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In this paper, we propose a new multisignature scheme based on discrete logarithms. We show that this 
new scheme can resist existential forgeries against adaptive chosen-message attacks in the random 
oracle model. The main contribution is that our security model gets rid of the special security 
requirement on the generation of the signers’ public keys. Adversaries are not required to reveal private 
keys corresponding to the public keys of its choice to the challenger in attack games. Thus the new 
multisignature scheme does not suffer from the problem identified by Micali et al., which is shared by 
many current multisignature schemes. Moreover, if the joint public key of a group of signers in this
multisignature scheme is precomputed, the proposed multisignature scheme is optimal.

Povzetek: Opisana je shema podpisov za zaščito javnih ključev.

1 Introduction
Society oriented cryptography is a notion introduced by 
Desmedt [1]. A society oriented signature is essentially 
like a single signature except that is generated by plural 
individuals simultaneously. 

A multisignature scheme is one kind of society 
oriented signature scheme, which allows multiple signers 
to sign the same message in a collaborative and 
simultaneous manner. A trivial solution is that every 
signer signs the message using a normal signature 
scheme respectively. Obviously, this simple solution will 
meet the security requirements for the multisignature 
scheme if the underlying signature scheme is secure. Its 
main drawback, however, is that both the data expansion 
and the computation costs for verification increase 
linearly with the number of signers in the group. Harn [2] 
submitted two additional properties that need to be 
achieved in the design of an optimal multisignature 
scheme:

1. The size of a multisignature should be identical to 
that of an individual signature.

2. The verification process of a multisignature should 
be almost identical to that of an individual 
signature.

Hence, in an optimal multisignature scheme, not 
only the size of signatures is independent of the number 
of signers participating in signing, but also the 
computation costs for verification.

Since the notion of multisignatures was introduced 
by Itakura and Nakamura [3], there have been many
multisignature schemes proposed in literatures. However, 
most importantly, until the works of Ohta and Okamoto 
[4] and of Micali et al. [5], there were no formal security 
models for multisignatures. This lack of formalism has 

led not only to some confusion as to the precise security 
requirements for multisignatures, but also to some 
multisignature schemes having been subsequently broken 
[6, 7].

In group oriented cryptosystems, we must consider 
the possibility that an adversary could corrupt some 
fraction of participants, and thereby comes into 
possession of their private keys. We even allow the 
adversary to specify the public keys of the corrupted 
participants. In so-called rogue-key attacks, the adversary 
would register public keys created as a function of public 
keys of other honest participants. This kind of attacks 
could be extremely danger to break some multisignature 
schemes. The security notion of Ohta and Okamoto [4] is 
not strong enough to withstand such rogue-key attacks in 
the key generation. 

Micali et al. [5] gave the first strong security notion 
for multisignature schemes in the plain public key model. 
They discussed a series of more sophisticated approaches 
based on zero-knowledge proofs, by which the private 
keys corresponding to the public keys can be extracted. 
Their scheme requires, as a pre-processing step, that the 
set of potential signers engage in an interactive key 
generation protocol to generate their key pairs. Besides 
expensive and resulting in complex public keys, this 
dedicated key generation enforces the set of potential 
signers to be static.  

Boldyrva [8] proposed an efficient multisignature 
scheme based on the Gap-Diffie-Hellman group. Lu et al. 
[9] proposed the first multisignature scheme from 
pairings, provably secure without random oracles. Their
security models allow an adversary to create arbitrary 
public keys for the corrupted signers possibly dependent 
on the public keys of the honest signers. But they require 
the adversary to prove the knowledge of the 
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corresponding secret keys (KOSK) during the public key 
registration. For simplicity, it has the adversary to hand 
over the secret keys of the corrupted signers in key 
generation algorithm. However, this KOSK assumption is 
not realized by existing public key infrastructure (PKI). 
Key registration protocols specified by the most widely 
used standards, PKCS#10 [10] - used by VeriSign and 
RFC 4210 [11, 12] do not specify that the Certification 
Authority (CA) should require proofs of knowledge, 
instead, specify that the CA should require proofs of 
possession (POP). That is, applicant is required to hand 
over the CA a signature, under the public key it is 
attempted to get certified, of some message that includes 
the public key and the identity of the applicant.

While such requirement might intuitively appear to 
stop adversaries from picking rogue keys, it does not 
suffice to realize the security models of [8, 9]. Ristenpart 
and Yilek [13] analyzed these schemes when key 
registration requires POPs. They showed that the 
standardized POP mechanism does not lead to secure 
multisignatures. Both schemes fall to rogue-key attacks 
despite the use of standardized POP. They presented a 
straightforward and natural fix for this problem: simple 
use separate hash function for POPs and multisignatures 
at the cost of upgrading existing PKI.

In 2006, Bellare and Neven [14] proposed a new 
multisignature scheme in the plain public key model, 
requiring nothing more than each signer has a (certified) 
public key in GF(p), which means neither KOSK or POP
is required in key registration protocols. They provided a 
security proof in the random oracle model. However, 
their scheme is less efficient than the original Schnorr 
signature since the computation of verification increases 
linearly with the number of signers in the group.

In this paper, we also propose a new multisignature 
scheme based on Discrete Logarithms (DL) in the plain 
public key model. We show that this new scheme can 
resist existential forgeries against adaptive chosen-
message attacks in the random oracle model. The main 
contribution is that our security model gets rid of the 
special security requirement on the generation of 
participants’ public keys. Namely, like [14], our security
model not only allows so-called rogue-key attacks in the 
key generation, but also gives the adversary complete 
freedom in specifying the public keys of the corrupted 
signers. The adversary is no longer enforced to prove 
either knowledge or possession of the private keys 
corresponding to the public keys of its choice. The 
second contribution is that our multisignature scheme can 
provide sequentially accountability, which means that not 
only individual signers can be identified from the 
multisignatures, but also the order of accountability. The 
main technique of this paper is the joint public key 
composed of the public keys of a group of users, which 
has been used in self-certified signatures [15, 16] and 
joint encryption scheme [17] to achieve provably secure.

Moreover, if the joint public key of a group of 
signers is precomputed, the proposed multisignature 
scheme is optimal, since the size of multisignatures and 
the verification costs are the same as those for the single-

signer Schnorr signature scheme, regardless of the 
number of signers.

2 The new multisignature scheme
In this section, we first present a formal definition for the 
multisignature scheme, and then provide an 
implementation of Multisignature Scheme based on 
Discrete Logarithms (MSDL). Let U = {U1, U2, …, Un} 
be a group of n signers.

2.1 Definition for multisignature scheme
Definition 1. A multisignature scheme is specified 

as four randomized algorithms: ParaGen, KeyGen, Sign 
and Verify: 

ParaGen: takes a security parameter 1k as input and 
returns a system parameter P, including some 
cryptographic hash functions.

KeyGen: takes the system parameter P as input, 
each signer Ui of the group U chooses its keypair (xi, yi)
respectively. 

Sign: takes as input P, the signers of any subset S of 
the group U (without loss of generality S = {U1, U2, …, 
Ut}) cooperatively generate a multisignature  for a 
message M by using their keypairs (xi, yi). The joint 
public key YS of the subset S is composed of the 
individual public keys {y1, …, yt}.

Verify: takes as input P, M, the joint public key YS

and a multisignature , it returns invalid or valid, with 
the property that if (P)  ParaGen(1k), ({x1, …, xt}, YS) 
 KeyGen(P) and  Sign(P, M, {x1, …, xt}, YS), then 
Verify(P, M, , YS) = valid.

2.2 An Implementation of Multisignature 
Scheme based on Discrete Logarithms 
(MSDL)

We use the Schnorr signature [18] as the underlying 
signature, which has been proved to be secure in the 
random oracle model [19].
ParaGen: A trusted party takes a security parameter 1k

as input and returns the system parameter P, which 
includes a subgroup Gg,p = {g0, g1, …, gq-1} of a prime 
order q in the multiplicative group Zp

*, where g is a 
generator with the prime order q, and two (ideal) hash 
functions H and F, where

H: Gg,p … Gg,p  Zq*
  and  F: {0, 1}* Zp

* Zq
* 

Zq
*

KeyGen: takes the system parameter P as input, each 
signer Ui of a group U chooses its private key xi  Zq

*

and computes its public key yi = ixg respectively.

Sign: takes as input P, the signers of a subset S of the 
group U (without loss of generality S = {U1, U2, …, Ut}) 
cooperatively generate a multisignature  for a message 
M by using their keypairs (xi, yi) as follows:
1. Each signer Ui of the subset S chooses a random 

number ki  Zq
*, computes ri = ikg and broadcasts

(yi, ri).
2. After receiving (yj, rj), (j = 1, 2, …, t), each signer 
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computes R = r1r2…rt, h = H(y1, y2,…, yt) and f = 
F(M, R, h). 

3. The first signer U1 computes s1 = k1 – fx1 (mod q) 
and sends it to the second signer U2.

4. After receiving s1 from the first signer U1, the 

second signer U2 first verifies 11
1 ryg fs  and then 

computes s2 = s1 + k2 – hfx2 (mod q), and sends it to 
the third signer U3.

5. After receiving st-1 from the (t - 1)th signer Ut-1, the 
last signer Ut first verifies 
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t , and then 

computes s = st-1 + kt – ht-1fxt (mod q). The 
multisignature for the message M is  = (f, s).

Verify: The verifier first computes the joint public key of 

the subset YS = 
1

...21

th
t

h yyy , where h = H(y1, y2,…, yt), 

and then checks the verification equation of the 

multisignature f = F(M, 
f

S
sYg , H(y1, y2,…, yt)).

Completeness: Because s1 = k1 – fx1 (mod q) implies 

11
1 ryg fs  , s2 = s1 + k2 – hfx2 (mod q) implies 

2121 )(1 rryyg fhs  . By the same reason, 
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t
t and s = st-1 + kt – ht-

1fxt (mod q) imply the verification equation. Hence, the 
signature  = (s, f) produced by the algorithm Sign is 
always valid.

Notice that our results can also be carried over to 
other groups, such as those built on elliptic curves.

Notice that the algorithm Verify requires that a 
verifier computes the joint public key YS = 

1

...21

th
t

h yyy from the individual public keys <y1, y2,…, 

yt> of a subset of signers. However, this time-consuming 
computation is independent of messages to be signed, 
and hence can be done once for all. Once the joint public 
key YS of a subset of signers is precomputed, the 
performance of the multisignature scheme is optimal.

3 Security model and security 
proof

In this section, we first define a new security model for 
multisignature schemes, which gives the adversary 
complete freedom in specifying the public keys of the 
corrupted signers without handing over the 
corresponding private keys. Then we provide the security 
proof in this strong security model.

3.1 Security model for multisignature 
schemes

Security model
Existential unforgeability against adaptive chosen 

message attacks (EUF-CMA) [20] is the well-accepted 
security model for signature schemes, where the 

adversary is allowed to ask the challenger to sign any 
message of its choice adaptively, i.e. he can adapt its 
queries according to previous answers. Finally, the 
adversary could not provide a new message-signature 
pair with a non-negligible advantage. Hence, it is natural 
to require that the multisignatures also satisfy this strong 
security notion.

Accordingly, existential unforgeability for group 
oriented setting means that the adversary attempts to 
generate a new multisignature without the knowledge of 
all private keys. We formalize this intuition as a chosen 
key model. In this model, the adversary is given a single 
public key, while the adversary is allowed to choose the 
key pairs of other signers of the group, and to ask the 
sign query for any multisignature under any joint public 
key. His goal is to generate a new multisignature under 
the joint public keys of the group composed of the given 
public key and the public keys of its choice.

We say that a multisignature scheme is existential 
unforgeable against adaptive chosen message attacks if 
no polynomial bounded adversary A has a non-negligible 
advantage against the challenger in the following game:

Setup: The challenger takes a security parameter 1k as 
input and runs the randomized system parameter 
generation algorithm and the key generation algorithm to 
generate the system parameter P and a public key y. The 
challenger gives them to the adversary A.
Queries: Processing adaptively, the adversary A requests 
multisignatures queries (Mi, Yi) under any joint public 
key Yi on any message Mi of its choice, where the 
challenged public key y might be included in the joint 
public key Yi.
Response: Finally, the adversary A outputs a new 
multisignature  for a message M under a joint public 
key Y.

The adversary A wins the game if the output 
multisignature  is nontrivial, i.e. it is not an answer of a 
sign query (M, Y) for the message M under a joint public 
key Y, and the joint public key Y is composed of the 
individual public keys {y1, …, yj-1, y, yj+1, …, yt}, where 
the individual public keys {y1, …, yj-1, yj+1, …, yt}, (j 
{1, …, t}), are chosen by the adversary A and y is the 
given public key.

The probability is over the random bits used by the 
challenger and the adversary.

Notice that our security model does not suffer from 
the same special limitation as the multisignature schemes 
proposed before. The adversary is given complete 
freedom in specifying the public keys but the given 
public key and is not enforced to disclose any knowledge 
of the corresponding private keys.

Notice that the Schnorr signature generation is not 
deterministic, there may be several signatures 
corresponding to a given message. Hence, our security 
model actually adopts the more liberal rule, which makes 
the adversary successful when it outputs a fresh signature 
of a given message different from previously obtained 
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signatures of the same message. Thus, our security model 
achieves non-malleability (NM) [21].

3.2 Security proof of the MSDL scheme
The security of the proposed MSDL scheme is based on 
the DL assumption.
Definition 2 (DL assumption)

A probabilistic algorithm A is said to (t, )-break DL 
in a group Gg,p, if on input (g, p, q, y = gx) and after 
running in time at most t, A solves the discrete logarithm 
problem x = logg,py with probability at least , where the 
probability is over the uniform random choice of g from 
the group Gg,p, of x from Zq

*, and the coin tosses of A. 
The (t, )-DL assumption on the group Gg,p is that if no 
algorithm (t, )-breaks DL in Gg,p.

We have the following theorem about the security of 
the MSDL scheme.

Theorem. Let the hash functions H, F be random 
oracles. Then the Multisignature Signature scheme based 
on DL is existentially unforgeable against adaptive 
chosen message attacks (EUF-CMA) under the DL 
assumption.

Concretely, suppose that there is a EUF-CMA
adversary A, which has an advantage MSDL against the 
MSDL scheme of t signers and A runs in time at most 
tMSDL. Suppose that A makes at most qS sign queries, and 
at most qH, qF queries to the hash functions H, F,
respectively. Then there is a DL algorithm B that has an
advantage DL in Gg,p with running time tDL, where: 

MSDL  (4qFqH)(DL)1/(3t+1) + 1/q + qS(qF + qS)/p  (1)
tMSDL  tDL/(2t) - 2qSCexp(Gg,p)                              (2)

Here Cexp(Gg,p) denotes the computation cost of a 
long exponentiation in the group Gg,p.

Proof: We use the random oracle model to show that the 
proposed multisignature scheme is secure. Concretely, 
suppose that there is a EUF-CMA adversary A that has
an advantage  MSDL against the MSDL scheme and A
runs in time at most tMSDL. Suppose that A makes at most 
qH, qF queries to the hash functions H and F respectively, 
and at most qS queries to the sign oracle. Then there is a 
DL algorithm B that has an advantage  DL in Gg,p with 
running time tDL.

We show how to construct a DL algorithm B that 
uses A as a computer program to gain an advantage  DL

for a DL problem with running time tDL. The challenger 
takes a security parameter 1k and runs the system 
parameter generation algorithm and the key generation 
algorithm to obtain the group Gp,g and y. Its goal to 
output x = log,g,py  Zq

*.
Algorithm B simulates the challenger and interacts 

with the adversary A in the following attack games:
Algorithm B gives the adversary A the resulting 

system parameter P, and y as the public key of an honest 
signer.

At any time, the adversary A can query hash oracles 
H or F. To response to these queries, B maintains two 

lists of tuples for the hash oracles H and F respectively. 
We refer to these lists as H-list and F-list. The contents 
of the two lists are “dynamic” during the attack games. 
Namely, when the games start, they are initially empty, 
but at the end of the games, they record all pairs of 
queries/answers.
Answering H-oracle Queries. When A queries the 
oracle H with some message <y1, y2, …, yt>, algorithm B
responds as follows:
1. If the query <y1, y2, …, yt> already appears on the 

H-list in some tuple <<y1, y2, …, yt>, h>, then 
algorithm B responds with h = H(y1, y2, …, yt).

2. Otherwise, algorithm B picks a random h in Zq
*, and 

responds with h = H(y1, y2, …, yt) and adds the tuple 
<< y1, y2, …, yt >, h> to the H-list.

Answering F-oracle Queries. When A queries the 
oracle F with some message <M, R, h>, algorithm B
responds as follows:
1. If the query <M, R, h> already appears on the F-list 

in some tuple <<M, R, h>, f>, then algorithm B
responds with f = F(M, r, h).

2. Otherwise, B checks if h is in the H-list, then 
generates a random f  Zq

*, responds with f = F(M, 
R, h), and adds the tuple <<M, R, h >, f> to the F-
list.

Obviously, in two ways, h and f are uniform in Zq
*, 

and they are independent of A’s current view as required. 

Answering sign queries. When the adversary A requests 
a signature for <M, Y> under a joint public key Y, 
algorithm B responds to this query as follows:
1. B checks if Y is a valid joint public key: Y = 

1

...21

th
t

h yyy , where h = H(y1, y2,…, yt).

2. Algorithm B chooses at random s, f  Zq
*, and 

computes R = fsYg . 

3. If there exists a tuple <<M, R, h>, f’> in the F-list 
with f ≠ f’, B reports failure and terminates. (The 
probability of this unfortunate coincidence is at 
most (qF + qS)/p).

4. Otherwise, B responds with (s, f) to the adversary A,
and adds the tuple <<M, R, h>, f> to the F-list.

Obviously, the outputs of the simulated oracles are 
indistinguishable from those in the real attacks. 

Finally, the adversary A returns a new valid message 
M and its multisignature (s, f) under the joint public key 
Y composed of public keys {y1, …, yj-1, y, yj+1, …, yt}, 
where y is the challenged public key and others are 
chosen by the adversary A such that

f = F(M, fh
t

h
j

hh
j

s
tjjj

yyyyyg )......(
112

111



 , h),

where h = H(y1, y2,…, yt)
If the adversary A has not queried F(M, R, h) or 

H(y1, y2,…, yt), the probability 
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Pr[f = F(M, fh
t
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yyyyyg )......(
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

 , 

h), where h = H(y1, y2,…, yt)]  1/q,
since both the responses F(M, R, H(y1, y2,…, yt)) and 
H(y1, y2,…, yt) are picked randomly.

Hence, with the probability (1- 1/q)(MSDL – qS(qF +
qS)/p) the adversary A returns a new multisignature (s, f) 
such that 

f = F(M, fh
t

h
j

hh
j

s
tjjj

yyyyyg )......(
112

111



 , h),

where h = H(y1, y2,…, yt)
and the responses F(M, R, H(y1, y2,…, yt)) and H(y1, 
y2,…, yt) are in the F-list and the H-list.

The verification equation is equivalent to the 
equation

),,(
111 )......(

112
hRMFh
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h
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hh
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yyyyyg


 = R,

where h = H(y1, y2,…, yt),
where y is the challenged public key and other public 
keys y1, …, yj-1, yj+1, …, yt are chosen by the adversary A.

Since Pointcheval and Stern proposed the forking 
reduction proof [19], oracle replay techniques have been 
used to provide formal security proofs for ElGamal–like 
triplet signature schemes. In this proof, we are required 
to find x = logg,py. It is a knowledge extraction problem. 
Hence, we try to use the oracle replay techniques to solve 
this DL problem.

We use 2t copies of the adversary A. In the attack 
games, the adversary A would ask H-query for <y1, …, yj-

1, y, yj+1, …, yt>. We first guess a fixed index 1  u  qH

and hope that (y1, …, yj-1, y, yj+1, …, yt) happens to be uth 
H-query used in the forged multisignature. Then we 
guess a fixed index 1  v  qF and hope that <M, R, h> 
happens to be vth F-query used in the forged 
multisignature. Note that A must ask for H(y1, …, yj-1, y, 
yj+1, …, yt) before for F(M, R, h).

Suppose that we make two good guesses by chance, 
denoted by the event GoodGuess. The probability of the 
event GoodGuess is

Pr[GoodGuess] = 1/(qHqF).
Hence, with the probability

 = (1 – 1/q)(MSDL – qS(qF + qS)/p)/(qFqH)
 (MSDL– 1/q – qS(qF + qS)/p)/(qFqH)

the adversary A generates a new multisignature.
B gives the same system parameter, the same public 

key y and same sequence of random bits to the 2t copies 
of the adversary A, and responds with the same random 
answers to their queries for oracles until they at the same 
time ask the H-oracle query for < y1, …, yj-1, y, yj+1, …, 
yt>. This is the first forking point. At that point, B gives t
independent random answers h1, h2 and ht to the hash 
queries H in the 2t runs, the first two, gives h1, the 
second two, gives h2, and the last two, gives ht. 

Then B gives the first two copies of the adversary A
same sequence of random bits, and the same random 
answers to their oracle queries until they both ask for 
F(M1, R1, h1). This is the second forking point. At that 
point, B gives two independent random answers f11 and 
f12 to the hash queries F(M1, R1, h1) in the first two runs. 
Similarly, B gives two independent random answers f21

and f22 to the hash queries F(M2, R2, h2) (the third forking 
point) in the second two runs, ft1 and ft2 to the hash 
queries F(Mt, Rt, ht) (the (t + 1)th forking point) in the 
last two runs. Thus, we would obtain 2t multisignatures, 
satisfying the following equations:
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From these equations, we can derive logg,py as 
follows:

From eqn.(3) and eqn.(4), we can derive a1 = (s11 –
s12)/(f12 – f11) (mod q) such that
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Then from eqn.(t+1)̶eqn.(t+t), we have a system 
of equations

1
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We can derive xj = logg,py since h1, h2 and ht are 
different from each other.

We use the “splitting lemma” [19] to compute the 
probability that A works as hoped. Let X be the set of 
possible sequences of random bits and random function 
values that take the adversary up to the first forking point 
where A asks for H(y1, …, yj-1, y, yj+1, …, yt); let Y1 be the 
set of possible sequences of random bits and random 
function values from the first forking point to the second 
forking point; let Z1 be the set of possible sequences of 
random bits and random function values from the second
forking point. By assumption, for any x  X, y  Y1, z 
Z1, the probability that A, supplied the sequences of 
random bits and random values (x||y||z), generates a new
multisignature is . 

Suppose that the sequences of random bits and 
random function values supplied up to the first forking 
point in the simulations is a. By “splitting lemma”, the 
probability that Pr{a  “good” subset }  /2, and 
whenever a  , y  Y1, z  Z1, the probability that A, 
supplied the sequences of random bits and random values 
(a||y||z), produces a forgery is at least /2.
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Suppose that the sequences of random bits and 
random function values supplied from the first forking 
point up to the second forking point in the simulations is 
b. Thus, the probability that Pr{b  “good” subset ’} 
/4, and whenever a  , b  ’, z  Z1, the probability 
that A, supplied the sequences of random bits and 
random values (a||b||z), produces a forgery is at least /4. 

By the same reason, we can compute the same 
probability for the other t - 1 cases. 

Hence the probability that B solves the discrete 
logarithm in the 2t simulations is 

DL  ()(3t+1)/2(6t+1)  ((MSDL– 1/q – qS(qF +
qS)/p)/(4qFqH)) (3t+1)

MSDL  (4qFqH)(DL)1/(3t+1) + 1/q + qS(qF + qS)/p.
The time required to run one simulation is tMSDL + 

2qSCexp(Gg,p).
The time required by the simulator B to solve the 

discrete logarithm logg,py is
tDL  2t(t MSDL +2qSCexp(Gg,p)).
t MSDL  tDL/(2t) - 2qSCexp(Gg,p).

Q.E.D.

4 Conclusion
We have proposed a Multisignature Scheme based on 
Discrete Logarithms (MSDL). We show that this new 
scheme can resist existential forgeries against adaptive 
chosen-message attacks in the random oracle model. The 
main contribution is that our security model gets rid of 
the special security requirement on the generation of the 
participants’ public keys. Thus the new multisignature 
scheme does not suffer from the problem identified by 
Micali et al., which is shared by many current 
multisignature schemes.

The second contribution is that our multisignature 
scheme can provide sequentially accountability, which 
means that not only individual signers can be identified 
from the multisignature, but also the order of 
accountability. That is, the first signer U1 is responsible 
for the first partial multisignature, the second signer U2 is 
responsible for the second partial multisignature, and the 
last signer Ut is responsible for the last multisignature. 
Thus, our scheme is robust. Notice that here sequentially 
accountability means that verifiers can demand that the 
signers are responsible for multisignatures according to 
the specified order <U1, U2, …,Ut> rather than that the 
signers could generate multisignatures only according to 
the specified order.

Furthermore, the proposed multisignature scheme is 
more efficient, since the size of multisignatures is the 
same as that of the underlying signatures, regardless of 
the number of participants. If the joint public key Y of a 
group of signers is precomputed, the computation cost
for verification a multisignature is identical to those of an 
individual’s signature. Thus the proposed multisignature 
scheme is optimal.

However, the forking reduction proof we use makes 
our proof inefficient. Strictly speaking, our proof is only 
loosely related to the DL problem according to Micali 
and Reyzin [22]. Therefore, our multisignature scheme is 

only applicable to the group of polynomial bounded 
signers.

Although the Schnorr scheme provably secure by 
oracle replay technique is only loosely related to DL 
problem, there has been not any efficient forgery attack 
without solving DL problem first. By similar reasons, our 
more loosely reduction would also provide users with 
somewhat security confidence that there is no efficient 
forgery algorithm without solving DL problem first.

We have proposed a Multisignature Scheme based 
on Discrete Logarithms (MSDL). We show that this new 
scheme can resist existential forgeries against adaptive 
chosen-message attacks in the random oracle model. The 
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scheme does not suffer from the problem identified by 
Micali et al., which is shared by many current 
multisignature schemes.

The second contribution is that our multisignature 
scheme can provide sequentially accountability, which 
means that not only individual signers can be identified 
from the multisignature, but also the order of 
accountability. That is, the first signer U1 is responsible 
for the first partial multisignature, the second signer U2 is 
responsible for the second partial multisignature, and the 
last signer Ut is responsible for the last multisignature. 
Thus, our scheme is robust. Notice that here sequentially 
accountability means that verifiers can demand that the 
signers are responsible for multisignatures according to 
the specified order <U1, U2, …,Ut> rather than that the 
signers could generate multisignatures only according to 
the specified order.

Furthermore, the proposed multisignature scheme is 
more efficient, since the size of multisignatures is the 
same as that of the underlying signatures, regardless of 
the number of participants. If the joint public key Y of a 
group of signers is precomputed, the computation cost
for verification a multisignature is identical to those of an 
individual’s signature. Thus the proposed multisignature 
scheme is optimal.

However, the forking reduction proof we use makes 
our proof inefficient. Strictly speaking, our proof is only 
loosely related to the DL problem according to Micali 
and Reyzin [22]. Therefore, our multisignature scheme is 
only applicable to the group of polynomial bounded 
signers.

Although the Schnorr scheme provably secure by 
oracle replay technique is only loosely related to DL 
problem, there has been not any efficient forgery attack 
without solving DL problem first. By similar reasons, our 
more loosely reduction would also provide users with 
somewhat security confidence that there is no efficient 
forgery algorithm without solving DL problem first.
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