
Informatica 34 (2010) 509-515 509

Multisignature Scheme Based on Discrete Logarithms in the Plain
Public Key Model
Zuhua Shao
Zhejiang University of Science and Technology, P. R. of China
E-mail: zhshao_98@yahoo.com

Keywords: discrete logarithm, random oracle model, group oriented cryptography, multisignature.

Received: November 18, 2008

In this paper, we propose a new multisignature scheme based on discrete logarithms. We show that this
new scheme can resist existential forgeries against adaptive chosen-message attacks in the random
oracle model. The main contribution is that our security model gets rid of the special security
requirement on the generation of the signers’ public keys. Adversaries are not required to reveal private
keys corresponding to the public keys of its choice to the challenger in attack games. Thus the new
multisignature scheme does not suffer from the problem identified by Micali et al., which is shared by
many current multisignature schemes. Moreover, if the joint public key of a group of signers in this
multisignature scheme is precomputed, the proposed multisignature scheme is optimal.

Povzetek: Opisana je shema podpisov za zaščito javnih ključev.

1 Introduction
Society oriented cryptography is a notion introduced by
Desmedt [1]. A society oriented signature is essentially
like a single signature except that is generated by plural
individuals simultaneously.

A multisignature scheme is one kind of society
oriented signature scheme, which allows multiple signers
to sign the same message in a collaborative and
simultaneous manner. A trivial solution is that every
signer signs the message using a normal signature
scheme respectively. Obviously, this simple solution will
meet the security requirements for the multisignature
scheme if the underlying signature scheme is secure. Its
main drawback, however, is that both the data expansion
and the computation costs for verification increase
linearly with the number of signers in the group. Harn [2]
submitted two additional properties that need to be
achieved in the design of an optimal multisignature
scheme:

1. The size of a multisignature should be identical to
that of an individual signature.

2. The verification process of a multisignature should
be almost identical to that of an individual
signature.

Hence, in an optimal multisignature scheme, not
only the size of signatures is independent of the number
of signers participating in signing, but also the
computation costs for verification.

Since the notion of multisignatures was introduced
by Itakura and Nakamura [3], there have been many
multisignature schemes proposed in literatures. However,
most importantly, until the works of Ohta and Okamoto
[4] and of Micali et al. [5], there were no formal security
models for multisignatures. This lack of formalism has

led not only to some confusion as to the precise security
requirements for multisignatures, but also to some
multisignature schemes having been subsequently broken
[6, 7].

In group oriented cryptosystems, we must consider
the possibility that an adversary could corrupt some
fraction of participants, and thereby comes into
possession of their private keys. We even allow the
adversary to specify the public keys of the corrupted
participants. In so-called rogue-key attacks, the adversary
would register public keys created as a function of public
keys of other honest participants. This kind of attacks
could be extremely danger to break some multisignature
schemes. The security notion of Ohta and Okamoto [4] is
not strong enough to withstand such rogue-key attacks in
the key generation.

Micali et al. [5] gave the first strong security notion
for multisignature schemes in the plain public key model.
They discussed a series of more sophisticated approaches
based on zero-knowledge proofs, by which the private
keys corresponding to the public keys can be extracted.
Their scheme requires, as a pre-processing step, that the
set of potential signers engage in an interactive key
generation protocol to generate their key pairs. Besides
expensive and resulting in complex public keys, this
dedicated key generation enforces the set of potential
signers to be static.

Boldyrva [8] proposed an efficient multisignature
scheme based on the Gap-Diffie-Hellman group. Lu et al.
[9] proposed the first multisignature scheme from
pairings, provably secure without random oracles. Their
security models allow an adversary to create arbitrary
public keys for the corrupted signers possibly dependent
on the public keys of the honest signers. But they require
the adversary to prove the knowledge of the

510 Informatica 34 (2010) 509–515 Z. Shao

corresponding secret keys (KOSK) during the public key
registration. For simplicity, it has the adversary to hand
over the secret keys of the corrupted signers in key
generation algorithm. However, this KOSK assumption is
not realized by existing public key infrastructure (PKI).
Key registration protocols specified by the most widely
used standards, PKCS#10 [10] - used by VeriSign and
RFC 4210 [11, 12] do not specify that the Certification
Authority (CA) should require proofs of knowledge,
instead, specify that the CA should require proofs of
possession (POP). That is, applicant is required to hand
over the CA a signature, under the public key it is
attempted to get certified, of some message that includes
the public key and the identity of the applicant.

While such requirement might intuitively appear to
stop adversaries from picking rogue keys, it does not
suffice to realize the security models of [8, 9]. Ristenpart
and Yilek [13] analyzed these schemes when key
registration requires POPs. They showed that the
standardized POP mechanism does not lead to secure
multisignatures. Both schemes fall to rogue-key attacks
despite the use of standardized POP. They presented a
straightforward and natural fix for this problem: simple
use separate hash function for POPs and multisignatures
at the cost of upgrading existing PKI.

In 2006, Bellare and Neven [14] proposed a new
multisignature scheme in the plain public key model,
requiring nothing more than each signer has a (certified)
public key in GF(p), which means neither KOSK or POP
is required in key registration protocols. They provided a
security proof in the random oracle model. However,
their scheme is less efficient than the original Schnorr
signature since the computation of verification increases
linearly with the number of signers in the group.

In this paper, we also propose a new multisignature
scheme based on Discrete Logarithms (DL) in the plain
public key model. We show that this new scheme can
resist existential forgeries against adaptive chosen-
message attacks in the random oracle model. The main
contribution is that our security model gets rid of the
special security requirement on the generation of
participants’ public keys. Namely, like [14], our security
model not only allows so-called rogue-key attacks in the
key generation, but also gives the adversary complete
freedom in specifying the public keys of the corrupted
signers. The adversary is no longer enforced to prove
either knowledge or possession of the private keys
corresponding to the public keys of its choice. The
second contribution is that our multisignature scheme can
provide sequentially accountability, which means that not
only individual signers can be identified from the
multisignatures, but also the order of accountability. The
main technique of this paper is the joint public key
composed of the public keys of a group of users, which
has been used in self-certified signatures [15, 16] and
joint encryption scheme [17] to achieve provably secure.

Moreover, if the joint public key of a group of
signers is precomputed, the proposed multisignature
scheme is optimal, since the size of multisignatures and
the verification costs are the same as those for the single-

signer Schnorr signature scheme, regardless of the
number of signers.

2 The new multisignature scheme
In this section, we first present a formal definition for the
multisignature scheme, and then provide an
implementation of Multisignature Scheme based on
Discrete Logarithms (MSDL). Let U = {U1, U2, …, Un}
be a group of n signers.

2.1 Definition for multisignature scheme
Definition 1. A multisignature scheme is specified

as four randomized algorithms: ParaGen, KeyGen, Sign
and Verify:

ParaGen: takes a security parameter 1k as input and
returns a system parameter P, including some
cryptographic hash functions.

KeyGen: takes the system parameter P as input,
each signer Ui of the group U chooses its keypair (xi, yi)
respectively.

Sign: takes as input P, the signers of any subset S of
the group U (without loss of generality S = {U1, U2, …,
Ut}) cooperatively generate a multisignature  for a
message M by using their keypairs (xi, yi). The joint
public key YS of the subset S is composed of the
individual public keys {y1, …, yt}.

Verify: takes as input P, M, the joint public key YS

and a multisignature , it returns invalid or valid, with
the property that if (P)  ParaGen(1k), ({x1, …, xt}, YS)
 KeyGen(P) and  Sign(P, M, {x1, …, xt}, YS), then
Verify(P, M, , YS) = valid.

2.2 An Implementation of Multisignature
Scheme based on Discrete Logarithms
(MSDL)

We use the Schnorr signature [18] as the underlying
signature, which has been proved to be secure in the
random oracle model [19].
ParaGen: A trusted party takes a security parameter 1k

as input and returns the system parameter P, which
includes a subgroup Gg,p = {g0, g1, …, gq-1} of a prime
order q in the multiplicative group Zp

*, where g is a
generator with the prime order q, and two (ideal) hash
functions H and F, where

H: Gg,p … Gg,p  Zq*
 and F: {0, 1}* Zp

* Zq
* 

Zq
*

KeyGen: takes the system parameter P as input, each
signer Ui of a group U chooses its private key xi  Zq

*

and computes its public key yi = ixg respectively.

Sign: takes as input P, the signers of a subset S of the
group U (without loss of generality S = {U1, U2, …, Ut})
cooperatively generate a multisignature  for a message
M by using their keypairs (xi, yi) as follows:
1. Each signer Ui of the subset S chooses a random

number ki  Zq
*, computes ri = ikg and broadcasts

(yi, ri).
2. After receiving (yj, rj), (j = 1, 2, …, t), each signer

MULTISIGNATURE SCHEME BASED ON… Informatica 34 (2010) 509–515 511

computes R = r1r2…rt, h = H(y1, y2,…, yt) and f =
F(M, R, h).

3. The first signer U1 computes s1 = k1 – fx1 (mod q)
and sends it to the second signer U2.

4. After receiving s1 from the first signer U1, the

second signer U2 first verifies 11
1 ryg fs  and then

computes s2 = s1 + k2 – hfx2 (mod q), and sends it to
the third signer U3.

5. After receiving st-1 from the (t - 1)th signer Ut-1, the
last signer Ut first verifies

121121 ...)...(
2

1
 




t
fh

t
hs rrryyyg

t
t , and then

computes s = st-1 + kt – ht-1fxt (mod q). The
multisignature for the message M is  = (f, s).

Verify: The verifier first computes the joint public key of

the subset YS =
1

...21

th
t

h yyy , where h = H(y1, y2,…, yt),

and then checks the verification equation of the

multisignature f = F(M,
f

S
sYg , H(y1, y2,…, yt)).

Completeness: Because s1 = k1 – fx1 (mod q) implies

11
1 ryg fs  , s2 = s1 + k2 – hfx2 (mod q) implies

2121)(1 rryyg fhs  . By the same reason,

121121 ...)...(
2

1
 




t
fh

t
hs rrryyyg

t
t and s = st-1 + kt – ht-

1fxt (mod q) imply the verification equation. Hence, the
signature  = (s, f) produced by the algorithm Sign is
always valid.

Notice that our results can also be carried over to
other groups, such as those built on elliptic curves.

Notice that the algorithm Verify requires that a
verifier computes the joint public key YS =

1

...21

th
t

h yyy from the individual public keys <y1, y2,…,

yt> of a subset of signers. However, this time-consuming
computation is independent of messages to be signed,
and hence can be done once for all. Once the joint public
key YS of a subset of signers is precomputed, the
performance of the multisignature scheme is optimal.

3 Security model and security
proof

In this section, we first define a new security model for
multisignature schemes, which gives the adversary
complete freedom in specifying the public keys of the
corrupted signers without handing over the
corresponding private keys. Then we provide the security
proof in this strong security model.

3.1 Security model for multisignature
schemes

Security model
Existential unforgeability against adaptive chosen

message attacks (EUF-CMA) [20] is the well-accepted
security model for signature schemes, where the

adversary is allowed to ask the challenger to sign any
message of its choice adaptively, i.e. he can adapt its
queries according to previous answers. Finally, the
adversary could not provide a new message-signature
pair with a non-negligible advantage. Hence, it is natural
to require that the multisignatures also satisfy this strong
security notion.

Accordingly, existential unforgeability for group
oriented setting means that the adversary attempts to
generate a new multisignature without the knowledge of
all private keys. We formalize this intuition as a chosen
key model. In this model, the adversary is given a single
public key, while the adversary is allowed to choose the
key pairs of other signers of the group, and to ask the
sign query for any multisignature under any joint public
key. His goal is to generate a new multisignature under
the joint public keys of the group composed of the given
public key and the public keys of its choice.

We say that a multisignature scheme is existential
unforgeable against adaptive chosen message attacks if
no polynomial bounded adversary A has a non-negligible
advantage against the challenger in the following game:

Setup: The challenger takes a security parameter 1k as
input and runs the randomized system parameter
generation algorithm and the key generation algorithm to
generate the system parameter P and a public key y. The
challenger gives them to the adversary A.
Queries: Processing adaptively, the adversary A requests
multisignatures queries (Mi, Yi) under any joint public
key Yi on any message Mi of its choice, where the
challenged public key y might be included in the joint
public key Yi.
Response: Finally, the adversary A outputs a new
multisignature  for a message M under a joint public
key Y.

The adversary A wins the game if the output
multisignature  is nontrivial, i.e. it is not an answer of a
sign query (M, Y) for the message M under a joint public
key Y, and the joint public key Y is composed of the
individual public keys {y1, …, yj-1, y, yj+1, …, yt}, where
the individual public keys {y1, …, yj-1, yj+1, …, yt}, (j 
{1, …, t}), are chosen by the adversary A and y is the
given public key.

The probability is over the random bits used by the
challenger and the adversary.

Notice that our security model does not suffer from
the same special limitation as the multisignature schemes
proposed before. The adversary is given complete
freedom in specifying the public keys but the given
public key and is not enforced to disclose any knowledge
of the corresponding private keys.

Notice that the Schnorr signature generation is not
deterministic, there may be several signatures
corresponding to a given message. Hence, our security
model actually adopts the more liberal rule, which makes
the adversary successful when it outputs a fresh signature
of a given message different from previously obtained

512 Informatica 34 (2010) 509–515 Z. Shao

signatures of the same message. Thus, our security model
achieves non-malleability (NM) [21].

3.2 Security proof of the MSDL scheme
The security of the proposed MSDL scheme is based on
the DL assumption.
Definition 2 (DL assumption)

A probabilistic algorithm A is said to (t, )-break DL
in a group Gg,p, if on input (g, p, q, y = gx) and after
running in time at most t, A solves the discrete logarithm
problem x = logg,py with probability at least , where the
probability is over the uniform random choice of g from
the group Gg,p, of x from Zq

*, and the coin tosses of A.
The (t, )-DL assumption on the group Gg,p is that if no
algorithm (t, )-breaks DL in Gg,p.

We have the following theorem about the security of
the MSDL scheme.

Theorem. Let the hash functions H, F be random
oracles. Then the Multisignature Signature scheme based
on DL is existentially unforgeable against adaptive
chosen message attacks (EUF-CMA) under the DL
assumption.

Concretely, suppose that there is a EUF-CMA
adversary A, which has an advantage MSDL against the
MSDL scheme of t signers and A runs in time at most
tMSDL. Suppose that A makes at most qS sign queries, and
at most qH, qF queries to the hash functions H, F,
respectively. Then there is a DL algorithm B that has an
advantage DL in Gg,p with running time tDL, where:

MSDL  (4qFqH)(DL)1/(3t+1) + 1/q + qS(qF + qS)/p (1)
tMSDL  tDL/(2t) - 2qSCexp(Gg,p) (2)

Here Cexp(Gg,p) denotes the computation cost of a
long exponentiation in the group Gg,p.

Proof: We use the random oracle model to show that the
proposed multisignature scheme is secure. Concretely,
suppose that there is a EUF-CMA adversary A that has
an advantage  MSDL against the MSDL scheme and A
runs in time at most tMSDL. Suppose that A makes at most
qH, qF queries to the hash functions H and F respectively,
and at most qS queries to the sign oracle. Then there is a
DL algorithm B that has an advantage  DL in Gg,p with
running time tDL.

We show how to construct a DL algorithm B that
uses A as a computer program to gain an advantage  DL

for a DL problem with running time tDL. The challenger
takes a security parameter 1k and runs the system
parameter generation algorithm and the key generation
algorithm to obtain the group Gp,g and y. Its goal to
output x = log,g,py  Zq

*.
Algorithm B simulates the challenger and interacts

with the adversary A in the following attack games:
Algorithm B gives the adversary A the resulting

system parameter P, and y as the public key of an honest
signer.

At any time, the adversary A can query hash oracles
H or F. To response to these queries, B maintains two

lists of tuples for the hash oracles H and F respectively.
We refer to these lists as H-list and F-list. The contents
of the two lists are “dynamic” during the attack games.
Namely, when the games start, they are initially empty,
but at the end of the games, they record all pairs of
queries/answers.
Answering H-oracle Queries. When A queries the
oracle H with some message <y1, y2, …, yt>, algorithm B
responds as follows:
1. If the query <y1, y2, …, yt> already appears on the

H-list in some tuple <<y1, y2, …, yt>, h>, then
algorithm B responds with h = H(y1, y2, …, yt).

2. Otherwise, algorithm B picks a random h in Zq
*, and

responds with h = H(y1, y2, …, yt) and adds the tuple
<< y1, y2, …, yt >, h> to the H-list.

Answering F-oracle Queries. When A queries the
oracle F with some message <M, R, h>, algorithm B
responds as follows:
1. If the query <M, R, h> already appears on the F-list

in some tuple <<M, R, h>, f>, then algorithm B
responds with f = F(M, r, h).

2. Otherwise, B checks if h is in the H-list, then
generates a random f  Zq

*, responds with f = F(M,
R, h), and adds the tuple <<M, R, h >, f> to the F-
list.

Obviously, in two ways, h and f are uniform in Zq
*,

and they are independent of A’s current view as required.

Answering sign queries. When the adversary A requests
a signature for <M, Y> under a joint public key Y,
algorithm B responds to this query as follows:
1. B checks if Y is a valid joint public key: Y =

1

...21

th
t

h yyy , where h = H(y1, y2,…, yt).

2. Algorithm B chooses at random s, f  Zq
*, and

computes R = fsYg .

3. If there exists a tuple <<M, R, h>, f’> in the F-list
with f ≠ f’, B reports failure and terminates. (The
probability of this unfortunate coincidence is at
most (qF + qS)/p).

4. Otherwise, B responds with (s, f) to the adversary A,
and adds the tuple <<M, R, h>, f> to the F-list.

Obviously, the outputs of the simulated oracles are
indistinguishable from those in the real attacks.

Finally, the adversary A returns a new valid message
M and its multisignature (s, f) under the joint public key
Y composed of public keys {y1, …, yj-1, y, yj+1, …, yt},
where y is the challenged public key and others are
chosen by the adversary A such that

f = F(M, fh
t

h
j

hh
j

s
tjjj

yyyyyg)......(
112

111



 , h),

where h = H(y1, y2,…, yt)
If the adversary A has not queried F(M, R, h) or

H(y1, y2,…, yt), the probability

MULTISIGNATURE SCHEME BASED ON… Informatica 34 (2010) 509–515 513

Pr[f = F(M, fh
t

h
j

hh
j

s
tjjj

yyyyyg)......(
112

111



 ,

h), where h = H(y1, y2,…, yt)]  1/q,
since both the responses F(M, R, H(y1, y2,…, yt)) and
H(y1, y2,…, yt) are picked randomly.

Hence, with the probability (1- 1/q)(MSDL – qS(qF +
qS)/p) the adversary A returns a new multisignature (s, f)
such that

f = F(M, fh
t

h
j

hh
j

s
tjjj

yyyyyg)......(
112

111



 , h),

where h = H(y1, y2,…, yt)
and the responses F(M, R, H(y1, y2,…, yt)) and H(y1,
y2,…, yt) are in the F-list and the H-list.

The verification equation is equivalent to the
equation

),,(
111)......(

112
hRMFh

t
h

j
hh

j
s

tjjj

yyyyyg


 = R,

where h = H(y1, y2,…, yt),
where y is the challenged public key and other public
keys y1, …, yj-1, yj+1, …, yt are chosen by the adversary A.

Since Pointcheval and Stern proposed the forking
reduction proof [19], oracle replay techniques have been
used to provide formal security proofs for ElGamal–like
triplet signature schemes. In this proof, we are required
to find x = logg,py. It is a knowledge extraction problem.
Hence, we try to use the oracle replay techniques to solve
this DL problem.

We use 2t copies of the adversary A. In the attack
games, the adversary A would ask H-query for <y1, …, yj-

1, y, yj+1, …, yt>. We first guess a fixed index 1  u  qH

and hope that (y1, …, yj-1, y, yj+1, …, yt) happens to be uth
H-query used in the forged multisignature. Then we
guess a fixed index 1  v  qF and hope that <M, R, h>
happens to be vth F-query used in the forged
multisignature. Note that A must ask for H(y1, …, yj-1, y,
yj+1, …, yt) before for F(M, R, h).

Suppose that we make two good guesses by chance,
denoted by the event GoodGuess. The probability of the
event GoodGuess is

Pr[GoodGuess] = 1/(qHqF).
Hence, with the probability

 = (1 – 1/q)(MSDL – qS(qF + qS)/p)/(qFqH)
 (MSDL– 1/q – qS(qF + qS)/p)/(qFqH)

the adversary A generates a new multisignature.
B gives the same system parameter, the same public

key y and same sequence of random bits to the 2t copies
of the adversary A, and responds with the same random
answers to their queries for oracles until they at the same
time ask the H-oracle query for < y1, …, yj-1, y, yj+1, …,
yt>. This is the first forking point. At that point, B gives t
independent random answers h1, h2 and ht to the hash
queries H in the 2t runs, the first two, gives h1, the
second two, gives h2, and the last two, gives ht.

Then B gives the first two copies of the adversary A
same sequence of random bits, and the same random
answers to their oracle queries until they both ask for
F(M1, R1, h1). This is the second forking point. At that
point, B gives two independent random answers f11 and
f12 to the hash queries F(M1, R1, h1) in the first two runs.
Similarly, B gives two independent random answers f21

and f22 to the hash queries F(M2, R2, h2) (the third forking
point) in the second two runs, ft1 and ft2 to the hash
queries F(Mt, Rt, ht) (the (t + 1)th forking point) in the
last two runs. Thus, we would obtain 2t multisignatures,
satisfying the following equations:

121
11

1
1111)...(Ryyyg fh

t
hs

t




 (3)

121
12

1
1112)...(Ryyyg fh

t
hs

t




 (4)

221
21

1
2221)...(Ryyyg fh

t
hs

t




221
22

1
2222)...(Ryyyg fh

t
hs

t




……

t
fh

t
hs Ryyyg t

t
ttt 


1
1

1)...(21

t
fh

t
hs Ryyyg t

t
ttt 


2
1

2)...(21

From these equations, we can derive logg,py as
follows:

From eqn.(3) and eqn.(4), we can derive a1 = (s11 –
s12)/(f12 – f11) (mod q) such that

1
1

11)...(21
ah

t
h gyyy

t




 (t+1)

By the same way, we can derive a2, …, at, such that

2
1

22)...(21
ah

t
h gyyy

t




 (t+2)

……

t
t

tt ah
t

h gyyy 


)...(
1

21 (t+t)

Then from eqn.(t+1)̶eqn.(t+t), we have a system
of equations

1
1

1211 ... axhxhx t
t  

(mod q)

2
1

2221 ... axhxhx t
t  

(mod q)

……

tt
t

tt axhxhx  1
21 ... (mod q)

We can derive xj = logg,py since h1, h2 and ht are
different from each other.

We use the “splitting lemma” [19] to compute the
probability that A works as hoped. Let X be the set of
possible sequences of random bits and random function
values that take the adversary up to the first forking point
where A asks for H(y1, …, yj-1, y, yj+1, …, yt); let Y1 be the
set of possible sequences of random bits and random
function values from the first forking point to the second
forking point; let Z1 be the set of possible sequences of
random bits and random function values from the second
forking point. By assumption, for any x  X, y  Y1, z 
Z1, the probability that A, supplied the sequences of
random bits and random values (x||y||z), generates a new
multisignature is .

Suppose that the sequences of random bits and
random function values supplied up to the first forking
point in the simulations is a. By “splitting lemma”, the
probability that Pr{a  “good” subset }  /2, and
whenever a  , y  Y1, z  Z1, the probability that A,
supplied the sequences of random bits and random values
(a||y||z), produces a forgery is at least /2.

514 Informatica 34 (2010) 509–515 Z. Shao

Suppose that the sequences of random bits and
random function values supplied from the first forking
point up to the second forking point in the simulations is
b. Thus, the probability that Pr{b  “good” subset ’} 
/4, and whenever a  , b  ’, z  Z1, the probability
that A, supplied the sequences of random bits and
random values (a||b||z), produces a forgery is at least /4.

By the same reason, we can compute the same
probability for the other t - 1 cases.

Hence the probability that B solves the discrete
logarithm in the 2t simulations is

DL  ()(3t+1)/2(6t+1)  ((MSDL– 1/q – qS(qF +
qS)/p)/(4qFqH)) (3t+1)

MSDL  (4qFqH)(DL)1/(3t+1) + 1/q + qS(qF + qS)/p.
The time required to run one simulation is tMSDL +

2qSCexp(Gg,p).
The time required by the simulator B to solve the

discrete logarithm logg,py is
tDL  2t(t MSDL +2qSCexp(Gg,p)).
t MSDL  tDL/(2t) - 2qSCexp(Gg,p).

Q.E.D.

4 Conclusion
We have proposed a Multisignature Scheme based on
Discrete Logarithms (MSDL). We show that this new
scheme can resist existential forgeries against adaptive
chosen-message attacks in the random oracle model. The
main contribution is that our security model gets rid of
the special security requirement on the generation of the
participants’ public keys. Thus the new multisignature
scheme does not suffer from the problem identified by
Micali et al., which is shared by many current
multisignature schemes.

The second contribution is that our multisignature
scheme can provide sequentially accountability, which
means that not only individual signers can be identified
from the multisignature, but also the order of
accountability. That is, the first signer U1 is responsible
for the first partial multisignature, the second signer U2 is
responsible for the second partial multisignature, and the
last signer Ut is responsible for the last multisignature.
Thus, our scheme is robust. Notice that here sequentially
accountability means that verifiers can demand that the
signers are responsible for multisignatures according to
the specified order <U1, U2, …,Ut> rather than that the
signers could generate multisignatures only according to
the specified order.

Furthermore, the proposed multisignature scheme is
more efficient, since the size of multisignatures is the
same as that of the underlying signatures, regardless of
the number of participants. If the joint public key Y of a
group of signers is precomputed, the computation cost
for verification a multisignature is identical to those of an
individual’s signature. Thus the proposed multisignature
scheme is optimal.

However, the forking reduction proof we use makes
our proof inefficient. Strictly speaking, our proof is only
loosely related to the DL problem according to Micali
and Reyzin [22]. Therefore, our multisignature scheme is

only applicable to the group of polynomial bounded
signers.

Although the Schnorr scheme provably secure by
oracle replay technique is only loosely related to DL
problem, there has been not any efficient forgery attack
without solving DL problem first. By similar reasons, our
more loosely reduction would also provide users with
somewhat security confidence that there is no efficient
forgery algorithm without solving DL problem first.

We have proposed a Multisignature Scheme based
on Discrete Logarithms (MSDL). We show that this new
scheme can resist existential forgeries against adaptive
chosen-message attacks in the random oracle model. The
main contribution is that our security model gets rid of
the special security requirement on the generation of the
participants’ public keys. Thus the new multisignature
scheme does not suffer from the problem identified by
Micali et al., which is shared by many current
multisignature schemes.

The second contribution is that our multisignature
scheme can provide sequentially accountability, which
means that not only individual signers can be identified
from the multisignature, but also the order of
accountability. That is, the first signer U1 is responsible
for the first partial multisignature, the second signer U2 is
responsible for the second partial multisignature, and the
last signer Ut is responsible for the last multisignature.
Thus, our scheme is robust. Notice that here sequentially
accountability means that verifiers can demand that the
signers are responsible for multisignatures according to
the specified order <U1, U2, …,Ut> rather than that the
signers could generate multisignatures only according to
the specified order.

Furthermore, the proposed multisignature scheme is
more efficient, since the size of multisignatures is the
same as that of the underlying signatures, regardless of
the number of participants. If the joint public key Y of a
group of signers is precomputed, the computation cost
for verification a multisignature is identical to those of an
individual’s signature. Thus the proposed multisignature
scheme is optimal.

However, the forking reduction proof we use makes
our proof inefficient. Strictly speaking, our proof is only
loosely related to the DL problem according to Micali
and Reyzin [22]. Therefore, our multisignature scheme is
only applicable to the group of polynomial bounded
signers.

Although the Schnorr scheme provably secure by
oracle replay technique is only loosely related to DL
problem, there has been not any efficient forgery attack
without solving DL problem first. By similar reasons, our
more loosely reduction would also provide users with
somewhat security confidence that there is no efficient
forgery algorithm without solving DL problem first.

Acknowledgement
The author would like to thank the anonymous reviewers
for their valuable comments and suggestions that
improve the presentation of this paper significantly.

MULTISIGNATURE SCHEME BASED ON… Informatica 34 (2010) 509–515 515

References
[1] Y. Desmelt (1988). Society and group oriented

cryptography: A new concept, Advances in
Cryptology-Crypto’87, LNCS 293, Springer, Berlin,
pp. 120-127.

[2] L. Harn (1999). Digital multisignature scheme with
distinguished signing authorities, Electron. Lett .,
35(4), pp.294-295.

[3] K. Itakura and K. Nakamura (1983). A public key
cryptosystem suitable for digital multisignatures,
NEC Research & Development, (71): pp. 1- 8.

[4] K. Ohta and T. Okamoto (1999(. Multi-signature
schemes secure against active insider attacks, IEICE
Transaction on Fundamentals of Electronics
communications and computer Science, E82-A(1),
pp.21-31.

[5] S. Micali, K. Ohta, and L. Reyzin (2001).
Accountable-subgroup mulitisignatures, In ACM
Conference on Computer and communications
Security, 2001.

[6] L. Harn (1994). Group-oriented (t, n) threshold
digital signature scheme and digital multisignature,
IEE Proc.-Comput. Digit. Tech., 141(5), pp.307-
313.

[7] C.-M. Li, T. Hwang, and N.-Y. Lee (1994).
Threshold-multisignature schemes where suspected
forgery implies traceability of adversarial
shareholders, Advances in Cryptology – Eurocrypt
94, LNCS 950, Springer-Verlag, pp. 194-204.

[8] A. Boldyreva (2003). Threshold signature,
multisignature and blind signature schemes based
on the gap-Diffie-Hellman-group signature scheme,
Proceedings of PKC 2003, LNCS 2567, Springer-
Verlag, pp. 31-46.

[9] S. Lu, R. Ostrovsky, A. Sahai, H. Shacham, and B.
Waters (2006). Sequential Aggregate Signature and
Multisignature without Random Oracle, In
EUROCRYPTO’06, LNCS 4004, Springer-Verlag,
Berlin, pp. 465-485.

[10] PKCS#10: Certification request syntax standard,
RSA Data Security, Inc., 2000.

[11] C. Adams, S. Farrell, T. Kause, T. Monen (2005).

Internet X.509 Public Key Infrastructure Certificate
Management Protocol (CMP), Internet, Engineering
Task Force RFC 4210.

[12] J. Schaad (2005). Internet X.509 Public Key
Infrastructure Certificate, Request Message Format,
Internet Engineering Task Force RFC, 4211.

[13] T. Ristenpart and S. Yilek (2007). The Power of
Proofs-of-Possession: Securing Multiparty
Signatures against Rogue-Key Attacks. in Advances
in Cryptology – EUROCRYPT 2007, LNCS 4515,
Springer-Verlag, pp. 228–245.

[14] M. Bellare and G. Neven (2006). Multi-signatures
in the plain public-key model and a generalized
forking lemma, CCS 2006, ACM, pp.390-399.

[15] Zuhua Shao (2007). Self-certified Signatures Based
on Discrete Logarithms, in Proceedings of WAIFI
2007, LNCS 4547, Springer-Verlag, pp.252-263.

[16] Zuhua Shao (2007). Self-certified signature scheme
from pairings, Journal of Systems and Software,
80(3), pp. 388-395.

[17] Zuhua Shao (2009). Dynamic and efficient joint
encryption scheme in the plain public key model,
Computers and Electrical Engineering, 35(1), pp.
189-196.

[18] C. P. Schnorr (1991). Efficient signature generation
by smart cards, Journal of Cryptology, 3(3), pp.161-
174.

[19] D. Pointcheval and J. Stern (2000). Security
arguments for digital signatures and blind
signatures, Journal of Cryptology, 13(3), pp. 361-
396.

[20] S. Goldwasser, S. Micali, and R. Rivest (1988). A
digital signature scheme secure against adaptive
chosen-message attacks, SIAM Journal on
Computing, 17(2), pp.281-308.

[21] M. Bellare, A. Desai, D. Pointcheval, and P.
Rogaway (1998). Relation among notions of
security for public-key encryption schemes, In
Crypto’98, LNCS 1462, Springer-Verlag, Berlin,
pp. 26-45.

[22] S. Micali and L. Reyzin (2002). Improving the
exacting security of digital signature schemes,
Journal of Cryptology, 15(1), pp.1-18.

516 Informatica 34 (2010) 509–515 Z. Shao

