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In this paper, we present a new algorithm to detect and resolve generalized deadlocks in distributed 
systems. The algorithm constructs a distributed spanning tree by diffusing probes along the edges of the 
Wait-For Graph (WFG) and collects a reply that carries the dependency information of processes to 
determine a deadlock. Unlike the previous algorithms, it performs reduction whenever it receives a reply 
from an active process. Moreover it isolates termination detection from deadlock detection, and 
terminates the execution once it detects a deadlock. It has a worst-case time complexity of d+2 and 
message complexity of e+2n; where n is the number of nodes, e is the number of edges and d is the 
diameter of the WFG. Correctness proof and performance analysis for the algorithm are also provided. 
Furthermore, it minimizes the message length and message overhead associated with deadlock 
resolution as compared with the existing algorithms.

Povzetek: Članek preučuje problem smrtnega objema v porazdeljenih sistemih.

1 Introduction
In a distributed computing environment, if a process
needs a resource on the remote site for its computation, it
sends a request message to the desired site. If the resource 
is available, it will be granted to the requesting process 
immediately; otherwise, the requesting process waits 
indefinitely until its request is granted. This will lead to a 
deadlock in distributed systems where a set of processes
wait indefinitely for each other to satisfy their requests.
Since deadlock reduces the resource availability and
throughput, it should be detected and resolved promptly.
However, deadlock is very difficult to detect as well as 
resolve in distributed systems due to the presence of
multiple sites. In general, the interdependency among the
distributed processes is modeled by a directed graph
known as the Wait-For Graph (WFG) [1,2]; where each
node represent a process and an edge from a node ‘i’ to
node ‘j’ indicates that process ‘i’ is requested a resource 
from process ‘j’ and process ‘j’ is not granted a resource
to process ‘i’. A deadlock is defined differently 
depending upon the underlying resource request model
such as Single-Resource model, AND model, OR model
and P out-of Q model [1,7]. In the Single Resource and
AND model, a process needs all requested resources to
continue its execution. Hence, the presence of cycle in 
the WFG implies a deadlock. In the OR model, a
process proceeds the execution only if any of the 
requested resource is granted. Therefore, the
presence of knot is necessary to determine OR deadlock.
In the P out-of Q model, a process makes requests for Q 
resources and remains blocked until it is granted any P 
resource. Since AND and OR model are the special case 

of P out-of Q model, it is also referred as generalized 
request model. A generalized deadlock corresponds to a 
deadlock in the generalized request model. The
generalized request model is quite common in many 
domains such as resource management in distributed
operating systems, communicating sequential processes
and quorum consensus algorithms in distributed
databases [11,12,16]. A cycle in the WFG is necessary 
but not sufficient condition whereas a knot is sufficient 
but not necessary condition for a generalized deadlock. 
Since detection of generalized deadlock requires the 
detection of a complex topology in the WFG, only few
generalized deadlock detection and resolution algorithms
[4,5,7,8,10,12,15,16] have been proposed in the 
literature. Most of them have used the diffusion 
computing technique [1] in which a distributed 
computation is initiated by a single node and joined by
other nodes   only  after  receiving a   message. The  
generalized deadlock detection algorithms are grouped
into two categories namely centralized and distributed
algorithms based on the existence of the WFG. In the
centralized algorithms, the initiator maintains the entire
information to determine a deadlock whereas in the
distributed algorithm the information is spread across
multiple sites.

1.1 Literature survey
In general, the distributed algorithms [4,5,7,10,12]
have used ‘record and reduce’ principle to detect the
generalized deadlocks. According to the technique, the 
algorithm records the consistent snapshot of distributed
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WFG and performs reduction later to determine a 
deadlock. The algorithm proposed by Bracha and Toueg
[4] consists of two phases. In the first phase, the initiator
records a snapshot by propagating the probes along the
edges of the WFG. In the second phase, the algorithm
simulates the granting of resources to determine a 
deadlock. The second phase is nested within the first
phase. It exchanges 4e messages in 4d time units, where
e is the number of edges and d is the diameter of the
WFG. By following the approach in [4], Wang.et.al [5]
developed another algorithm in which an explicit
termination technique is used to detect the end of the
first phase. The second phase begins only after the first
phase is finished.  Although it reduces the time 
complexity of [4] into 3d+1, it needs 6e messages to
detect a deadlock. Moreover, both [4] and [5] have 
failed to resolve deadlocks. The algorithm in [10]
records as well as reduces the WFG simultaneously to
determine a deadlock. It records a consistent snapshot of
distributed WFG in the outward sweep and reduces in
the inward sweep in a single phase. It uses 4e-2n+4l
messages in 2d time units to find out whether the
initiator is deadlocked, where n is the number of nodes
and l is the number of leaf nodes in the WFG. However
it deals with the complications introduced because the 
reduction of node in the inward sweep can begin much 
before the state of all WFG edges incident at that node 
have been recorded in the outward sweep. And it needs 
O(e) messages to resolve deadlocks. The algorithm in
[11,12] uses lazy evaluation technique by which the 
reduction of a process in a snapshot is delayed until the
initiator detects the termination. Although it minimizes 
the message complexity into 2e as with the previous 
algorithms, it uses variable sized messages with the 
length of O(e) . Since the initiator knows the resource
requirement of all deadlocked processes, it minimizes the
message overhead associated with deadlock resolution
unlike in [10]. The algorithm in [19] achieves the time 
and message complexity of [12] with fixed sized 
messages. Unlike  [12], it performs the reduction before 
the initiator terminates the execution of the algorithm. In 
general, distributed algorithms require two or more 
rounds of message transfer along the entire edges of the 
WFG. Hence, they need at least 2d time units to detect 
deadlock in the worst case.

In the centralized algorithms [8,15,16], the initiator
maintains the Local Wait-For Graph (LWFG) to detect a
deadlock. The initiator of the algorithm in [8] collects 
a reply from each process in its reachable set exactly
once. Based on the information in replies, it 
incrementally constructs the WFG locally to determine a 
deadlock. It needs only 2n messages with the length of 
O(n) to find out deadlock. However, it has a time 
complexity of 2d like the distributed algorithms. In 
addition, it may abort nodes that are not deadlocked and 
needs O(n) messages to resolve deadlocks. The algorithm 
in [15] constructs the LWFG by using the ancestor-
descendent relationship between the processes in
replies. It uses less than 2e messages in 2d time units to 
detect a deadlock. It reduces the message length into 
O(e-n+m) where m indicates the number of nodes that 

are not associated with any non-tree edges in the 
spanning tree induced by the algorithm. However, it 
needs additional technique to assign a unique path string to 
each node in the WFG and to interpret the path strings for 
constructing LWFG at the initiator. In contrast to [8], it 
resolves all deadlocks reachable from the initiator. The
initiator of the algorithm in [16] collects the dependency 
information of all nodes to determine the deadlocked 
processes. It has almost half the time complexity of 
previous algorithms to detect a deadlock. It needs less 
than 2e messages in d+2 time units for detecting all 
deadlocked processes. However it needs additional 
technique to optimize the message length at each node 
and requires messages with the length of O(d) in the 
worst case.  Hashemzadeh proposed an algorithm [17,18]
based on history based edge chasing technique in which 
the initiator declares a deadlock once it finds its existence 
in the message. However, it significantly minimizes the 
message overhead associated with the executions of 
concurrent instances and deadlock resolution. We do not 
consider the algorithms based on edge chasing techniques 
[17,18] in this paper.

We propose a new centralized algorithm to detect
and resolve distributed deadlock in generalized model.
Our algorithm improves the message complexity and 
message size of previous algorithms. The initiator of the 
algorithm constructs the distributed spanning tree (DST)
by propagating probes (CALL messages) along the edges
of the WFG. Once a process receives the probe, it sends a 
reply that carries its dependency information directly to the 
initiator. However, the initiator performs reduction 
immediately after receiving a reply from an active process 
and receives a reply at most twice from each node in its 
reachable set unlike the earlier algorithms. At the end of 
termination, it declares all the nodes whose resource 
requirements are not met as deadlocked. We have 
formally proved the correctness of the proposed
algorithm. It has a worst-case time complexity  of d+2
time units and message complexity of less than e+2n,
where d is the diameter, n is the number of nodes and e
is the number of edges in the WFG. Further, it has a data 
traffic complexity of O(n) in the worst case. Since it 
selects a victim without using additional messages, it
considerably simplifies deadlock resolution.

Although the proposed algorithm have some
similarities with [16], it differs from Lee’s algorithm 
[16] and pervious centralized algorithms [8,15] in the
following aspects:

1. The algorithm performs reduction whenever it 
receives a reply form an active node whereas Lee’s 
algorithm [15,16] performs reduction only after it 
detects the termination.

2. The algorithm in [15,16] uses an explicit mechanism
to reduce the message length, whereas the proposed
algorithm does not require any additional techniques.

3. The initiator of the proposed algorithm builds a
directed spanning tree of the WFG, whereas the
initiator of Chen [8] algorithm does not consider
any structural property of the WFG.
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4. Unlike in [16], the initiator of the proposed
algorithm receives a reply from all nodes in its 
reachable set at most twice.

The rest of this paper is divided into five main sections. 
In Section 2, we describe the key definitions and
assumptions about the system model and the problem
definition. In Section 3, we present the algorithm along
with an example. In Section 4, we prove the correctness 
of the algorithm. In Section 5, we analyze the
performance of the algorithm and compare it with that of
previous algorithms. Finally, we conclude the paper in 
section 6.

2 System Model
Although we follow the computation model in [4, 8, 10,
12, 16], we describe it for completeness of this paper.
The system has ‘n’ processes and each one has a unique 
identity. There is a logical channel between any two
processes. The processes can communicate only by
message passing. The message delays are arbitrary but
finite. The messages are delivered to the destination in
the same order as the sender sends them. The messages
are neither lost nor duplicated and the entire system is
fault-free. The messages are grouped into namely
computation and control messages in the system. The 
computation messages including

REQUEST, REPLY, CANCEL and ACK
are generated as a result of application’s execution. 
However, the control messages including CALL, 
REPORT and WEIGHT, which will be discussed in the
section 3, are generated by the execution of the deadlock
detection algorithm. Both computation and control
messages are time stamped based on the requesting 
process’s logical lock [3]. Thus the time stamp of ACK
or REPLY should be matched exactly with the
corresponding REQUEST message.

A process state is active or blocked at any instant. 
When a process ‘i’ makes a generalized request and 
blocks, the unblocking condition of its request is denoted 

as a function Fi. For example, Fi=A∧(B∨C) denotes that
process ‘i’ requires a resource from process A and a
resource from either process B or C. Function Fi is
evaluated in the following manner:  substitutes true for a
node id in Fi if it has received a REPLY, indicating 
granting of that request from that node; otherwise, 
substitutes false for it. Then, evaluate the function Fi. A 
process unblocks when a sufficient number and 
combination of its requests to make Fi true are granted. 

An active process can send both computation and
control messages whereas the blocked process can send
either control messages or ACK. When process ‘i’
blocks on pi out-of qi requests, it sends REQUEST
message to qi processes in OUTi.   Therefore, OUTi

gives the domain of Fi. Upon receiving a REQUEST
message from ‘i’, process ‘j’ records <i, t_blocki> in INj

and sends an ACK message to the sender of the message. 
If process ‘j’ is  active, it  sends a REPLY message to
process ‘i’ and subsequently removes <i, t_blocki> from

INj. Once a node is unblocked, it withdraws the remaining
requests it had sent earlier but not yet granted.

Each process ‘i’ maintains the following variables to
keep track of its state in the WFG. The initial value of
each variable is given within parenthesis.
parenti : the process identifier from which ‘i’ has
received the first probe (NULL)
IN

i
: the set of processes which are directly blocked on ‘i’

(φ)
OUT

i
: the set of processes for which ‘i’ is waiting (φ)

Fi : the condition for unblocking a process ‘i’
We denote the set of processes in INi as

predecessors and the set of processes in OUTi as
successors of process ‘i’. A blocked process cannot
withdraw any one of its requests spontaneously. And it
could not abort any requests abnormally. These two
assumptions are essential to ensure that the algorithm
records a consistent snapshot. We use the terms process
and node interchangeably throughout this paper.

2.1 Problem statement
A generalized deadlock exists in the system if the
requesting conditions of one or more processes can never
be satisfied. The formal description of deadlock is
provided as in [16].
Definition 1:  Let  evaluate(Fi)  be  a  recursive  
operation evaluated based on the following:

1. evaluate (i) = evaluate (Fi),
2. evaluate (Fi) = true, for active node ‘i’,

3. evaluate (P∨Q) = evaluate (P) ∨ evaluate (Q)

4. evaluate (P∧Q) = evaluate (P) ∧ evaluate (Q)
where P and Q are nonempty AND/OR expressions 

of node identifiers. A generalized deadlock exists in the
system if and only if the following topology exists in the
WFG.
Definition 2: A generalized deadlock is a sub graph
(D,K) of WFG (V,E) where

∀i∈D(≠ φ), evaluate (Fi) = false,
No message for computation is under transmission 

between any nodes in D

Therefore, all processes in D are blocked forever and
the resource requirement of processes that do not belong 
to D can be satisfied at any instant. It should be necessary
to abort a node in D to resolve a deadlock.

A distributed deadlock   detection  algorithm  
should  satisfy  the following two correctness conditions:

Liveness: If a d e a d l o c k e x i s t s , t h e
a l g o r i t h m wi l l detect it within finite time.

Safety:      The algorithm does not report any false 
deadlock.

3 The Proposed Algorithm
In this section, we present the basic idea behind the 
execution of single instance our deadlock detection
algorithm. Then, we present the algorithm formally and
provide an example.
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3.1 The description
We assume that the initiator ‘i’ initiates the deadlock
detection algorithm. It includes the unblocking function 
(Fi) in the set UCinit and sends CALL message to each
one of its successor ‘j’ in outi. If node ‘j’ receives the first 
CALL message, it becomes the child of the sender and
sends REPORT message that carries the unblocking 
function (Fj) to the initiator directly. Further, it 
propagates the CALL message to its own successors.
However, if a node that has already joined the execution 
of current instance receives the second and subsequent 
CALL message, it does send a reply immediately. Those 
nodes send a WEIGHT message to the initiator only 
after receiving CALL messages from all its predecessors.
Hence, it minimizes the message overhead to detect a 
deadlock.

Whenever the initiator receives a REPORT 
message from a blocked node ‘i’, it includes a tuple (i,
Fi, num_predi) in the set UCinit. At the same time, if it 
receives a REPORT message from an active node ‘i’, it
includes ‘i’ in the set Ainit and attempts to evaluate all 
unblocking functions in the set UCinit. It performs the 
evaluation in the following manner: Select a tuple (i, Fi, 
num_predi) from the set UCinit and check if the node 
identifiers in the set Ainit are sufficient to make Fi as true.
If it happens, it includes ‘i’ in the set Ainit and removes
the corresponding tuple from the set UCinit. This process 
is repeated continuously until there is no more unblocking 
function in the set UCinit can be simplified as true. If the
algorithm unblocks all nodes in the set UCinit during
evaluation, it terminates the execution immediately; 
otherwise, it continues the execution until it detects the 
termination based on weight distribution technique. Once
the algorithm terminates the execution, it declares all the 
nodes that have not been reduced in the set UCinit as
deadlocked.

The algorithm detects the termination based on the 
weight distribution method like in [10,17]. According to 
the method, the initiator distributes a weight of one to its 
successors through CALL messages. When a node 
receives the first CALL message, it distributes the weight 
in the message among its successors. However, it 
accumulates the weight in all subsequent CALL messages 
until it receives the CALL messages from all its 
predecessors. It then returns the weight to the initiator 
through a WEIGHT message. It is accomplished as 
follows. Each node ‘i’ has a variable ‘num_predi’ that 
counts its predecessors. Whenever it receives a CALL 
message, it decreases the count by one. Hence, the 
num_predi at a node becomes zero signifying that it receives 
the CALL message from all its predecessors. Whenever the 
initiator receives a WEIGHT message, it sum ups the 
weights. The algorithm terminates when the weight at 
the initiator becomes one. 

In a dynamic environment, the algorithm may report 
a false deadlock due to the presence of phantom edges.
Let us consider a phantom edge from node ‘i’ to node ‘j’. 
This implies that when node ‘j’ receives a CALL 
message from node ‘i’, node ‘j’ has sent a REPLY to 

node ‘i’. In the proposed algorithm, it is resolved by as 
follows. Whenever node ‘j’ receives the CALL message 
from node ‘i’, it checks whether node ‘i’ is in INj. If i
INj, it sends an ALERT message to the initiator. Upon 
receiving the ALERT message, the initiator evaluates fi

by substituting j as true. If node ‘i’ unblocks during the 
evaluation, it is included in the set Ainit and initiates the 
evaluation of other nodes in the set UCinit.

3.2 Formal specification
A formal description of the proposed algorithm
executed at node ‘i’ is presented below. The initial value 
is given inside the parenthesis.

Data Structure of a node ‘i’
parenti    : node id (NULL);      /* a node from which a 
CALL has been first received */
weighti   : float (0);               /* the weight value of ‘i’ */
ini : set of nodes (INi); /*the set of predecessors of ‘i’ */
outi : set of nodes (OUTi); /*the set of successors of ‘i’ */
fi : AND-OR Expression (Fi); /*the condition for ‘i’ to be
active */
num_predi: integer (|INi|);  /* the number of predecessors
of ‘i’ */

Additional Data Structures at initiator
UCinit a set of unblocking functions which contains
tuples of the form (i, fi, num_predi) where fi denotes
the unblocking condition of a node ‘i’ (φ).
A

init  a set of active nodes (φ)
weightinit  the accumulated weight value (0)
victiminit the node identifier to be aborted to resolve 
the deadlock (φ).

Message Formats
CALL(initiator, sender, weight): Sent by node ‘sender’
carrying the identifier of the initiator and the weight
value for the receiver of this message.

REPORT( sender, fsender, num_predsender): Sent by node
‘sender’ as a response to first CALL message carrying
the unblocking condition and its number of predecessors.

WEIGHT(sender, weightsender):Sent by node ‘sender’
after receiving CALL messages from all its predecessors.

ALERT (sender, weightsender): Sent by node ‘sender’ after
receiving CALL messages through a phantom edge.

I. When a node ‘i’ initiates the algorithm
initiatori := i;
parenti:=i;

UC
init

:= UC
init
∪ {(i, fi, num_predi

)};

send CALL(initiator, i, 1 / |out
i
|) to each j∈out

i

II. Upon receipt of CALL(initiator, j, weightj) from j 
begin



MESSAGE-OPTIMAL ALGORITHM FOR… Informatica 35 (2011) 489–498 493

num_predi --;

if (parenti = NULL ∧ j∈ini) then 
/* Step II.1 */

parenti:=j;
initiatori := initiator;
send REPORT(i, fi, num_predi) to initiatori

         if (|outi| >0 ) then /* Step II.1.1 */
        send CALL(initiatori,i,weightj/|outi|) to each

k∈outi

else if (parent
i
≠ NULL ∧ j∈in

i
) then /* Step II.2 */

       if (i=initiator) then /* Step II.2.1 */
             weightinit= weightinit + weightj;
      else if (num_predi = 0) then /* Step II.2.2*/
             send WEIGHT(i, weighti) to initiatori

       else
             weighti:= weighti + weightj;

      else if (j∉ini) then /* Step II.3*/
          send ALERT(i, weightj) to initiatori

      end

III. Upon receipt of REPORT(i, fi,num_predi) from i :
begin
if (f

i
= φ) then

A
init

:= A
init
∪ {i};

evaluation();
else

UCinit := UCinit ∪{(i, fi, num_predi)};
end

IV. Upon receipt of WEIGHT(i, weighti) from i :
begin
weightinit:= weightinit + weighti ;
if (weightinit =1  UCinit 

!= φ) then
resolution(); // Declare a Deadlock

end

V. procedure evaluation()
begin 

for each i ∈UCinit do
begin

if (evalvate(i.fi) = true ) then

Ainit:=Ainit∪ {i};
UCinit := UCinit – { i ,fi, num_predi}

if ( UC
init

= φ ) then
No deadlock; exit;

else
evaluation();

end for
end

VI. procedure resolution()
begin

count:=0;
repeat
for each i ∈UCinit do

begin
if (i.num_pred  count) then

count:= i.num_pred;
victiminit:= i.id;

end for
send ABORT to victiminit ;
UCinit:=UCinit–{(victiminit,fvictim,num_predvictim)}; 

Ainit :=Ainit∪ {victiminit}; 
        evaluation() ;

until ( UCinit = φ )
end

VII. Upon receipt of ALERT(i, j, weighti) from i :
begin

        for each k ∈ UCinit do
if ( k.id = i) then

k. fi:=  k. fi | j = true ;
// Substitutes j by true  

if (evaluate (k. fi ) = true ) then
UCinit := UCinit  - {k};
Ainit: = Ainit  {k.id};
evaluation();

weightinit:= weightinit + weighti ;
if (weightinit =1 UCinit 

!= φ) then
resolution(); // Declare a Deadlock

end

3.3 Example execution

                Figure 1: The Wait-For Graph

We illustrate the idea behind our algorithm with the help 
of an example. Figure 1 shows a distributed WFG that
spans 10 nodes labelled from 1 to 10. All the nodes
except 2, 6 and 10 are blocked initially. The unblocking
conditions of these nodes are as follows:                         

F1=(2∧3)∨4, F3=(5∧6)∨7, F4=8∧9, F5=1, F7=4, F8=7 and 

F9=(810)1)
Let us consider node 1 initiates the algorithm and the

messages are propagated in such a manner to induce a
Breath First Search(BFS) Spanning Tree of the WFG.
Figure 2 shows the Directed Spanning Tree, where tree 
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and nontree edges are indicated by solid and dashed lines
respectively.

Figure 2: The Distributed Spanning Tree

1. When  node  1  initiates  the  algorithm,  
it  sends CALL(1,1,1/3) to nodes 2,3 and 4
respectively.

2. When node 2 receives the CALL from 
1, it sends REPORT(2,,1) and 
WEIGHT(2,1/3) to 1.

3. When node 3 receives the CALL from 
1, it sends REPORT(3,(56)7,2) to 1 and 
CALL (1,3,1/9) to nodes 5,6 and 7 
respectively. 

4. When node 4 receives the CALL from 1, it

sends REPORT(4,8∧9,2) to 1 and
CALL(1.4,1/6) to nodes 8 and 9 
respectively.

5. When node 5 receives the CALL from 
3, it sends REPORT(5,1,1) and CALL (1,5,
1/9) to 1

6. When node 6 receives the CALL from 

3, it sends REPORT(6,,1) and 
WEIGHT(6,1/9) to 1. 

7. When node 7 receives the CALL from 
1, it sends REPORT(7, 4,2) to 1 and 
CALL(1,7,1/9) to 4.

8. When node 8 receives the CALL from 
4, it sends REPORT(8, 7,2) to 1 and 
CALL(1,8,1/6) to 7.

9. When node 9 receives the CALL from 4, it

sends REPORT(9, (8∧10)1,1) to 1 and
CALL(1,9,1/18) to nodes 1,8 an 10
respectively.

10. When node 1 receives the CALL from 5
through a back edge, it updates weightinit

11. When node 4 receives the CALL from 7, 
it sends WEIGHT (4, 1/9) to 1.

12. When node 7 receives the CALL from 8, 
it sends WEIGHT (7, 1/6) to 1.

13. When the initiator 1 receives the CALL
from 9 through a back edge, it updates
weightinit.

14. When node 8 receives the CALL from 9, 
it sends WEIGHT (8, 1/18) to 1.

15. When node 10 receives the CALL from
9, it sends REPORT(10,φ,1) and
WEIGHT(10,1/18 ) to 1.

Figure 3 shows the flow of control messages across the 
WFG. 

   Figure 3: The Message Flow

Whenever the initiator receives the REPORT from
nodes 2, 6 and 10, it simplifies the unblocking functions in
the set UCinit. Finally, it declares the nodes 1,3,4,5,7,8 and
9 as deadlocked nodes.

3.4 Properties of the Algorithm
In this section, we prove the correctness of our algorithm
by using several observations (observations 1 - 9) and 
lemmas (Lemmas 1-4) about the properties of the 
algorithm. 
Observation 1: When the initiator diffuses the CALL 
messages, it is eventually received by all nodes in its 
reachable set.
Observation 2: The diffusion of CALL message induces 
a distributed spanning tree of the WFG.
Observation 3: Whenever a node receives the first 
CALL message, it propagates the message to each one of 
its successor.
Lemma 1: If node ‘i’ receives the CALL message, the
unblocking function Fi is sent to the initiator. 
Proof: From observation 1, each node that is reachable 
from the initiator receives the CALL message. Upon 
receiving the first CALL message, node ‘i’ sends its 
unblocking function Fi to the initiator through REPORT 
message after the execution of Step II.1. Thus, the lemma
is proved.
Observation 4: Once a num_predi has been recorded in 
node ‘i’, it does not change during the execution of the 
algorithm.  
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Observation 5: Whenever a node ‘i’ receives the CALL 
message through any one of its incoming edge, it 
decrements num_predi by one.
Lemma 2:  If a node ‘i’ sends a WEIGHT message to the 
initiator then it must have received CALL messages from 
all its predecessors.
Proof: By observation 5, upon receiving the CALL 
message from each node jini, node ‘i’ decreases 
num_predi by one. At the time node ‘i’ receives the 
CALL message, if num_predi is decremented to 0 then its 
weight is sent to the initiator through a WEIGHT 
message by Step II.2.2. Hence, the lemma holds.

Observation 6: Whenever an initiator receives the 
REPORT message from an active node, it evaluates the 
unblocking functions in the set UCinit.
Definition 3: The initiator reduces a node ‘i’ iff it has 
sufficient active nodes in the set Ainit to simplify Fi as 
true.
Observation 7: Node ‘i’ can belong to the set Ainit only 
if any one of the following holds.

The initiator receives a REPORT message from node 
‘i’ that contains Fi as true 

At the time the initiator evaluates Fi as true during 
reduction, node ‘i’ is added to the set Ainit.
Definition 5: If the initiator is reduced during the 
evaluation, the algorithm stops the execution.
Observation 8: The weight in a CALL and WEIGHT 
message is always in transit until they reach the initiator 
and added to weightinit.
Definition 3: The algorithm is said to be terminated 
when weightinit =1
Observation 9: When the algorithm terminates the 
execution, all nodes that is reachable from the initiator 
either in the set UCinit or Ainit.

Lemma 3: If a deadlock exists in the system, the 
algorithm will detect it in finite time.
Proof : Assume that a deadlock D exists in the system. 
The initiator declares a deadlock only if a set UCinit  
after the execution of Step V.  Thus, it is sufficient to 
prove that the initiator has all information about the 
nodes and their associated edges in D. Let us consider 
node ‘i’ in D. It implies that node ‘i’ has sent Fi to the 
initiator through a REPORT message by lemma 1. Since 
node ‘i’ is blocked forever, the initiator evaluates Fi as 
false during the execution of Step V at the end of 
termination. Thus, all nodes in D exist in the set UCinit.  
Let us now assume a edge e = (i,j) and eD. By lemma 
1, node ‘i’ sends this information to the initiator only 
after sending a CALL message to node ‘j’. Before 
sending the CALL message, node ‘i’ must send a 
REQUEST message to node ‘j’. If node ‘i’ has received a 
REPLY message from node ‘j’, an edge e has not been 
included in Fi. Since both nodes ‘i’ and ‘j’ are in D, edge 
e can not reduced during the execution of Step V in the 
algorithm. Therefore, UCinit contains a deadlock D after 
the algorithm has terminated. Consequently, the initiator 

sends an ABORT message to a victim until to resolve a 
deadlock by Step VI. Thus, the lemma holds.

Lemma 4: If a deadlock is declared, the deadlock exists 
in the system
Proof:  The proposed algorithm reports a deadlock only 
when UCinit=. Assume a contrary that the algorithm 
does not detect a deadlock D. So, it is sufficient to prove 
that UCinit =  after the execution of Step V. This reflects 
the fact that a deadlock D exists in the system and the 
nodes of D in the set UCinit are reduced during the 
execution of Step V. Let node ‘i’ be one of such nodes 
that unblocks first in the set UCinit. According to the 
definition of deadlock, node ‘i’ is removed from the set 
UCinit only if the unblocking function Fi is simplified as 
true. It can be possible only when node ‘i’ had received 
at least one REPLY from its successors in D at some 
time Ti. By observation 7, it should happen only before it 
sends Fi to the initiator. Let node ‘j’ be one such 
successor in D that unblocks node ‘i’.  And node ‘j’ 
sends a REPLY to node ‘i’ only if it has received the 
REPLY from some of its successors in D before Ti.  That 
is in contradiction with the assumption that node ‘i’ is the 
first node that unblocks in the set UCinit. Thus is proved.

Theorem 1: The initiator of the algorithm terminates the 
execution in finite time.
Proof: By step I, the initiator distributes the weight of 
one to all nodes that are reachable from it through CALL 
messages. The messages are neither lost nor duplicated 
according to our network assumptions. From observation 
5, for each node ‘i’ that is reachable from the initiator 
sends a WEIGHT message that carries the weight value 
to the initiator after the execution of step II.4.  The 
initiator executes the Step II.2.1 or IV upon receiving the 
CALL or WEIGHT messages and stops the execution 
once its weight becomes one. Since the messages 
transmission takes finite time, the initiator terminates the 
execution in finite time.

Theorem 2: The algorithm records a consistent snapshot 
at the initiator.
Proof: Let S be the last snapshot computed by the 
algorithm, and it contains a edge (p,q).  This implies that 
this dependency relation was included in Fp which has 
sent by p to the initiator through a REPORT message. 
Before sending a REPORT message, node ‘p’ sends a 
CALL message to all its successors, including node ‘q’ 
during the execution of Step I or II. This is so because 
node ‘p’ had sent a REQUEST message to node ‘q’ and 
pinq. This reflects the fact that the edge from p to q 
indeed exists in the WFG at the time of execution. 
Hence, the theorem holds. 

Theorem 3: The algorithm detects a deadlock if and only 
if it exists in the system
Proof: Follows from Lemmas 3 and 4.
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3.5 Concurrent executions
Since several nodes may block simultaneously, each one
of them invokes the deadlock detection algorithm 
independently. If this happens, a node can be involved in 
the execution of more than one instance and several
initiators may report the same deadlock.  In such 
situations, each instance may select different victims
even though a single victim is sufficient to resolve a
deadlock. Nevertheless, few instances of the algorithm
might be engaged in false deadlock resolution. The 
various issues associated with the concurrent execution
of the algorithm are addressed in [8,11,12,16]. Since the 
method in [8] needs more messages and prone to useless 
aborts, we follow the priority based technique in
[11,12,16] to handle concurrent executions. According to
the method, the algorithm assigns a unique priority to 
each instance based on its identifier, which comprises
the initiator’s identifier and  the block time / sequence
numbers. Since the control messages of every instance
carries this label, each instance can be distinguished from
others.. When a node involves in the execution of
multiple instances, it will support the execution of only
high priority instance and suspends the execution of low 
priority instances.

3.6 Deadlock resolution
The initiator selects a victim that unblocks as many as 
deadlocked nodes in the set UCinit to resolve a deadlock. 
Then, it sends an ABORT message to the victim directly. 
It includes the victim into Ainit and removes the 
corresponding tuple from the set UCinit. It then evaluates
the unblocking functions of all nodes in the set UCinit and 
removes the nodes whose unblocking function is 
simplified as true. If a victim is insufficient to make
UCinit as empty, it selects another victim. This process 
continues until UCinit is empty.  Upon receiving the 
ABORT message, a node aborts its execution and 
releases all resources it had acquired earlier. An aborted 
process restarts its execution as in [11,13]. Thus the 
proposed algorithm simplifies the deadlock resolution by 
minimizing the messages and the nodes to be aborted.

4 Performance Analysis
We discuss the performance of the proposed algorithm
with respect to time, message and data traffic
complexities. The message complexity is the total number
of messages exchanged by the algorithm. The time
complexity of the algorithm is the time required by the
initiator to detect a deadlock. The data traffic complexity
defines the total length of data transmitted by the 
algorithm. The measurements are based on the 
assumption that the message transmission between any
two nodes takes one time unit. We assume that n is the
number of nodes, e is the number of edges and d is the
diameter of the WFG.

Theorem 4: The algorithm terminates the execution in 
d+2 time units. 

Proof:  Whenever a node initiates the algorithm, it sends 
CALL message to its successors which in turn 
propagates the message to its own successors. Therefore, 
the CALL message must travel to the farthest node 
reachable from the initiator. Let dmax  d be the 
maximum diameter of the WFG. Then, the latest time the 
leaf node of spanning tree receives the CALL message is 
dmax+1. Since the leaf node sends a WEIGHT message to 
the initiator directly, the algorithm will receive all replies 
at most dmax+2 time units. Thus the time complexity of 
the proposed algorithm is d+2 in worst-case.

Theorem 5:  The algorithm detects a deadlock using 
e+2n messages.
Proof: To compute the message complexity, we consider 
separately each message type.

CALL messages are sent once over any edge of the 
WFG. Thus, at most e messages are sent totally.

REPORT messages are sent to the imitator over a 
communication channel directly. Since there is no more 
than ‘n’ node, the total number of REPORT messages is 
bounded by n.

WEIGHT messages are sent to the initiator once by 
the leaf nodes of spanning tree and thus no more than n-1 
of such messages can be sent.

From above, we can conclude that the message 
complexity at worst case is O(e+2n) messages. 

Let us consider the message length of proposed 
algorithm. Since CALL and WEIGHT messages are 
fixed sized, we now analyse the length of REPORT 
message. A REPORT message delivers the unblocking 
function of a node to the initiator. In the generalized 
model, the unblocking function of a node ‘i’ is a AND-
OR expression that involves |outi| node identifiers. In the 
best case, the unblocking condition can be true and Fi is 
. In the worst case, Fi comprises the set of |outi| node 
identifiers.  

For computational complexity at the initiator, we 
need to determine computational complexity of two 
procedures namely evaluation and resolution. The 
evaluation procedure is executed whenever an initiator 
receives the REPORT message from an active node. In 
the worst case, when all nodes are deadlocked, the 
unblocking functions of all n nodes are in the set UCinit

and Ainit=. At the time, the algorithm declares the 
deadlock without evaluating the unblocking conditions 
and invokes the procedure resolution. In the procedure 
resolution, a victim is selected, inserted into the set Ainit

and removed from the set UCinit. Therefore, the number 
of processes in the set UCinit is reduced at least by one at 
each execution of resolution. Hence, in the worst case the 
computational complexity at the initiator is O(n) steps. In 
contrast, the algorithm in [16] requires O(n2) steps and 
the algorithm in [12] needs O(t2) steps, where t is the 
number of nodes in the induced spanning tree by those 
algorithms.  However, in the best case (UCinit=), the 
local complexity of this algorithm is O(1)
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Table 1: Performance Comparison

Table 1 compares performance of different generalized 
deadlock detection algorithms. The message length of 
O(n) indicates that it consists of all node identifiers in the 
algorithms [7,8]. And the message used in the algorithms 
[12,15,16] and the proposed algorithm carries the 
unblocking functions to the initiator. However, the 
message length of these algorithms is differed due to the 
following reason. In the algorithm [16] the unblocking 
functions of nodes are merged as well as distributed 
during propagation of probes outward from the initiator 
whereas in [17], the unblocking function of each node is 
merged during the propagation of replies backwards to 
the initiator. As a result, the number of unblocking 
function in a reply grows as the message goes up in the 
spanning tree induced by the algorithm [12]. Similarly, if 
a node has exactly one successor, the number of 
unblocking conditions in a reply message is at most n-1 
in the worst case in [16]. In contrast to [12, 16], the 
proposed algorithm sends an unblocking function of a 
node to the initiator disrespect the presence of deadlock 
and the number of successors of nodes in the WFG. In 
this conjuncture, the message length of proposed 
algorithm is a constant. 

5 Conclusion
We presented a new algorithm to detect and resolve 
generalized deadlocks in distributed systems. The 
initiator of the algorithm collects the unblocking 
functions of all nodes in its reachable set exactly once. 
Then it arbitrarily simplifies the unblocking conditions 
depends on the reply from an active to determine 
deadlock. We proved the correctness of the algorithm. It 
has a time complexity of d+2 time units and worst case 
message complexity of e+2n messages hops delay to 
detect a deadlock. In addition, it finds out all nodes that 
are in deadlock with the initiator only if the initiator is 
deadlocked unlike the earlier algorithms. The 
performance of the proposed algorithm is better or 

comparable with the existing algorithms in terms of time, 
message and data traffic complexities. Furthermore, it 
simplifies the deadlock resolution by minimizing the 
additional round of messages. The proposed algorithm is 
applicable to detect deadlocks in different domains of 
distributed systems design such as resource management 
in distributed operating systems, store and forward 
communication networks, communicating processes and 
replicated databases.
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