

Wang
et.al [5]

3d+1 6e O(1) no
Scheme

Kshemkalyani
et.al [10]

2d 4e-2n+2l O(1) e
messages

Kshemkalyani
et.al [12]

2d 2e O(e) 1
message

Brzezinski
et.al [7]

4n ½ n2 O(n) no
Scheme

Chen
et .al [8]

2d 2n O(n) 3n
messages

Soojung
Lee [16]

d+2 <2e O(d) 1
message

Our algorithm
d+2 e+2n O(n)

1
message

498 Informatica 35 (2011) 489–498 S. Srinivasan et al.

[14] S.Lee, and J.L.Kim.(2001), Performance Analysis
of Distributed Deadlock Detection Algorithms,
IEEE Trans. Knowledge and Data Eng., vol. 13, no.
4,pp. 623-636 .

[15] S.Lee.(2001), Efficient Generalized Deadlock
Detection and Resolution in Distributed Systems,
Proc. 21st Int. Conference on Distributed
Computing Systems, pp. 47-54.

[16] S.Lee(2004), Fast, Centralized Detection and
Resolution of Distributed Deadlocks in the
Generalized Model, IEEE Trans. on Software
Engineering, Vol. 30, No.9,pp.561-573.

[17] Nacer Farajzadeh, Mehdi Hashemzadeh, Morteza
Mousakhani, Abolfazl T. Haghighat. (2005), An
Efficient Generalized Deadlock Detection and

Resolution Algorithm in Distributed Systems, Proc
of the Fifth Int.Conference on Computer and
Information Technology

[18] Hashemzadeh, M. Farajzadeh, N. Haghighat,
A.T. (2006)., Optimal detection and resolution of
distributed deadlocks in the generalized model,
Proc of th 14th Euromicro International
Conference on Parallel, Distributed, and Network-
Based Processing

[19] Srinivasan. S., Rajan Vidya, Rajaram Ramasamy.
(2009), An Optimal, Distributed Deadlock
Detection and Resolution Algorithm for
Generalized Model in Distributed Systems, CCIS
Vol.40, pp. 70–80.

